两条直线平行与垂直的判定(高二(12)班)
- 格式:ppt
- 大小:303.00 KB
- 文档页数:20
2.1.2 两条直线平行和垂直的判定1.理解并掌握两条直线平行与垂直的条件;(重点)2.会运用条件判断两直线是否平行或垂直.(难点)能否通过斜率来判断两条直线的位置关系?xy 为了在平面直角坐标系内表示直线的倾斜程度,我们引入倾斜角的概念,再利用倾斜角与直线上点的坐标关系引入直线的斜率,从而把几何问题转化为代数问题.Ox y O1l 2l 两条直线平行的判定思考1 设两条直线l 1,l 2 的斜率分别为k 1,k 2,当l 1∥l 2 时, k 1 与k 2 满足什么关系?α1α212∥l l 11αα=11k k =1αxy O 2α斜率均不存在的两条直线平行1l 2l 思考2 设两条直线l 1,l 2 的斜率都不存在,两直线l 1 与l 2 有何位置关系?xy O 1l 2l 若两条直线l 1、l 2平行,则作用:1.判定两线平行2.证明三点共线121212∥,都不存在k k l l k k ⎧=⎪⇔⎨⎪⎩例1 已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论.1. 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C (4,2),D (2,3),试判断四边形ABCD 的形状,并给出证明.x O y AB DC1;23.2////.,四边形是平行四边形.解:AB CD BC DA k k k k AB CD BC DA ABCD==-==∴∴ 分析:判断两组对边是否分别平行.y l 1O xl 2α1α2两条直线垂直的判定思考3 设两条直线l 1,l 2的斜率分别为k 1,k 2,当 l 1⊥l 2 时, k 1 与k 2 满足什么关系?因为直线l 1,l 2的斜率分别为k 1,k 2,则直线l 1,l 2的方向向量分别是 , ,于是即11(,)a k = 21(,)b k = 1212010l l a b a b k k ⊥⇔⊥⇔⋅=⇔+=121k k =-1l x y o 2l 若一条直线的倾斜角为90°,另一条直线的倾斜角为0°,则两直线互相垂直.思考4 若两条直线中有一条直线的斜率不存在,这两条直线可能垂直吗?y l 1O xl 2若两条直线l 1、l 2垂直,则作用:判定两线垂直12121210、中一个为,另一个不存在k k l l k k ⎧=-⎪⊥⇔⎨⎪⎩例2已知A(-6,0),B(3,6),P(0,3),Q(6,-6),试判断直线AB与PQ 的位置关系.分析:分别求出两直线的斜率,观察斜率之间的关系.2. 已知A (5,-1),B (1,1),C (2,3)三点,试判断△ABC 的形状.C O y A Bx分析:结合图形可猜想AB ⊥BC .△ABC 为直角三角形.1.下列说法正确的有( )①若不重合的两直线斜率相等,则它们平行;②若l1∥l2,则k1=k2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率为0,则两直线垂直;④若l1 与l2 的斜率都不存在,则l1∥l2.A.4个 B.3个C.2个 D.1个2.试确定m 的值,使过点的直线与过点 的直线:(1)平行; (2)垂直.(1)(1)A m B m -,,,(12)(50)P Q -,,,3.已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标.“几何问题代数化”的思想 1.两条直线平行的判定 2.两条直线垂直的判定121212=10k k l l k k ⋅-⎧⊥⇔⎨⎩、中一个为,一个不存在121212//k k l l k k =⎧⇔⎨⎩、都不存在。
课题名称:数学选择性必修第一册 2.3.1两条直线平行与垂直的判定教学方法:“一体二化三导四学”教学模式和自主学习模式.(一体二化三导四学:以学生为主体,教学内容问题化,教学活动探究化,引导,指导,督导,自主学习,探究学习,合作学习,体验学习)教学目标:1.进一步巩固“两个概念”与“两个公式”;2.掌握“如何根据直线的斜率、方向向量、法向量来判定两条不重合直线的平行与垂直”关系;3.体会数形结合,分类讨论, 特殊到一般等数学思想.教学重点、难点:教学重点:根据直线的斜率来判定两条不重合直线的平行与垂直;教学难点:会利用垂直与平行的关系求直线的方程.教学过程【教学过程与设计】整个教学过程是由问题链驱动的,共分为五个环节:创设问题,启迪思维⇒深入探究,获得新知⇒课堂实练,巩固提高⇒变式训练,提炼方法⇒小结反思【教学程序与设计意图】(一)知识回顾——启迪思维问题一:观察图片在运动员双杠训练中,我们能发现直线的平行与垂直的关系.我们知道,在平面直角坐标系中,直线可以由点与倾斜程度来确定.那么,如何用定量的方法来判断直线的平行与垂直呢?(二)深入探究——获得新知探究:1.如果两直线l1、l2平行,那么他们的倾斜角α1、α2会有什么关系?为什么?斜率呢?b1与b2会相等吗?2.如果两条直线斜率都不存在,这两条直线是否平行?3.如果两直线l1、l2垂直,倾斜角α1、α2会有什么关系?为什么?斜率呢?4.若两条垂直直线有一条直线斜率不存在,另一条直线斜率要满足什么要求?(三)课堂实练——巩固提高I.直接应用内化新知例1:已知直线l1:3x+2y−6=0,l2:6x+4y−10=0.试判断直线l1与l2是否平行.例2:已知四边形的四个顶点分别为O(0,0), A(1,3), B(−3,2), C(−4,−1),试判断四边形OABC的形状,并说明理由.例3:如图,已知平面直角坐标系中三点A(4,3),B(2,1),C(5,−2).证明:∆ABC是直角三角形.例4:已知λ≠−1,求λ取何值时,直线l1:2x+(λ+1)y=2,l2:λx+y=1:(1)重合;(2)平行;(3)垂直.【设计意图】在这里,设计了4个小题,这4题比较简单,可以安排学生自主完成,目的是先让学生熟练判断直线的平行与垂直的关系,为后面的探究问题作准备.探究:我们知道斜率、方向向量、法向量都是刻画直线方向的几何要素,前面我们是根据斜率来判定两条直线平行与垂直,事实上也可以借助直线的方向向量或法向量来判定.例5:已知两条直线的一般方程分别为l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则两条直线的法向量分别为n1⃗⃗⃗⃗ =(A1,B1),n2⃗⃗⃗⃗ =(A2,B2).II.灵活应用提升能力例6:求过点A(−3,4),且与直线l:3x−4y+29=0平行的直线.变式:求过点A(−3,4),且与直线l:3x−4y+29=0垂直的直线.【设计意图】在这个环节,进一步加强方向向量、法向量的理解,用一题多解的方式使学生不仅收获了数学知识和方法,还使学生的逻辑推理能力和解题能力得到一定的提升.(四)小结反思——拓展引申1.课堂小结(1)我们学到了哪些新的数学知识?(2)我们运用了哪些解题方法和数学思想?。
课题:§3.1.2两直线平行与垂直的判定一.教学任务分析:(1)通过对两直线平行或垂直的条件的探究,使学生体会通过代数关系得到几何结论,用代数方法研究几何问题的思想。
培养学生运用已有知识解决新问题以及数形结合能力。
(2)理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.二.教学重点与难点:教学重点:两条直线平行和垂直的条件和应用。
教学难点:两条直线平行和垂直条件的探究过程。
↓↓1.创设情景,揭示课题上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式.现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.2,探究两直线平行或垂直的条件它们互相平行(2)两条直线中有一条直线没有斜率,(3)两条直线的斜率都存在时设直线 L 1和L 2的斜率分别为k 1和k 2.我们研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系? ① 研究两条直线互相平行(不重合)的情形. 如果L 1∥L 2,那么它们的倾斜角相等: α1=α2.∴tan α1=tan α2. 即 k 1=k 2.反过来,如果两条直线的斜率相等: 即k 1=k 2, 那么tan α1=tan α2,由于0°≤α1<180°, 0°≤α2<180°,∴α1=α2.(通过信息技术方法验证) 又∵两条直线不重合,∴L 1∥L 2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即说明: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2; 反之则不一定. ② 研究两条直线垂直的情形.(借助计算机, 让学生通过度量, 感知k 1, k 2的关系, 并使L 1(或L 2)转动起来, 但仍保持L 1⊥L 2, 观察k 1, k 2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等).如果L 1⊥L 2,这时α1≠α2,否则两直线平行.不妨设α2<α1,甲图的特征是L 1与L 2的交点在x 轴上方;乙图的特征是L 1与L 2的交点在x 轴下方;丙图的特征是L 1与L 2的交点在x 轴上,无论哪种情况下都有α1=90°+α2.因为L 1、L 2的斜率分别是k 1、k 2,即α1≠90°,所以α2≠0°.利用三角公式ααtan 1)90tan(-=+(在学习三角函数时证明) 221tan 1)90tan(tan ααα-=+=∴, )90tan(tan 1tan 221ααα+=-=可以推出 : α1=90°+α2. L 1⊥L 2. 结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k 1·k 2 = -1, 那么一定有L 1⊥L 2; 反之则不一定. 3.两直线平行,两直线垂直条件的应用例1:已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA 与PQ 的位置关系, 并证明你的结论.解: 直线BA 的斜率k BA =(3-0)/(2-(-4))=0.5, 直线PQ 的斜率k PQ =(2-1)/(-1-(-3))=0.5,因为 k BA =k PQ =0.5, 所以 直线BA ∥PQ.例2:已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明.例3:已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k AB= (6-0)/(3-(-6))=2/3,直线PQ的斜率k PQ= (6-3)(-2-0)=-3/2,因为k AB·k PQ = -1 所以AB⊥PQ.例4:已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.4.课堂练习P98 练习 1. 2.5.课后小结(1)两条直线平行或垂直的等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.6.布置作业:《随堂导练》P47-48。
两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2,求实数a的值. 3 4变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2B.1C.0D.-1121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-Q 错解又3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于____.10. l1过点A(m,1),B(-3,4),l2过点C(0,2),D(1,1),且l1∥l2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是A 锐角不为450的直角三角形B 顶角不为900的等腰三角形C 等腰直角三角形D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。
2024年新高二数学提升精品讲义两条直线平行与垂直的判定(解析版)模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解并掌握两条直线平行的条件及两条直线垂直的条件;2.会运用条件判定两直线是否平行或垂直;3.运用两直线平行和垂直时的斜率关系解决相应的几何问题.知识点1两条直线平行1、直线平行的判定类型斜率存在斜率不存在条件1290︒=≠αα1290︒==αα对应关系1212//=⇔l l k k 12//⇔l l 两条直线斜率都不存在图示2、对直线平行判定的理解(1)2121//k k l l =⇔成立的前提条件是:①两条直线的斜率都存在;②21l l 与不重合.(2)1212k k l l =⇒//或21l l 与重合.(3)1212l l k k ⇒=//或两条直线的斜率都不存在.(4)在判断两条不重合的直线是否平行时,先判断两条直线的斜率是否存在,若斜率存在且相等,则两者平行;若斜率都不存在,两者仍然平行.知识点2两条直线垂直1、直线垂直的判定对应关系1l 与2l 的斜率都存在,分别为12,k k ,则12121⊥⇔⋅=-l l k k 1l 与2l 中的一条斜率不存在,另一条斜率为零,则1l 与2l 的位置关系是12⊥l l图示2、对直线垂直判定的理解(1)12121-=⋅⇔⊥k k l l 成立的前提条件是两条直线的斜率都存在;(2)当两条直线的斜率都存在,且121k k ⋅=-时,两条直线垂直;(30,则两条直线也垂直.考点一:两条直线平行的判定例1.(23-24高二上·全国·课后作业)过点()1,2A 和点()1,2B -的直线与直线3y =的位置关系是()A .相交B .平行C .重合D .以上都不对【答案】B【解析】过点()1,2A 和点()1,2B -的直线方程为2y =,斜率为0,又因为直线3y =斜率为0,所以两直线平行.故选:B【变式1-1】(23-24高二上·福建泉州·期末)记平面直角坐标系内的直线1l 、2l 与x 轴正半轴方向所成的角的正切值分别为1k 、2k ,则“12l l //”是“12k k =”的()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A【解析】由题意可知:12,k k 已经存在,若1l ∥2l ,则12k k =,即充分性成立;若12k k =,则12,l l 可能重合,即必要性均不成立;综上所述:“12l l //”是“12k k =”的充分不必要条件.故选:A .【变式1-2】(23-24高二上·山西临汾·月考)下列各对直线互相平行的是()A .直线1l 经过点()0,1A ,()10B ,,直线2l 经过点()1,3M -,()2,0N B .直线1l 经过点()1,2--A ,()1,2B ,直线2l 经过点()2,1M --,()0,2N -C .直线1l 经过点()1,2A ,()1,3B ,直线2l 经过点()1,1C -,()1,4D D .直线1l 经过点()3,2A ,()3,1B -,直线2l 经过点()1,1M -,()3,2N 【答案】A【解析】对于A ,因为1201301,11012l l k k --==-==----,所以12//l l ;对于B ,因为()12122212,11202l l k k -----====-----,所以直线12,l l 不平行;对于C ,由直线1l 经过点()1,2A ,()1,3B ,直线2l 经过点()1,1C -,()1,4D ,得直线12,l l 的斜率都不存在,且两直线重合;对于D ,因为直线1l 经过点()3,2A ,()3,1B -,所以直线直线1l 的斜率不存在,而2123132l k --==-,所以直线12,l l 不平行.故选:A.【变式1-3】(23-24高二·全国·专题练习)根据下列给定的条件,判断直线1l 与直线2l 是否平行.(1)1l 经过点()2,3A ,()4,0B -,2l 经过点()3,1M -,()2,2N -;(2)1l 的斜率为12-,2l 经过点()4,2A ,()2,3B ;(3)1l 平行于y 轴,2l 经过点()0,2P -,()0,5Q ;(4)1l 经过点()0,1E ,()2,1F --,2l 经过点()3,4G ,()2,3H .【答案】(1)不平行;(2)平行或重合;(3)平行;(4)重合【解析】(1)301242AB k -==+,21123MN k -==-+,AB MN k k ≠,所以1l 与2l 不平行.(2)1l 的斜率112k =-,2l 的斜率2231422k -==--,12k k =,所以l 1与l 2平行或重合.(3)由题意,知1l 的斜率不存在,且不与y 轴重合,2l 的斜率也不存在,且与y 轴重合,所以12l l //.(4)由题意,知11120EF k --==--,43132GH k -==-,EF GH k k =,所以1l 与2l 平行或重合.需进一步研究E ,F ,G ,H 四点是否共线,23114FG k --==--.所以E ,F ,G ,H 四点共线,所以1l 与2l 重合.考点二:两条直线平行关系的应用例2.(23-24高二上·贵州黔西·月考)已知直线1l 过()1,4A -,()2,0B ,且12//l l ,则直线2l 的斜率为()A .43B .34C .43-D .34-【答案】C【解析】由题意直线1l 的斜率为1404123k -==---,又因为12//l l ,所以直线2l 的斜率为2143k k ==-.故选:C.【变式2-1】(23-24高二上·全国·课后作业)已知经过点(3,),(5,)A n B m 的直线1l 与经过点()()2,0,0,(0)P m Q n mn -≠的直线2l 平行,则mn的值为()A .-1B .-2C .-1或2D .-2或1【答案】C【解析】由题意得122,2l l m n n k k m-==,因为12//l l ,所以12l l k k =,即22m n nm-=,化简得2220m mn n --=,所以m n =-或2m n =,又由0mn ≠得mn=-1或2,故选:C .【变式2-2】(22-23高二上·福建漳州·期中)过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,则m =()A .1B .2C .-1D .-2【答案】A【解析】过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,所以1m ≠-,因此过()(),3,1,A m B m -两点的直线的斜率为31m m---,因为过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,所以有3tan 45111m m m-==⇒=-- ,故选:A 【变式2-3】(23-24高二上·湖北武汉·期末)张老师不仅喜欢打羽毛球,还喜欢玩折纸游戏,他将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点()2,0与点()2,4-重合,点()2023,2024与点(),a b 重合,则a b +=()A .4046B .4047C .4048D .4049【答案】B【解析】设()2,0A ,()2,4B -,则点A ,B 所在直线的斜率为40122AB k -==---,由题意知,过点()2023,2024,(),a b 的直线与直线AB 平行,所以202412023b a -=--,整理得:202320244047a b +=+=.故选:B考点三:两条直线垂直的判定例3.(23-24高二上·山东潍坊·期末)已知两直线12,l l 的斜率分别为12,k k ,且12,k k 是方程210x x +-=的两根,则1l 与2l 的位置关系为()A .平行B .相交且垂直C .重合D .相交且不垂直【答案】B【解析】由题意121k k =-,因此两直线垂直.平面上的两直线垂直时当然相交.故选:B .【变式3-1】(23-24高二上·河北邯郸·月考)(多选)满足下列条件的直线1l 与2l ,其中12l l ⊥的是()A .1l 的倾斜角为45 ,2l 的斜率为1B .1l 的斜率为2l经过点()2,0A ,(B C .1l 经过点()2,1P ,()4,5Q --,2l 经过点()1,2M -,()1,0N D .1l 的方向向量为()1,m ,2l 的方向向量为11,m ⎛⎫- ⎪⎝⎭【答案】BCD【解析】对A ,1tan 451l k =︒=,21l k =,121l l k k ⋅≠-,所以A 不正确;对B ,2l k ==,121l l k k ⋅=-,故B 正确;对C ,151142l k --==--,220111l k -==---,121l l k k ⋅=-,故C 正确;对D ,因为()1,m 11,110m ⎛⎫⋅-=-= ⎝,所以两直线的方向向量互相垂直,故12l l ⊥,故D 正确.故选:BCD【变式3-2】(22-23高二·江苏·假期作业)判断下列各组直线是否垂直,并说明理由.(1)1l 经过点(3,4),(1,3),A B --2l 经过点(4,3),(3,1)M N --;(2)1l 经过点(3,4),(3,10),A B 2l 经过点(10,40),(10,40)M N -.【答案】(1)不垂直,理由见解析;(2)垂直,理由见解析【解析】(1)由题知直线1l ,2l 的斜率存在,分别设为12,k k ,()()1347134k --==--,()()2134347k --==--,121k k ∴⋅=,∴1l 与2l 不垂直.(2)由题意知1l 的倾斜角为90°,则1l x ⊥轴;由题知直线2l 的斜率存在,设为3k ,34040010(10)k -==--,则2l x ∥轴,∴12l l ⊥.【变式3-3】(23-24高二上·全国·课堂例题)判断直线1l 与2l 是否垂直.(1)1l 的斜率为10-,2l 经过点()10,2A ,()20,3B ;(2)1l 经过点()3,4A ,()3,10B ,2l 经过点()10,40M -,()10,40N ;(3)1l 经过点()1,2A -,()5,1B -,2l 经过点()1,0C ,()4,6D .【答案】(1)12l l ⊥;(2)12l l ⊥;(3)12l l ⊥【解析】(1)设直线1l ,2l 的斜率分别为1k ,2k ,则110k =-,2321201010k -==-,因为121k k =-,所以12l l ⊥.(2)由点A ,B 的横坐标相等,得1l 的倾斜角为90︒,则1l x ⊥,设直线2l 的斜率为2k ,则()2404001010k -==--,所以2l x ∥轴.故12l l ⊥.(3)方法一:直线1l 的斜率()1121512k --==---,直线2l 的斜率260241k -==-,因为121k k =-,所以12l l ⊥;方法二:直线1l 的方向向量()6,3AB =- ,直线2l 的方向向量()3,6CD =,因为0AB CD ⋅= ,所以AB CD ⊥,所以12l l ⊥.考点四:两条直线垂直关系的应用例4.(23-24高二上·河南郑州·月考)已知1l 的倾斜角为45°,2l 经过点()()2,1,3,P Q m --.若12l l ⊥,则实数m 为()A .6B .-6C .5D .-5【答案】B【解析】因为1tan 451l k =︒=,()()211325l m m k --+==--,且12l l ⊥,所以121115l l m k k +⋅=⨯=-,解得6m =-,故选:B.【变式4-1】(23-24高二上·江西宜春·期中)已知点(3,2),(24,4),(,),(3,32)A m B m C m m D m -----+,若直线AB CD ⊥,则m 的值为()A .1或1-B .3-或1-C .1-或3D .3或3-【答案】A【解析】∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB CD ⊥,则CD 与x 轴不垂直,∴3m -≠,即3m ≠-.当AB 与x 轴垂直时,324m m --=--,解得1m =-,此时,点C ,D 的纵坐标均为1-,则//CD x 轴,此时AB CD ⊥,满足题意;当AB 与x 轴不垂直时,42224(3)(1)AB k m m m -==------+,322(1)3()3CD m m m k m m +-+==--+,∵AB CD ⊥,∴1AB CD k k =-,即()()212113m m m +⨯=--++,解得1m =.综上,m 的值为1或1-,故选:A .【变式4-2】(23-24高二上·浙江绍兴·期中)已知过()3,1A 、()1,3B -的直线与过()3,C m -、(),2D n 的直线互相垂直,则点(),m n 有()A .1个B .2个C .3个D .无数个【答案】D【解析】由()3,1A 与()1,3B -,则直线AB 的斜率13231AB k +==-,由AB CD ⊥,则直线CD 的斜率存在,即3n ≠-,且112CD AB k k -==-,由()3,C m -与(),2D n ,则2132m n -=-+,整理化简可得27n m =-,显然该方程有无数个解.故选:D.【变式4-3】(23-24高二上·广东茂名·期中)已知点()0,2A -,()6,0B ,()0,C a ,且点C 在线段AB 的垂直平分线上,则=a ()A .2B .2C .8D .8-【答案】C【解析】由点()0,2A -,()6,0B ,可得线段AB 的中点()3,1D -,所以得:线段AB 的斜率为021603AB k +==-,所以得:线段AB 垂直平分线的斜率为1303a k +=-=-,解之得:8a =.故选:C.考点五:直线平行、垂直的综合应用例5.(23-24高二上·全国·课后作业)(多选)已知点()()()()4,2,6,4,12,6,2,12P Q R S --,则下列结论正确的是()A .//PQ SRB .PQ PS⊥C .//PS QRD .PR QS⊥【答案】ABCD【解析】由斜率公式知423645PQ k --==-+,12632125SR k -==--,122532435PS k -==≠-+,PQ SR k k =,且,,,P Q R S 四点不共线,则//PQ SR ,A 选项正确;35153PQ PS k k =⨯⋅-=-,PQ PS ⊥,B 选项正确;6(4)51263QR PS k k --===-,//PS QR ,C 选项正确;124426QS k +==--,6211244PR k -==+,1414QS PR k k ⋅=-⨯=-,PR QS ⊥,D 选项正确.故选:ABCD .【变式5-1】(22-23高二上·河北石家庄·月考)(多选)直线12,l l 的斜率12,k k 是关于k 的方程2240k k m -+=)A .若12l l ⊥,则2m =-B .若12l l ⊥,则=2mC .若12//l l 则2m =-D .若12//l l ,则=2m 【答案】AD【解析】直线1l ,2l 的斜率1k ,2k 是关于k 的方程2240k k m -+=的两根,∴122m k k ⋅=,若12l l ⊥,则1212mk k ==-,得2m =-;若12//l l ,则12k k =,∴1680m ∆=-=,得=2m ,故选:AD【变式5-2】(23-24高二上·贵州·开学考试)已知直线1l 经过()(),1,4,3A m B m ---+,直线2l 经过点()()1,2,4,2C D m --+.(1)若1l //2l ,求m 的值;(2)若12l l ⊥,求m 的值.【答案】(1)1或6;(2)3或4-【解析】(1)由题可知直线2l 的斜率存在且()222143m mk -+==--+,若则直线1l 的斜率也存在,由()2113244m mk k m m --+-+===-+-+,得243m m m -+=--+,即2760m m -+=解得1m =或6,经检验,当1m =或6时,12//l l ;(2)若12l l ⊥,当20k =时,此时10,m l =斜率12142k -==-存在,不符合题意,当20k ≠时,直线2l 的斜率存在且不为0,则直线1l 的斜率也存在,且121k k ×=-,即2134m mm -+-⋅=--+,即2120m m +-=,解得3m =或4-,所以当3m =或4-时,12l l ⊥.【变式5-3】(23-24高二上·广东深圳·期中)已知直线1l 经过()(),3,1,A m B m 两点,2l 经过()()2,1,4,2P Q 两点.(1)若12//l l ,求m 的值;(2)若12,l l 的倾斜角互余,求m 的值.【答案】(1)73m =;(2)53m =【解析】(1)211422PQ k -==-,因为12//l l ,所以3112AB PQ m k k m -===-,得73m =,经检验,符合题意,所以73m =;(2)因为12,l l 的倾斜角互余,设1l 的倾斜角为α,则直线2l 的倾斜角为π2α-,所以3121AB PQ m k m k -===-,得53m =.考点六:几何图形的特征的应用例6.(23-24高二上·江苏盐城·期中)以()()()5,1,1,1,2,3A B C -为顶点的三角形是()A .锐角三角形B .钝角三角形C .以A 为直角顶点的直角三角形D .以B 为直角顶点的直角三角形【答案】D【解析】直线AB 的斜率1(1)1152AB k --==--,直线BC 的斜率31221BC k -==-,由1AB BC k k ⋅=-,所以AB BC ⊥,故ABC 是以B 为直角顶点的直角三角形.故选:D【变式6-1】(23-24高二上·河南南阳·月考)已知(5,1)A -,(1,1)B ,(2,3)C 三点,试判断ABC 的形状.【答案】直角三角形.【解析】如图所示,边AB 所在直线的斜率111512--==--AB k ,边BC 所在直线的斜率13212BC k -==-.由1AB BC k k ⋅=-,得AB BC ⊥,即90ABC ∠=︒,所以ABC 是直角三角形.【变式6-2】(23-24高二上·全国·课后作业)已知四边形的四个顶点分别为()0,0O ,()1,3A ,()3,2B -,()4,1C --.试判断四边形OABC 的形状,并说明理由.【答案】平行四边形,理由见解析【解析】如下图示:OA 边所在直线的斜率3OA k =,AB 边所在直线的斜率14AB k =,BC 边所在直线的斜率3BC k =,CO 边所在直线的斜率14CO k =.由BC CO k k ≠知:点O 不在BC 上,则OA 与BC 不重合,又OA BC k k =,得//OA BC .同理,由AB CO k k =且AB 与CO 不重合,得//AB CO .因此四边形OABC 是平行四边形.【变式6-3】(23-24高二上·全国·课后作业)如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为()()()()0,0,1,,12,2,2,2O P t Q t t R t -+-,其中0t >.试判断四边形OPQR 是否为矩形.【答案】四边形OPQR 为矩形,理由见解析.【解析】由斜率公式得010OP t k t -==-,()()222121RQ t t t t k t ----+-===-20120OR k t t -==---,2211122PQ t t t k t t-==-=--所以OP RQ k k =,OR PQ k k =,从而OP ∥RQ ,OR ∥PQ .所以四边形OPQR 为平行四边形.又1OP OR k k ⋅=-,所以OP OR ⊥,故四边形OPQR 为矩形.一、单选题1.(23-24高二上·湖南张家界·月考)已知直线1l 过()2,3A ,()0,4B ,且12l l ⊥,则直线2l 的斜率为()A .2B .12-C .2-D .12【答案】A【解析】由题设1431022l AB k k -===--,又12l l ⊥,则直线2l 的斜率为2.故选:A 2.(23-24高二上·河南焦作·月考)已知过(2,)A m -和(,4)B m 的直线与斜率为-2的直线平行,则m 的值是()A .-8B .0C .2D .10【答案】A【解析】由题意可知,422AB mk m -==-+,解得8m =-.故选:A 3.(23-24高二上·全国·课后作业)若直线l 经过点()2,1A a --和()2,1B a --,且与斜率为23-的直线垂直,则实数a 的值是()A .23-B .32C .23±D .32±【答案】A【解析】由题意得,直线l 的斜率必存在,且1112(2)AB k a a a=--=-----()0a ≠.因为直线l 与斜率为23-的直线垂直所以2113a ⎛⎫-⨯=- ⎪⎝⎭-,解得23a =-.故选:A .4.(22-23高二下·甘肃兰州·开学考试)已知经过点()2,0A -和点()1,3B a 的直线1l 与经过点()0,1P -和点(),2Q a a -的直线2l a 的值为()A .0B .1C .0或1D .1-或1【答案】C【解析】直线1l 的斜率()13012a k a -==--.①当0a ≠时,直线2l 的斜率()221120a ak a a----==-.因为12l l ⊥,所以121k k =-,即121aa a-⋅=-,解得1a =.②当0a =时,()0,1P -、()0,0Q ,此时直线2l 为y 轴,又()2,0A -、()10B ,,则直线1l 为x 轴,显然12l l ⊥.综上可知,0a =或1.故选:C.5.(22-23高二上·浙江杭州·期末)已知点()1,1A 和()2,4B ,点P 在y 轴上,且APB ∠为直角,则点P 坐标为()A .()0,2B .()0,2或()0,3C .()0,2或()0,4D .()0,3【答案】B【解析】由题意,设点()0,P y ,APB ∠ 为直角,AP BP ∴⊥,由141,12AP BP y y k y k --==-=,()4112AP BP y k k y -⎛⎫∴⋅=-=- ⎪⎝⎭,解得3y =或2,所以点P 的坐标为()0,2或()0,3故选:B6.(23-24高二上·全国·课后作业)以(2,1),(4,2),(2,6),(3,1)A B C D ---为顶点的四边形是()A .平行四边形,但不是矩形B .矩形C .梯形,但不是直角梯形D .直角梯形【答案】D 【解析】在坐标系中画出ABCD 点,大致如上图,其中11622,2,,//3224AD BC AD BC k k k k AD BC +-==-==-∴=-+-,211,1,422AB AB BC k k k AB BC +===-⊥+ ,AD BC AD ====≠,所以四边形ABCD 是直角梯形;故选:D.二、多选题7.(23-24高二上·青海西宁·月考)下列各组直线中1l 与2l 一定平行的是()A .1l 经过点()()2,1,3,5AB -,2l 经过点()()3,3,8,7CD --B .1l 经过点()()0,1,2,1EF --,2l 经过点()()3,4,2,3GH C .1l 的倾斜角为60 ,2l 经过点(2,M N --D .1l 平行于y 轴,2l 经过点()()0,2,0,5P Q -【答案】AD【解析】对于A .由题意知12514734,325835k k --+==-==----,所以直线1l 与直线2l 平行或重合,又5(3)443335BC k --==-≠---,故12//l l ,A 选项正确;对于B .由题意知1211341,12023k k ---====---,所以直线1l 与直线2l 平行或重合,4(1)13(2)FG k --==--,故直线1l 与直线2l 重合,B 选项错误;对于C .由题意知12tan 60k k = ,12k k =,所以直线1l 与直线2l 可能平行可能重合,C 选项错误;对于D .由题意知1l 的斜率不存在,且不是y 轴,2l 的斜率也不存在,恰好是y 轴,所以12//l l ,D 选项确.故选:AD8.(23-24高二上·全国·单元测试)(2023秋·河北石家庄·高二石家庄市第四中学校考月考)以(1,1),(2,1),(1,4)A B C --为顶点的三角形,下列结论正确的有()A .23AB k =-B .14BC k =-C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形【答案】AC【解析】对于A ,因为(1,1),(2,1)A B --,所以1(1)2123AB k --==---,所以A 正确,对于B ,因为(2,1),(1,4)B C -,所以1415214BC k --==-≠--,所以B 错误,对于C ,因为23AB k =-,143112AC k -==--,所以22133AB AC k k ⋅=-⨯=-,所以AB AC ⊥,所以ABC 以A 点为直角顶点的直角三角形,所以C 正确,对于D ,因为23AB k =-,5BC k =-,所以1AB BC k k ⋅≠-,所以D 错误,故选:AC三、填空题9.(23-24高二上·浙江嘉兴·期中)若经过点(),3m 和()2,m 的直线l 与斜率为-4的直线互相平行,则m 的值是.【答案】53/213【解析】由题意32l mk m -=-,又因为直线l 与斜率为-4的直线互相平行,所以342m m -=--,解得53m =.10.(23-24高二上·全国·课后作业)已知(1,3),(5,1),(3,7)A B C ,A ,B ,C ,D 四点构成的四边形是平行四边形,则点D 的坐标为.【答案】(7,5)或(1,9)-或(3,3)-.【解析】由题,(1,3),(5,1),(3,7)A B C ,所以73231AC k -==-,131512AB k -==--,71335BC k -==--,设D 的坐标为(),x y (1x ≠且5x ≠且3x ≠),分以下三种情况:①当BC 为对角线时,有CD AB k k =,BD AC k k =,所以,125BD y k x -==-,71=32CD y x k -=--,解得75x y =⎧⎨=⎩,即(7,5)D ;②当AC 为对角线时,有CD AB k k =,AD BC k k =,所以331AD y k x -==--,71=32CD y x k -=--,解得19x y =-⎧⎨=⎩,即(1,9)D -;③当AB 为对角线时,有BD AC k k =,AD BC k k =所以132351BD AD y y k k x x --====---,,解得33x y =⎧⎨=-⎩,即(3,3)D -;所以D 的坐标为(7,5)或(1,9)-或(3,3)-.11.(22-23高二上·北京丰台·月考)在平面直角坐标系中,直线1l 经过()()1,,4,5M m N -两点,2l 经过()6,0,(1,3)R S --两点,若12l l ⊥,则m =;若12l l ∥,则m =.【答案】0345-【解析】由已知()2303165l k -==---,当12l l ⊥时,所以155413l m k --==--,解得0m =,当12l l ∥时,153415l m k --==-,解得345m =-,经验证:当345m =-时,12,l l 不重合.四、解答题12.(23-24高二上·四川·期中)已知()4,0A ,()1,2B ,(),C m m ,()7,1D -.(1)若直线AB 与CD 平行,求m 的值;(2)若ABC 为直角三角形,求m 的值.【答案】(1)115;(2)1-或12【解析】(1)依题意可得AB CD k k =,即201147m m---=--,解得115m =.又202143AB k -==--,101743AD k --==--,所以AB AD k k ≠,所以A 、B 、C 、D 四点不共线,所以115m =.(2)若A 为直角,则1AB AC k k =-,即2001144m m --⨯=---,解得12m =.若B 为直角,则1AB BC k k =-,即2021141m m --⨯=---,解得1m =-.若C 为直角,则1AC BC k k =-,即02141m m m m --⨯=---,解得m =综上,m 的值为1-或1213.(22-23高二上·广东广州·期中)已知四边形MNPQ 的顶点(1,1),(3,1),(4,0),(2,2)M N P Q -.(1)求斜率MN k 与斜率PQ k ;(2)求证:四边形MNPQ 为矩形.【答案】(1)1,1MN PQ k k =-=-;(2)证明见解析【解析】(1)因为(1,1),(3,1),(4,0),(2,2)M N P Q -,所以1,111203124MN PQ k k ---=-==--=-,即1,1MN PQ k k =-=-.(2)因为1,1MN PQ k k =-=-,所以//MN PQ .又因为01,12112134MQ NP k k -=--=--==,所以//MQ NP ,所以四边形MNPQ 为平行四边形,又因为1MN MQ k k ⋅=-,所以MN MQ ⊥,所以四边形MNPQ 为矩形.。
第二节 两条直线的位置关系1.两条直线平行与垂直的判定(1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧ A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式 P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离 d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx+3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3. 2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0 221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.[小题纠偏]1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( )A .7B.172 C .14 D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172. 考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( )A .0B .2C .4 D.2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-ab +2·⎝ ⎛⎭⎪⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a+3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b+6b a ≥13+2 6a b ·6b a=25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使(1)l 1与l 2相交于点P (m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧ m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧ m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2.(3)当且仅当2m +8m =0,即m =0时,l 1⊥l 2.又-n8=-1,∴n=8.即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法(1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等;(2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况.2.由一般式确定两直线位置关系的方法直线方程l1:A1x+B1y+C1=0(A21+B21≠0)l2:A2x+B2y+C2=0(A22+B22≠0)l1与l2垂直的充要条件A1A2+B1B2=0l1与l2平行的充分条件A1A2=B1B2≠C1C2(A2B2C2≠0)l1与l2相交的充分条件A1A2≠B1B2(A2B2≠0)l1与l2重合的充分条件A1A2=B1B2=C1C2(A2B2C2≠0)[提醒] 在判断两直线位置关系时,比例式A1A2与B1B2,C1C2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二距离问题重点保分型考点——师生共研[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823. 2.直线3x +4y -3=0上一点P 与点Q(2,-2)的连线的最小值是________.解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值,∴|P Q|min =|3×2+4×-2-3|32+42=1. 答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.故所求直线l 的方程为x +3y -5=0或x =-1.法二:当AB ∥l 时,有k =k AB =-13, ∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a,b ),则⎩⎪⎨⎪⎧ 2a -3b +6=0,a 2+b 2=a +12+b -12, 解得a =3,b =4.∴P 点的坐标为(3,4).法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧ x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________.解析:法一:要使点A ,B 到直线l 的距离相等,则AB ∥l ,或A ,B 的中点(2,4)在直线l 上.所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32. 法二:要使点A ,B 到直线l 的距离相等,则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32. 答案:-2或-32考点三 对称问题题点多变型考点——多角探明[锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有:(1)点关于点对称;(2)点关于线对称;(3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P(0,1)作直线l使它被直线l1:2x+y-8=0和l2:x -3y+10=0截得的线段被点P平分,则直线l的方程为________________.解析:设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,把B点坐标代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以由两点式得直线l的方程为x+4y-4=0.答案:x+4y-4=02.已知直线l:2x-3y+1=0,点A(-1,-2),则直线l关于点A(-1,-2)对称的直线l′的方程为________.解析:法一:在l:2x-3y+1=0上任取两点,如M(1,1),N(4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.答案:2x -3y -9=0角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. 解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧ y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧ x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013. 设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧ 2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( )A .x -2y +3=0B .x -2y -3=0C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧ x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧ x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法(1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧ x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.2.轴对称问题的2个类型及求解方法(1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧ A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧ x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0. 同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1--4(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧ x =2,y =4,可得C (2,4).2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧ b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0. 又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0.答案:6x -y -6=0 3.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称,∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0, 解得⎩⎪⎨⎪⎧ x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5), ∴△ABC 周长的最小值为 ||A 1A 2=4-02+-5-72=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧ a a -2=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3) D.⎝ ⎛⎭⎪⎪⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎪⎨⎪⎧ x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( )A .6x +5y -1=0B .5x +6y +1=0C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0. 4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________. 解析:依题意知,63=a -2≠c -1, 解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c 2=0, 又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪⎪⎪c 2+132+-22=21313,解得c =2或-6. 答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q|2的值为( )A.102B.10 C .5 D .10 解析:选D 由题意知P (0,1),Q(-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以P Q 为直径的圆上,∵|P Q|=9+1=10,∴|MP |2+|M Q|2=|P Q|2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722. 3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q|的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行, 由题意可知|P Q|的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q|的最小值为2910. 4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧ 3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧ m =35,n =315,故m +n=345. 5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧ y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧ x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1).所以BC 边所在直线方程为2x -y +3=0.答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k2, ∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=4+22+2-02=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q(2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q|=[2--1]2+-1-32=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65, ∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的取值范围为________. 解析:如图所示,因为y =2λx +λ+2恒过定点C ⎝ ⎛⎭⎪⎫-12,2,连接AC ,CB ,所以直线AC 的斜率k AC=-10,直线BC 的斜率k BC =-47. 又直线y =2λx +λ+2与线段AB 总相交,所以k AC ≤2λ≤k BC ,所以λ的取值范围为⎣⎢⎡⎦⎥⎤-5,-27. 答案:⎣⎢⎡⎦⎥⎤-5,-27 2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1)证明直线l 过某定点,并求该定点的坐标.(2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧ x =-2,y =3,所以直线l 恒过定点(-2,3).(2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15, 所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.。
2.1.2两条直线平行和垂直的判定(基础知识+基本题型)知识点一两条直线平行的判定设两条不重合的直线1l ,2l 的斜率分别为12,k k ,若12//l l ,则1l 与2l 的倾斜角1α与2α相等,如图3.1-11,由12a a =,得12tan tan αα=,即12k k =,因此,若12//l l ,则12k k =;反之,若12k k =,则12//l l .提示:对两直线平行与斜率的关系要注意:(1)直线1212//l l k k ⇔=成立的前提条件有两个:①1l 与2l 不重合;②12,l l 斜率都存在.(2)当两条直线的斜率都不存在且不重合时,1l 与2l 的倾斜角都是90︒,则12//l l .(3)两条不重合直线平行的判定的一般性结论是:1212//l l k k ⇔=,或1l ,2l 的斜率都不存在.知识点二两条直线垂直的判定设两条直线12,l l 的斜率分别为12,k k ,倾斜角分别为12,αα,且12,αα都不为直角,若12l l ⊥,则12αα≠(若12αα=,则12//l l ),由三角形任一外角等于其不相邻两内角之和,得190αα2=+︒.则121-=⋅k k .若21l l ⊥,则121-=⋅k k .要点诠释:1.公式12121-=⋅⇔⊥k k l l 成立的前提条件是两条直线的斜率都存在;2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.考点一两条直线平行关系的判定例1根据下列给定的条件,判定直线1l 与直线2l 是否平行:(1)1l 经过点()2,3A ,()4,0B -;2l 经过点()3,1M -,()2,2N -;(2)1l 的斜率为12-,2l 经过点()4,2A ,()2,3B ;(3)1l 平行于y 轴,2l 经过点()0,2P -,()0,5Q ;(4)1l 经过点()0,1E ,()2,1F --,2l 经过点()3,4G ,()2,3H .解:(1)()301242AB k -==--,()21123MN k -==---,AB MN k k ≠,所以1l 与2l 不平行.(2)1l 的斜率112k =-,2l 的斜率2321242k -==--,即12k k =,所以1l 与2l 平行或重合.(3)由题意,知1l 的斜率不存在,且不是y 轴,2l 的斜率也不存在,恰好是y 轴,所以12//l l .(4)由题意,知11120EF k --==--,34123GH k -==-,所以1l 与2l 平行或重合.需进一步研究E ,F ,G ,H 四点是否共线,()()41132FG k --==--.所以E ,F ,G ,H 四点共线.所以1l 与2l 重合.总结升华:判断两条直线平行的注意事项(1)判断两条直线平行,应首先看两条直线的斜率是否存在,即先看两点的横坐标是否相等.(2)判断斜率是否相等,实际是看倾斜角是否相等,归根结底是充分利用两条直线平行的条件:同位角相等,则两直线平行.(3)在两条直线斜率都存在,且相等的情况下,应注意两条直线是否重合.考点二两条直线平行关系的应用例2已知ABCD 的三个顶点的坐标分别是()0,1A ,()1,0B ,()4,3C ,求顶点D 的坐标:分析:由平行四边形的性质//AB CD ,且//AD BC 着手,设出点D 的坐标,由斜率相等,解方程组求得.解:设(),D m n ,由题意,得//AB CD ,//AD BC ,则有AB DC k k =,AD BC k k =,所以013104130041n m n m --⎧=⎪⎪--⎨--⎪=⎪--⎩,解得34m n =⎧⎨=⎩,所以点D 的坐标为()3,4.总结:解决这类问题的关键是充分利用几何图形的性质,并将该性质用解析几何的方法表示并解决.本题就是利用两直线平行与斜率的关系求解的.例3已知()2,P m -,(),4Q m ,()2,3M m +,()1,1N ,若直线//PQ 直线MN ,则m =_____.解析:当2m =-时,直线PQ 的斜率不存在,而直线MN 的斜率存在,MN 与PQ 不平行,不合题意;当1m =-时,直线MN 的斜率不存在,而直线PQ 的斜率存在,MN 与PQ 不平行,不合题意;当2m ≠-且1m ≠-时,()4422PQ m m k m m --==--+,312211MN k m m -==+-+.因为直线//PQ 直线MN ,所以PQ MN k k =,即4221m m m -=++,解得0m =或1m =.经检验,当0m =或1m =时,直线MN ,PQ 都不重合.综上,m 的值为0或1.答案:0或1.考点三两条直线平垂直关系的判定例4判断1l 与2l 是否垂直:(1)1l 的斜率为10-,2l 经过点()10,2A ,()20,3B ;(2)1l 经过点()3,4A ,()3,10B ;2l 经过点()10,40M -,()10,40N .解:(1)设直线1l ,2l 的斜率分别为1k ,2k ,则110k =-,2321201010k -==-,因为121k k =-,所以12l l ⊥.(2)设直线1l ,2l 的斜率分别为1k ,2k ,则由A ,B 的横坐标相等,得1l 的倾斜角为90︒,则1l x ⊥轴;()2404001010k -==--,则2//l x 轴.故12l l ⊥.总结:判断两条直线是否垂直的依据:当这两条直线都有斜率时,只需看它们的斜率之积是否等于1-即可.当应注意,当有一条直线与x 轴垂直,另一条与x 轴平行时,两条直线也垂直.考点四两条直线垂直关系的应用例5已知直线1l 经过()3,A a ,()2,3B a -,直线2l 经过点()2,3C ,()1,2D a -.如果12l l ⊥,求a 的值.解:设直线1l ,2l 的斜率分别为1k ,2k ,因为直线2l 经过点()2,3C ,()1,2D a -,且21≠,所以2l 的斜率存在.当20k =时,1k 不存在,23a -=,则5a =,此时1l 与2l 垂直.当20k ≠时,5a ≠,此时1k 存在.由121k k =-,得32312312a a a ---=---- .解得2a =.综上,a 的值为5或2.由两条直线垂直求参数的值,一般的解题思路是利用斜率的坐标公式表示出斜率,令斜率之积为1-求解.但在解题过程中要注意讨论直线与x 轴垂直的情况.此时一条直线的斜率为零,另一条直线的斜率不存在.对于斜率不存在的直线,可令直线上两点的横坐标相等,即可求解.考点五两条直线平行或垂直的综合问题例6已知()4,3A -,()2,5B ,()6,3C ,()3,0D -四点,若顺次连接ABCD 四点,试判断图形ABCD 的形状.解:由题意,知A ,B ,C ,D 四点在坐标平面的位置如图3.1-13,由斜率公式,得()531243AB k -==--,031363CD k -==--,()03334AD k -==----,351622BC k -==--.所以AB CD k k =,由图3.1-13,知AB 与CD 不重合,所以//AB CD .因为AD BC k k ≠,所以AD 与BC 不平行.又因为()1313AB AD k k ⋅=⨯-=-,所以AB AD ⊥.故四边形ABCD 为直角梯形.利用两条直线平行或垂直判定图形形状的步骤:描点猜测求斜率下结论在平面直角坐标系中描出给定的点根据描出的点,猜测图形的形状根据给定点的坐标求直线的斜率由斜率之间的关系判断形状。