全国各地2013届高考数学 押题精选试题分类汇编11 概率与统计 文
- 格式:doc
- 大小:1.32 MB
- 文档页数:20
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
2013年高考试题分类汇编(计数、概率、二项式定理)考点1 计数问题1.(2013·北京卷·理科)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 . 962.(2013·全国大纲卷·文科)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种. 603.(2013·山东卷·理科)用0,1,2,,9十个数字,可以组成有重复数字的三位数的个数为A.243B.252C.261D.2794.(2013·四川卷·理科)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 CA.9B.10C.18D.205.(2013·重庆卷·理科)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 . 5906.(2013·全国大纲卷·理科)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 4807.(2013·浙江卷·理科)将,,,,,A B C D E F 六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种. 4808.(2013·福建卷·理科)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对的个数为 BA.14B.13C.12D.10 考点2 概率1.(2013·安徽卷·文科)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 D A.23 B.25 C.35 D.9102.(2013·全国卷Ⅰ·文科)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 B A.12 B.13 C.14 D.163.(2013·全国卷Ⅱ·文科)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 15 4.(2013·全国卷Ⅱ·理科)从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n = . 8n = 5.(2013·重庆卷·文科)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 . 23 6.(2013·浙江卷·文科)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于 .15 7.(2013·江西卷·文科)集合{}2,3A =,{}1,2,3B =,从A ,B 中各取任意一个数,则这两数之和等于4的概率是 C A.23 B.12 C.13 D.168.(2013·福建卷·理科)利用计算机产生01之间的均匀随机数a ,则事件“310a ->”发生的概率 . 23 9.(2013·陕西卷·理科)如图,在矩形区域ABCD 的,A C 两点处各有一个 通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF (该矩形区域内无其他信号来源,基 站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是 A.14π- B.12π- C.22π- D.4π 10.(2013·湖南卷·理科)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为12,则AD AB= A.12 B.1411.(2013·湖北卷·文科)在区间[2,4]-上随机地取一个数x ,若x 满足x m≤的概率为56,则m = . 314.(2013·山东卷·理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为 . 13 考点3 二项式定理1.(2013·全国大纲卷·文科)8(2)x +的展开式中6x 的系数是 CA.28B.56C.112D.224 2. 2532()x x-展开式中的常数项为 A.80 B.80- C.40 D.40-3.(2013·天津卷·理科)6(x的二项展开式中的常数项为 . 15 4.(2013·全国大纲卷·理科)()()8411+x y +的展开式中的22x y 系数是 DA.56B.84C.112D.1685.(2013·四川卷·理科)二项式5()x y +的展开式中,含23x y 的项的系数是 .106.(2013·安徽卷·理科)若8(x 的展开式中4x 的系数为7,则实数a = 12. 7.(2013·辽宁卷·理科)使得(3n x+(n N +∈)的展开式中含有常数项的最小值n 为A .4B .5C .6D .78.(2013·全国卷Ⅰ·理科)设m 为正整数,2()n x y +展开式的二项式系数的最大值为a ,21()n x y ++展开式的二项式系数的最大值为b ,若137a b =,则n = BA.5B.6C.7D.89. 已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =A.-4B.-3C.-2D.-110.(2013·浙江卷·理科)设二项式5的展开式中的常数项为A ,则 A = .。
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .14 【答案】B 3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C 4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【答案】D 5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π- C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
2013年全国高考文科数学试题分类汇编:概率与统计一、选择题1 .(2013年高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为( ) A .23B .25C .35D .910【答案】D2 .(2013年高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .0.2B .0.4C .0.5D .0.6【答案】B3 .(2013年高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则AD AB =( )A .12 B .14C D 【答案】D4 .(2013年高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( ) A .23B .13C .12D .16【答案】C5 .(2013年高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显着差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ) A .9 B .10C .12D .13【答案】D6 .(2013年高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A .1169B .367C .36 D【答案】B7 .(2013年高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是 【答案】A8 .(2013年高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A .12B .13C .14 D .16【答案】B9 .(2013年高考陕西卷(文))对一批产品的长度(单位: mm )进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45【答案】D10.(2013年高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .01【答案】D8 7 79 4 0 1 0 9 1x11.(2013年高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .60【答案】B [来源:学科网]12.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序号是 A.①②B.②③C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表: 假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C 二、填空题14.(2013年高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.(2013年高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.(2013年高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.(2013年高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________. 【答案】2318.(2013年高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】1019.(2013年上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】7820.(2013年高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________. 【答案】(Ⅰ)7 (Ⅱ)221.(2013年高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.(2013年上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示). 【答案】57三、解答题23.(2013年高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA ∙一种数量积为-1的有15OA OA ∙,1624263435,,,,OA OA OA OA OA OA OA OA OA OA ∙∙∙∙∙六种 数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ∙∙∙∙四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ∙∙∙∙四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p =因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.(2013年高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:(Ⅰ) 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B 组中抽取了6人. 请将其余各组抽取的人数填入下表.(Ⅱ) 在(Ⅰ)中, 若, 两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人. (Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P .所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92.25.(2013年高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ;当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61.(Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下, 比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.(2013年高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率. 【答案】27.(2013年高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率. 【答案】28.(2013年高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示: 这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.(2013年高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430 =20693030.(2013年高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率. 【答案】31.(2013年高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;32.(2013年高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率 【答案】33.(2013年高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413. (III)从3月5日开始连续三天的空气质量指数方差最大.34.(2013年高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”? 附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B 从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手:所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.(2013年高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率. 【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A ∙.12121()=P()()()4P A A A P A P A ∙==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =∙+∙∙+∙.58=. 36.(2013年高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好? 【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+3.0+3.1+3.2+3.5)=2.3, 由以上计算结果可得x>y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: 3 2 从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2.3上,而B 药疗效的试验结果有10的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分) 从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180i i x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑. (Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y bx a =+中,1221n i ii n i i x y nx y b xnx ==-=-∑∑,a y bx =-, 其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( ) A .11B .12C .13D .143 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( ) A .这种抽样方法是一种分层抽样 B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π- B .12π-C .22π-D .4π6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( )A .14B .12C .34 D .787 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( )A .588B .480C .450D .1208 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是 ( )A .45B .50C .55D .602 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 ( )A .11B .12C .13D .143 .(2013年普通高等学校招生统一考试安徽数学(理)试题)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班级男生成绩的平均数小于该班女生成绩的平均数4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 ( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是A .14π-B .12π-C .22π-D .4π6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.787 .某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70),[70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1208 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
2013高考(理数)分类解析(概率统计-函数导数)word版2013年全国各省(市)高考数学试题分类汇编(概率统计)1.(2013福建卷.理16题)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.2.(本小题满分12分)(福建卷.文)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名。
2013届全国各地高考押题数学(理科)精选试题分类汇编11:概率一、选择题1 .(2013届湖北省高考压轴卷 数学(理)试题)如图,设D 是图中边长分别为1和2的矩形区域,E 是D内位于函数1(0)y x x =>图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A .ln 22 B .1ln 22- C .1ln 22+ D .2ln 22- 【答案】C 【解析】:将1y x =与2y =图象交点记为A ,则1(,2)2A ,∴阴影部分E 的面积1121121ln 22S dx x=+⨯=+⎰,而D 的面积为122⨯=,∴所求概率1ln 22P +=.故选 C .2 .(2013届安徽省高考压轴卷数学理试题)投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又()n A 表示集合的元素个数,{}2||3|1,A x x ax x R =++=∈,则()4n A =的概率为 ( )A .31B .21 c.32 D .61 【答案】A 【解析】由()4n A =知,函数2|3|yx ax =++和1y =的图像有四个交点,所以23y x ax =++的最小值21214a -<-,解得4(4)a a ><-舍去,所以a 的取值是5,6.又因为a 的取值可能是6种,故概率是2163=,故选 ( )A .3 .(2013届海南省高考压轴卷理科数学)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 ( )A .21π-B .112π-C .2πD .1π【答案】答案:A考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC 面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S ,4 .(2013届江西省高考压轴卷数学理试题)已知随机变量ξ服从正态分布2(0,)N σ,若(2)0.023P ξ>=,则(22)P ξ-=≤≤ ( )A .0.477B .0.625C .0.954D .0.977【答案】C 【解析】由随机变量ξ服从正态分布2(0,)N σ可知正态密度曲线关于y 轴对称,而(2)0.023P ξ>=,则(2)0.023P ξ<-=,故(22)1(2)(2)0.954P P p ξξξ-=->-<-=≤≤,故选C5 .(2013届广东省高考压轴卷数学理试题)已知(){}1,1,≤≤=Ωy x y x ,A 是曲线2x y =与21xy =围成的区域,若向区域Ω上随机投一点P,则点P 落入区域A 的概率为 ( )A .31 B .41 C .81 D .121 【答案】D 区域A面积为)3123120211|333x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ 11/4312P ==第8题图二、填空题6 .(2013届上海市高考压轴卷数学(理)试题)已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,则(02)P ξ<<等于_____________.【答案】0.3【解析】(4)0.8P ξ<=,则2.0)4(=>ξP ,又分布图像关于直线2=x 对称,2.0)4()0(=>=<ξξP P ,则6.0)40(=<<ξP ,3.0)20(=<<ξP7 .(2013届江苏省高考压轴卷数学试题)从集合{-1,1,2,3}中随机选取一个数记为m,从集合{-1,1,2}中随机选取一个数记为n,则方程22x y m n+=1表示双曲线的概率为________.【答案】5128 .(2013届上海市高考压轴卷数学(理)试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是_______________.【答案】463【解析】将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数则有123456777777722126C C C C C C +++++=-=种,因为123456728++++++=,所以要使两组中各数之和相,则有各组数字之和为14.则有7615432++=+++;7526431++=+++;7436521++=+++;7421653+++=++;5432761+++=++;6431752+++=++;6521743+++=++;6537421++=+++共8种,所以两组中各数之和相等的概率是8412663=9 .(2013届北京市高考压轴卷理科数学)设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是________【答案】925【解析】不等式对应的区域为三角形DEF,当点D 在线段BC 上时,点D 到直线+2=0y 的距离等于2,所以要使点D 到直线的距离大于2,则点D 应在三角形BCF 中.各点的坐标为(20)(40)(62)(42)(43)B C D E F ----,,,,,,,,,,所以105DE EF ==,,6BC =,3CF =,根据几何概型可知所求概率为163921251052BCF DEFS P S ∆∆⨯⨯===⨯⨯.三、解答题10.(2013届山东省高考压轴卷理科数学)(2013日照二模)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路 人进行了问卷调查,得到了如下列联表:男性 女性 合计 反感 10不反感8合计30已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是158. (Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X 的分布列和数学期望. 【答案】由已知数据得:2230(10866) 1.158 3.84116141614χ⨯-⨯=≈<⨯⨯⨯,所以,没有充足的理由认为反感“中国式过马路”与性别有关(Ⅱ)X 的可能取值为0,1,2.282144(0),13C C P X === 116821448(1),91C C C P X ===2621415(2),91C C P X ===所以XX 的数学期望为:012.1391917EX =⨯+⨯+⨯=11.(2013届天津市高考压轴卷理科数学)袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为ξ,求ξ的分布列及数学期望E ξ.【答案】解: (Ⅰ)摸出的2个小球为异色球的种数为11C 11173419C C C +=从8个球中摸出2个小球的种数为2828C = 故所求概率为1928P =5 分 (Ⅱ)符合条件的摸法包括以下三种: 一种是有1个红球,1个黑球,1个白球,共有11C 114312C C =种一种是有2个红球,1个其它颜色球,共有214424C C =种,一种是所摸得的3小球均为红球,共有344C =种不同摸法, 故符合条件的不同摸法共有40种由题意知,随机变量ξ的取值为1,2,3.其分布列为:3319123105105E ξ=⨯+⨯+⨯= 12.(2013届北京市高考压轴卷理科数学)本小题共14分为了参加2012年全省高中篮球比赛,某中学决定从四个篮球较强的班级中选出12人组成男子篮球队代表所在地区参赛,队员来源人数如下表:(II)该中学篮球队经过奋力拼搏获得冠军.若要求选出两位队员代表冠军队发言,设其中来自高三(7)班的人数为ξ,求随机变量ξ的分布列及数学期望ξE .【答案】解:(I)“从这18名队员中随机选出两名,两人来自于同一班级”记作事件A ,则2222423321213()66C C C C P A C +++== 6' (II)ξ的所有可能取值为0,1,2 7'则02112048484822212121214163(0),(1),(2)333333C C CC C C P P P C C C ξξξ========= ∴ξ的分布列为:10'∴1416320123333333E ξ=⨯+⨯+⨯= 14' 13.(2013届江西省高考压轴卷数学理试题)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (I)求这4个人中恰好有2人去参加甲项目联欢的概率;(II)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率; (III)用,X Y 分别表示这4个人中去参加甲、乙项目联欢的人数,记X Yξ=-,求随机变量ξ的分布列与数学期望E ξ.【答案】解:依题意,这4个人中,每个人去参加甲项目联欢的概率为13,去参加乙项目联欢的概率为23.设“这4个人中恰有i 人去参加甲项目联欢”为事件i A ,(0,1,2,3,4)i =,则4412()()()33i i ii P A C -=.(Ⅰ)这4个人中恰好有2人去参加甲项目联欢的概率22224128()()()3327P A C ==(Ⅱ)设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件B ,34B A A =⋃, 故334434441211()()()()()()3339P B P A P A C C =+=+=.∴这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为19(III)ξ的所有可能取值为0,2,4.28(0)()27P P A ξ===,1340(2)()(),81P P A P A ξ==+=0417(4)()(),81P P A P A ξ==+= 所以ξ的分布列是14881E ξ=14.(2013届海南省高考压轴卷理科数学)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2012年1月的某天晚上8点至11点在市区昌隆饭店设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和数学期望. 【答案】解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15, 所以此次拦查中醉酒驾车的人数为15人.(Ⅱ) 易知利用分层抽样抽取8人中含有醉酒驾车者为2人;所以x 的所有可能取值为0,1,2;P(x =0)=3836C C =145,P(X=1)=381226C C C =2815,P(x =2)=382216C C C =283432832281511450)(=⨯+⨯+⨯=X E . 15.(2013届湖北省高考压轴卷 数学(理)试题)我省某示范性高中为推进新课程改革,满足不同层次学生的要求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时称为满座,否则称为不满座).统计数据表明,各学科讲座各天的满座概率如下表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率; 各辅导讲座满座的科目数为ξ,(2)设周三量ξ的分布列和数学期望.求随机变【答案】(1)设数学辅导讲座在周一、周三、周五都不满座为事件A ,则1221()(1)(1)(1)23318P A =---=.(2)ξ的所有可能取值为0,1,2,3,4,5.4121(0)(1)(1)2348P ξ==-⋅-=; 1344112121(1)(1)(1)(1)223238P C ξ==⋅⋅-⋅-+-⋅=;22213441121127(2)()(1)(1)()(1)22322324P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=; 33222441121121(3)()(1)(1)()(1)2232233P C C ξ==⋅⋅-⋅-+⋅⋅-⋅=;.4334121123(4)()(1)()(1)2322316P C ξ==⋅-+⋅⋅-⋅=;4121(5)()2324P ξ==⋅=. 所以,随机变量ξ的分布列如下:故117131801234548824316243E ξ=⨯+⨯+⨯+⨯+⨯+⨯=. 16.(2013届广东省高考压轴卷数学理试题)生产A,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计元件A,元件B 为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.【答案】【答案】(Ⅰ)解:元件A 为正品的概率约为4032841005++=元件B 为正品的概率约为4029631004++=(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=所以,随机变量X 的分布列为:3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件.依题意,得 5010(5)140n n --≥, 解得 196n ≥.所以 4n =,或5n =设“生产5件元件B 所获得的利润不少于140元”为事件A ,则 445531381()C ()()444128P A =⨯+=17.(2013新课标高考压轴卷(一)理科数学)某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者.(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望. (Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率【答案】解:(I)ξ得可能取值为 0,1,2;由题意P(ξ=0)=343615C C =, P(ξ=1)=21423635C C C =,P(ξ=2)=12423615C C C = ∴ξ的分布列、期望分别为:E ξ=0×15+1×35+2 ×15=1 (II)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为2510C =,男生甲被选中,女生乙也被选中的 种数为144C =∴P(C)=142542105C C ==在男生甲被选中的情况下,女生乙也被选中的概率为2518.(2013届辽宁省高考压轴卷数学理试题)袋中有大小相同的10个编号为1、2、3的球,1号球有1个,2号球有m 个,3号球有n 个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是13. (Ⅰ)求m 、n 的值;(Ⅱ)从袋中任意摸出2个球,记得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望E ξ.【答案】解:(1)记“第一次摸出3号球”为事件A ,“第二次摸出2号球”为事件B ,则31110)/(=-=m A B P , 解得6,3==n m ;(2)随机变量ξ的取值为6,5,4,3,ξ的分布列为所以,数学期望5=ξE 19.(2013届新课标高考压轴卷(二)理科数学)某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (Ⅰ)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (Ⅱ)求第二次训练时恰好取到一个新球的概率.【答案】解:(1)ξ的所有可能取值为0,1,2.ξ3 4 5 6P151 51 52 31设“第一次训练时取到i 个新球(即i =ξ)”为事件i A (=i 0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230====C C P A P ξ, 53)1()(2613131====C C C P A P ξ,51)2()(26232====C C P A P ξ.所以ξ的分布列为(注:不列表,不扣分)ξ的数学期望为1525150=⨯+⨯+⨯=ξE .(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B . 则“第二次训练时恰好取到一个新球”就是事件B A B A B A 210++. 而事件B A 0、B A 1、B A 2互斥,所以,)()()()(210210B A P B A P B A P B A B A B A P ++=++. 由条件概率公式,得253535151|()()(261313000=⨯=⨯==C C C A B P A P B A P ), 2581585353|()()(261412111=⨯=⨯==C C C A B P A P B A P ), 151315151|()()(261511222=⨯=⨯==C C C A B P A P B A P ).所以,第二次训练时恰好取到一个新球的概率为7538151258253)(210=++=++B A B A B A P . 20.(2013届重庆省高考压轴卷数学理试题)(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率;(Ⅱ)获赔金额ξ的分布列与期望.【答案】解:设k A 表示第k 辆车在一年内发生此种事故,123k=,,.由题意知1A ,2A ,3A 独立, 且11()9P A =,21()10P A =,31()11P A =. (Ⅰ)该单位一年内获赔的概率为123123891031()1()()()19101111P A A A P A P A P A -=-=-⨯⨯=.(Ⅱ)ξ的所有可能值为0,9000,18000,27000.12312389108(0)()()()()9101111P P A A A P A P A P A ξ====⨯⨯=,123123123(9000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++19108110891910119101191011=⨯⨯+⨯⨯+⨯⨯ 2421199045==, 123123123(18000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++1110191811910119101191011=⨯⨯+⨯⨯+⨯⨯ 273990110==, 123123(27000)()()()()P P A A A P A P A P A ξ===111191011990=⨯⨯=. 综上知,ξ的分布列为求ξ的期望有两种解法: 解法一:由ξ的分布列得811310900018000270001145110990E ξ=⨯+⨯+⨯+⨯299002718.1811=≈(元). 解法二:设k ξ表示第k 辆车一年内的获赔金额,123k =,,, 则1ξ有分布列故11900010009E ξ=⨯=. 同理得21900090010E ξ=⨯=,319000818.1811E ξ=⨯≈.综上有1231000900818.182718.18E E E E ξξξξ=++≈++=(元).21.(2013届全国大纲版高考压轴卷数学理试题)(注意:在试题卷上作答无效.........) 在进行一项掷骰子放球的游戏中规定:若掷出1点或2点,则在甲盒中放一球;否则,在乙盒中放一球.现在前后一共掷了4次骰子,设x 、y 分别表示甲、乙盒子中球的个数. (Ⅰ)求13y x ≤-≤的概率;【答案】解:依题意知,掷一次骰子,球被放入甲盒、乙盒的概率分别为12,.33(Ⅰ)若13,y x ≤-≤则只能有1,3,x y ==即在4次掷骰子中,有1次在甲盒中放球,有3次在乙盒中放球,因此所求概率3141232.3381P C ⎛⎫=⨯⨯= ⎪⎝⎭(Ⅱ)由于,x y ξ=-所以ξ的可能取值有0,2,4()222412240,3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭()33134********,333381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()440444111743381P C C ξ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭所以随机变量ξ的分布列为:故随机变量ξ的数学期望为244017148024.81818181E ξ=⨯+⨯+⨯= 22.(2013届浙江省高考压轴卷数学理试题)如图,已知面积为1的正三角形ABC 三边的中点分别为D、E 、F,从A,B,C,D,E,F 六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求1()2P X ≥;(2)求E(X) CB【答案】【解析】解:⑴从六点中任取三个不同的点共有36C 20=个基本事件,事件“12X ≥”所含基本事件有2317⨯+=,从而17()220P X =≥. ⑵X 的分布列为:X 014 12 P3201020620120则311016113()01204202202040E X =⨯+⨯+⨯+⨯=. 答:17()220P X =≥,13()40E X =. 23.(2013届湖南省高考压轴卷数学(理)试题)( 本小题满分12分)某次体能测试中,规定每名运动员一开始就要参加且最多参加四次测试.一旦测试通过,就不再参加余下的测试,否则一直参加完四次测试为止.已知运动员甲的每次通过率为7.0(假定每次通过率相同). (1) 求运动员甲最多参加两次测试的概率; (2) 求运动员甲参加测试的次数的分布列及数学期望(精确到0.1).【答案】⑴因为运动员甲参加一次测试的概率是0.7运动员甲参加两次测试的概率是0.7×0.3=0.21所以运动员甲最多参加两次测试的概率是0.21+0.7=0.91 ⑵ξ的可能取值是1,2,3,4P(ξ=1)=0.7;P(ξ=2)=0.21; P(ξ=3)=0.063; P(ξ=4)=0.027;所以E ξ=1×0.7+2×0.21+3×0.063+4×0.027≈1.424.(2013届陕西省高考压轴卷数学(理)试题)选聘高校毕业生到村任职,是党中央作出的一项重大决策,这对培养社会主义新农村建设带头人,引导高校毕业生面向基层就业创业具有重大意义.为响应国家号召,某大学决定从符合条件的6名(其中男生4名,女生2名)报名大学生中选择3人到某村参加村主任应聘考核.(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望; (2)在男生甲被选中的情况下,求女生乙也被选中的概率.【答案】【解析】(Ⅰ):ξ的所有可能取值为0,1,2.依题意得:3436C 1(0)C 5P ξ===,214236C C 3(1)C 5P ξ===,124236C C 1(2)C 5P ξ===.∴ξ的分布列为∴ 10121555E ξ=⨯+⨯+⨯=. (Ⅱ):设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,则()2536C 1C 2P A ==, ()1436C 1C 5P AB ==, ∴()()()25P AB P B A P A ==.故在男生甲被选中的情况下,女生乙也被选中的概率为25. 25.(2013届福建省高考压轴卷数学理试题)已知甲箱中只放有x 个红球与y 个白球(,0,x y ≥且6)x y +=,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.(Ⅰ)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时,x y 的值; (Ⅱ)当2x =时,求取出的3个球中红球个数ξ的期望()E ξ.【答案】【解析】(I)由题意知203)2(60160.211=+≤=⋅=γx xy Cx C C P L r , 当且仅当y x =时等号成立,所以,当P 取得最大值时3==y x .(II)当2=x 时,即甲箱中有2个红球与4个白球,所以ξ的所有可能取值为3,2,1,0则51)0(14261124===C C C C P ξ,157)1(14261224121412=+==C C C C C C C P ξ,103)2(14261214121222=+==C C C C C C C p ξ, 301)3(142612===C C C P ξ, 所以红球个数ξ的分布列为于是67=ξE . 26.(2013届安徽省高考压轴卷数学理试题)某种产品在投放市场前,进行为期30天的试销,获得如下数据:试销结束后(假设商品的日销售量的分布规律不变),在试销期间,每天开始营业时商品有5件,当天营业结束后,进行盘点存货,若发现存量小于3件,则当天进货补充到5件,否则不进货. (1)求超市进货的概率(2)记ξ为第二天开始营业时该商品的件数,求ξ的分布列和数学期望.【答案】【解析】(1)10642()(3)(4)(5)3030303P P P P =++=++=进货销售件销售件销售件 (2)ξ的取值是345.,, 61317(3)(4)(5)305301010P P P ξξξ========,,,即分布列是: 所以数学期望是345 4.551010E ξ=⨯+⨯+⨯=。
2013年全国高考理科数学试题分类汇编11:概率与统计一、选择题1 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数20,40,40,60,[)[)是()A.45B.50C.55D.60【答案】B2 .(2013年高考陕西卷(理))某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481,720]的人数为()A.11 B.12 C.13 D.14【答案】B3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4 .(2013年高考湖南卷(理))某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D5 .(2013年高考陕西卷(理))如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( )A .14π-B .12π-C .22π-D .4π 【答案】A6 .(2013年高考四川卷(理))节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C7 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 ( ) A .588 B .480 C .450 D .120【答案】B8 .(2013年高考江西卷(理))总体有编号为01,02,…,19,20的20个个体组成。
备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编11:概率与统计一、选择题1 .(云南省玉溪一中2013届高三第四次月考理科数学)某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用ξ表示这5人中“三好学生”的人数,则下列概率中等于514757512C +C C C 的是( )A .()1P ξ=B .()1P ξ≤C .()1P ξ≥D .()2P ξ≤【答案】B 【解析】()1P ξ==1457512C C C ,57512C (0)C P ξ==,所以514757551212C C C (0)(1)C C P P ξξ=+==+,选 B . 2 .(云南师大附中2013届高考适应性月考卷(八)理科数学试题(详解))已知随机变量130,6B ξ⎛⎫ ⎪⎝⎭,则随机变量ξ的方差()D ξ= ( )A .56B .5C .256D .25【答案】随机变量ξ服从二项分布,所以方差1125()(1)301666D np p ξ⎛⎫=-=⨯⨯-=⎪⎝⎭.故选 C . 3 .(云南省玉溪一中2013届高三第五次月考理科数学)设随机变量ξ服从正态分布)4,3(N ,若)2()32(+>=-<a P a P ξξ,则a 的值为( )A .5B .3C .35D .37 【答案】D 【解析】因为ξ服从正态分布)4,3(N ,所以随机变量ξ关于直线3x =对称,因为)2()32(+>=-<a P a P ξξ,所以23,2x a x a =-=+关于3x =对称,所以23232a a -++=,即37a =,解得73a =,选 D .4 .(云南师大附中2013届高三高考适应性月考卷(四)理科数学试题)甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图2所示,1x ,2x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有 ( )A .1212,x x s s ><B .1212,x x s s =>C .1212,x x s s ==D .1212,x x s s =<【答案】D 【解析】由样本中数据可知115x =,215x =,由茎叶图得12s s <,所以选D .5 .(贵州省贵阳市2013届高三适应性监测考试(二)理科数学 word 版含答案)在边长为3的正方形ABCD内任取一点P,则P 到正方形四边的距离均不小于l 的概率为 ( )A .19B .13C .49 D .89【答案】A .6 .(贵州省六校联盟2013届高三第一次联考理科数学试题)投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是A .12 B .16 C .112 D .136【答案】B 【解析】投掷该骰子两次共有66=36⨯中结果,两次向上的点数相同,有6种结果,所以投掷该骰子两次后出现等效实验的概率是611=666⨯⨯,选 B .7 .(云南省昆明一中2013届高三新课程第一次摸底测试数学理)在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。
2013届全国各地高考押题数学(文科)精选试题分类汇编11:概率与统计一、选择题错误!未指定书签。
.(2013届安徽省高考压轴卷数学文试题)已知一组观测值具有线性相关关系,若对于y bx a =+,求得0.6 2.5 3.6b x y ===,,,则线性回归方程是 ( )A .0.6 2.1y x =-B . 2.10.6y x =+C .0.6 2.1y x =+D . 2.10.6y x =-+ 【答案】C 【解析】考查线性回归方程过样本中心点()x y ,,带入数据得3.60.6 2.5a =⨯+,解得2.1a =,所以线性回归方程是0.6 2.1y x =+.错误!未指定书签。
.(2013届湖北省高考压轴卷 数学(文)试题)如图,矩形ABCD 中,点E 为边CD 的中点,点F 为边AD 的中点,AE 和BF 相交于点O,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABO ∆内部的概率等于1.10A 1.8B 1.5C 1.4D 【答案】C 【解析】:设矩形ABCD 的长AB x =,宽BC y =,涉及相关图形的面积问题,那么矩形ABCD 的面积为ABCD S xy =矩形.如图所示,过O 点作OG //AB 交AD 于点G ,则有OG AG DE AD =,即12OG AGy x=,亦即2OG AG x y =.又OG FG AB FA =,即1212y AGOG x y -=,可得12122y AGAG y y -=,解得25AG y =.那么ABO ∆的面积为121255ABO S x y xy ∆⎛⎫=⨯= ⎪⎝⎭.由几何概型的概率公式,得所求的概率为1155ABO ABCDxyS P S xy ∆===矩形.故选C . 错误!未指定书签。
.(2013届新课标高考压轴卷(二)文科数学)已知x ,y 的取值如下表:从散点图可以看出y 与x 线性相关,且回归方程为0.95y x a =+,则a =A, 3.2, B .2.6 C, 2.8 D .2.0.【答案】B错误!未指定书签。
.(2013届新课标高考压轴卷(二)文科数学)春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:2K =表,确结论是 ( ) A .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” 【答案】A错误!未指定书签。
.(2013届湖北省高考压轴卷 数学(文)试题)甲、乙两同学用茎叶图记录高三前5次数学测试的成绩,如图所示.他们在分析对比成绩变化时,发现乙同学成绩的一个数字看不清楚了,若已知乙的平均成绩低于甲的平均成绩,则看不清楚的数字为.9A .6B .3C .0D【答案】D 【解析】:本题考查茎叶图、平均数.甲的平均分为991001011021031015++++=,设看不清楚的数字为x ,则乙的平均分为939497110110+1015x++++<,解得1x <,因为0x ≥,x N ∈,所以0x =,看不清楚的数字为0.故选D .错误!未指定书签。
.(2013届海南省高考压轴卷文科数学)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .112π-C .2π D .1π【答案】答案:A考点分析:本题考察几何概型及平面图形面积求法.解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积,82212121212122-=⨯⨯-⎪⎭⎫ ⎝⎛=ππS .在扇形OAD 中21S 为扇形面积减去三角形OAC面积和22S ,()1622811812221-=--=ππS S ,4221-=+πS S ,扇形OAB 面积π41=S , 错误!未指定书签。
.(2013届福建省高考压轴卷数学文试题)为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图(如图),那么在这100株树木中,底部周长大于110cm 的株数是( )A .70B .60C .30D .80 【答案】C 错误!未指定书签。
.(2013届浙江省高考压轴卷数学文试题)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为 ( )A .19B .29C .718D .49【答案】D【解析】:试验包含的所有事件共有6×6=36种猜数的结果. 其中满足题设条件的有如下情形:若a=1,则b=1,2;他们“心相近”的概率为 若a=2,则b=1,2,3; 若a=3,则b=2,3,4; 若a=4,则b=3,4,5; 若a=5,则b=4,5,6; 若a=6,则b=5,6 共16种.故他们“心相近”的概率为P=16/36=4/9,选 D . 错误!未指定书签。
.(2013届江西省高考压轴卷数学文试题)样本中共有5个个体,其值分别为,0,1,2,3a .若该样本的平均值为1,则样本方差为( )AB .65CD .2【答案】D 【解析】由题意知1(0123)15a ++++=,解得1a =-,故样本方差为2222221[(11)(01)(11)(21)(31)]25S =--+-+-+-+-=,故选D .错误!未指定书签。
.(2013届安徽省高考压轴卷数学文试题)右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是90 110 100 120第2题图( )A .25B .710C .45 D .910【答案】C 【解析】本题考查茎叶图和古典概型的求法,记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是1(80290389210)905⨯⨯+⨯+++++=,乙的5次综合测评的平均成绩是1442(8039023379)55xx +⨯⨯+⨯+++++=,令442905x+>,解得8x <,即x 的取值可以是07,因此甲的平均成绩超过乙的平均成绩的概率是84105=,选C . 错误!未指定书签。
.(2013新课标高考压轴卷(一)文科数学)从{}1,2,3,4,5中随机选取一个数为a 从{}2,3,4中随机选取一个数b,则b a >的概率是 ( )A .45B .35C .25D .15【答案】C 【解析】从两个集合中各选1个数有15种,满足b a >的数有,(1,2),(1,3),(2,3),(1,4),(2,4),(3,4)共有6个,所以b a >的概率是62155=,选 C .二、填空题错误!未指定书签。
.(2013届山东省高考压轴卷文科数学)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为_________【答案】400【解析】设第一、第二、第三小组的频率依次是0.16,0.16t,0.16t 2(t >0),则由后四小组的频率成等差数列可知,0.16t 2+0.07为第四、第五小组的频率之和.由0.16+0.16t +2(0.16t 2+0.07)=1,可得t =54,t =-74(不合题意,舍去).∴第三小组的频率为0.25,故总人数为400人. 错误!未指定书签。
.(2013届浙江省高考压轴卷数学文试题)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,数据落在[2,10)内的概率约为________.【答案】0.4解析 (0.02+0.08)×4=0.4.错误!未指定书签。
.(2013新课标高考压轴卷(一)文科数学)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为____________. 【答案】30 【解析】由题意知,12304515120a=++,解得30a =. 错误!未指定书签。
.(2013届湖南省高考压轴卷数学(文)试题)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为____________.【答案】16错误!未指定书签。
.(2013届广东省高考压轴卷数学文试题)某公司为了了解员工们的健康状况,随机抽取了部分员工作为样本,测量他们的体重(单位:公斤),体重的分组区间为[50,55),[55,60),[60,65),[65,70),[70,75],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,估计该公司员工体重的众数是_________;从这部分员工中随机抽取1位员工,则该员工的体重在[65,75]的概率是_________.【答案】众数是606562.52+=,∵各分组频率分别为0.15,0.25,0.3,0.2,0.1,∴该员工的体重在[65,75]的概率是0.20.13110+=. 错误!未指定书签。
.(2013届上海市高考压轴卷数学(文)试题)平行四边形ABCD 中,E为CD 的中点.若在平行四边形ABCD 内部随机取一点M ,则点M 取自ABE ∆内部的概率为_______________.【答案】12【解析】,根据几何概型可知点M 取自△ABE 内部的概率为1122ABE ABCDAB hS P S AB h ∆===,其中h 为平行四边形底面的高.错误!未指定书签。
.(2013届海南省高考压轴卷文科数学)某公司甲、乙、丙、丁四个部门分别有150、150、400、300名员工,为了解员工对工作的热情,用分层抽样的方法从该公司这四个部门共抽取40名学生进行调查,应在丙部门抽取的员工人数为_16_. 【答案】考点:分层抽样方法.分析:根据四个部门各有的人数,得到公司的总人数,根据要抽取的人数,得到每个个体被抽到的概率,利用丙部门的人数乘以每个个体被抽到的概率,得到丙部门要抽取的人数.图4解答:解:∵公司甲、乙、丙、丁四个部门分别有150、150、400、300名员工 ∴本公司共有员工150+150+400+300=1000,∵用分层抽样的方法从该公司这四个部门共抽取40名员工进行调查 ∴每个个体被抽到的概率是=,∵丙部门有400人, ∴要抽取400×=16故答案为:16 错误!未指定书签。