中考数学考前专练17(含答案)
- 格式:doc
- 大小:438.00 KB
- 文档页数:5
2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。
2017年中考备考专题复习:一元二次方程一、单选题(共15题;共30分)1、(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A、2B、1C、﹣2D、﹣12、(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A、x1=﹣1,x2=2B、x1=1,x2=﹣2C、x1+x2=3D、x1x2=23、(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A、a>0B、a=0C、c>0D、c=04、(2016•荆门)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A、x1=0,x2=6B、x1=1,x2=7C、x1=1,x2=﹣7D、x1=﹣1,x2=75、(2016•玉林)若一次函数y=mx+6的图象与反比例函数y= 在第一象限的图象有公共点,则有()A、mn≥﹣9B、﹣9≤mn≤0C、mn≥﹣4D、﹣4≤mn≤06、(2016•玉林)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2,则m2()=()A 、B、-C、4D、﹣47、(2016•自贡)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A、m>1B、m<1C、m≥1D、m≤18、(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A、M>NB、M=NC、M<ND、不确定9、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、010、(2016•包头)若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m的值是()A、﹣B 、C、﹣或D、111、(2016•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A、﹣2B、﹣1C、1D、212、(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m 的值分别为()A、4,﹣2B、﹣4,﹣2C、4,2D、﹣4,213、(2016•贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+ 的值是()A、3B、﹣3C、5D、﹣514、(2016•梧州)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率,设水稻每公顷产量的年平均增长率为x,则所列方程正确的为()A、7200(1+x)=8450B、7200(1+x)2=8450C、7200+x2=8450D、8450(1﹣x)2=720015、(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A 、B 、C 、D 、二、填空题(共5题;共5分)16、(2016•德州)方程2x2﹣3x﹣1=0的两根为x1,x2,则x12+x22=________.17、(2016•菏泽)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=________.18、(2016•黄石)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是________.19、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.20、(2016•内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________ m.三、解答题(共4题;共25分)21、(2016•潍坊)关于x的方程3x2+mx﹣8=0有一个根是,求另一个根及m的值.22、(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23、(2016•新疆)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?24、(2016•巴中)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.四、综合题(共2题;共25分)25、(2016•荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.26、(2016•湖州)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.第3页共16页◎第4页共16页(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;答案解析部分一、单选题【答案】D【考点】根与系数的关系【解析】【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ= ,故选D.【分析】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【答案】C【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2= =﹣2,∴C选项正确.故选C.【分析】根据根与系数的关系找出“x1+x2=﹣=3,x1•x2= =﹣2”,再结合四个选项即可得出结论.本题考查了根与系数的关系,解题的关键是找出x1+x2=3,x1•x2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.【答案】D【考点】根的判别式【解析】【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【答案】D【考点】解一元二次方程-因式分解法,二次函数的性质【解析】【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.【答案】A【考点】根的判别式,反比例函数与一次函数的交点问题【解析】【解答】解:依照题意画出图形,如下图所示.将y=mx+6代入y= 中,得:mx+6= ,整理得:mx2+6x﹣n=0,∵二者有交点,∴△=62+4mn≥0,∴mn≥﹣9.故选A.【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x的一元二次方程,由两者有交点,结合根的判别式即可得出结论.本题考查了反比例函数与一次函数的交点问题以及根的判别式,解题的关键由根的判别式得出关于mn的不等式.本题属于基础题,难度不大,解决该题型题目时,画出图形,利用数形结合解决问题是关键.【答案】D【考点】根与系数的关系【解析】【解答】解:∵x2﹣4x﹣m2=0有两个实数根x1、x2,∴,∴则m2()= = =﹣4.故答案选D.第7页共16页◎第8页共16页【分析】根据所给一元二次方程,写出韦达定理,代入所求式子化简.本题主要考查一元二次方程根与系数的关系,属基础题,熟练掌握韦达定理是解题关键.【答案】C【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选C.【分析】根据关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,可知△≥0,从而可以求得m 的取值范围.本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.【答案】B【考点】一元二次方程的解【解析】【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a ﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】C【考点】一元二次方程的解,根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2= ,解得m=﹣;若是﹣1时,则m= .故选:C.【分析】由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m的值.本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.【分析】本题考查了根与系数的关系,解题的关键是找出m+n=2.本题属于基础题,难度不大,解决该题型题目时,利用根与系数的关系找出两根之和与两根之积是关键.根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【答案】D【考点】根与系数的关系【解析】【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【分析】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【答案】D【考点】根与系数的关系【解析】【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+ = = = ﹣2= ﹣2=﹣5.故选D.【分析】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+ 变形成﹣2,代入数据即可得出结论.【答案】B【考点】一元二次方程的应用【解析】【解答】解:由题意可得,7200(1+x)2=8450,故选B.【分析】本题考查由实际问题抽象出一元二次方程组,解题的关键是明确题意,列出相应的一元二次方程组.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb 的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题【答案】【考点】根与系数的关系【解析】【解答】解:∵方程2x2﹣3x﹣1=0的两根为x1,x2,∴x1+x2=﹣= ,x1•x2= =﹣,∴x12+x22= ﹣2x1•x2= ﹣2×(﹣)= .故答案为:.【分析】根据根与系数的关系得出“x1+x2=﹣= ,x1•x2= =﹣”,再利用完全平方公式将x12+x22转化成﹣2x1•x2,代入数据即可得出结论.本题考查了根与系数的关系以及完全平方公式,解题的关键是求出x1+x2= ,x1•x2=﹣.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再利用完全平方公式将原代数式转化成只含两根之和与两根之积的代数式是关键.【答案】6【考点】一元二次方程的解【解析】【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.【答案】m>【考点】根的判别式,根与系数的关系,解一元一次不等式组【解析】【解答】解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,由已知得:,即解得:m>.故答案为:m>.【分析】设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次不等式组,解题的关键是得出关于m的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的情况结合根的判别式以及根与系数的关系得出关于m的一元一次不等式组是关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式第11页共16页◎第12页共16页【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】2【考点】一元二次方程的应用【解析】【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.三、解答题【答案】解:设方程的另一根为t.依题意得:3×()2+ m﹣8=0,解得m=10.又t=﹣,所以t=﹣4.综上所述,另一个根是﹣4,m的值为10【考点】根与系数的关系【解析】【分析】由于x= 是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.此题考查了根与系数的关系,一元二次方程的根的定义,把方程的根代入原方程就可以确定待定系数m的值.【答案】(1)证明:∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根(2)解:∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.【考点】一元二次方程的解,根的判别式【解析】【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后将其整体代入所求的代数式并求值即可.本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.【答案】解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28,解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛【考点】一元二次方程的应用【解析】【分析】设要邀请x支球队参加比赛,则比赛的总场数为x(x﹣1)场,与总场数为28场建立方程求出其解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时单循环形式比赛规则的总场数为等量关系建立方程是关键.【答案】解:设该种药品平均每场降价的百分率是x,由题意得:200(1﹣x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%【考点】一元二次方程的应用【解析】【分析】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1﹣x)2,据此列出方程求解即可.此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.四、综合题【答案】(1)解:∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x= ≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)解:∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2= =1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠-1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)解:|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣= =﹣m,x1x2= = ,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.【考点】根的判别式,根与系数的关系,分式方程的解【解析】【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.【答案】(1)解:设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)解:设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?解:设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.【考点】一元一次方程的应用,一元二次方程的应用,一次函数的应用【解析】【分析】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.第15页共16页◎第16页共16页。
专题17 四川中考填空题压轴专题【典例1】(2019•眉山)如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为 4 .【点拨】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【解答】解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k |,S △OAD =12|k |, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则k2+k 2+12=4k ,∴k =4.【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注.【典例2】(2019•凉山州)如图,正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 4 .【点拨】先证明△BPE ∽△CQP ,得到与CQ 有关的比例式,设CQ =y ,BP =x ,则CP =12﹣x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值. 【解答】解:∵∠BEP +∠BPE =90°,∠QPC +∠BPE =90°, ∴∠BEP =∠CPQ . 又∠B =∠C =90°, ∴△BPE ∽△CQP . ∴BE PC=BP CQ.设CQ =y ,BP =x ,则CP =12﹣x . ∴912−x=xy ,化简得y =−19(x 2﹣12x ),整理得y =−19(x ﹣6)2+4, 所以当x =6时,y 有最大值为4. 故答案为4.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.【典例3】(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)=√217.【点拨】给图中相关点标上字母,连接DE ,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE =∠CED =30°=∠α,由∠AEC =60°结合∠AED =∠AEC +∠CED 可得出∠AED =90°,设等边三角形的边长为a ,则AE =2a ,DE =√3a ,利用勾股定理可得出AD 的长,再结合余弦的定义即可求出cos (α+β)的值.【解答】解:给图中相关点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC , ∴∠α=30°.同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DE AD =√217. 故答案为:√217.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.【典例4】(2019•雅安)已知函数y ={−x 2+2x(x >0)−x(x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14 .【点拨】直线与y =﹣x 有一个交点,与y =﹣x 2+2x 有两个交点,则有m >0,x +m =﹣x 2+2x 时,△=1﹣4m >0,即可求解.【解答】解:直线y =x +m 与该图象恰有三个不同的交点, 则直线与y =﹣x 有一个交点, ∴m >0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<1 4,∴0<m<1 4;故答案为0<m<1 4.【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m的范围.【典例5】(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.【点拨】将(﹣1,0)与(0,2)代入y=ax2+bx+c,可知b=a+2,利用对称轴可知:a>﹣2,从而可知M的取值范围.【解答】解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2 =6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【典例6】(2019•巴中)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16√3.【点拨】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=√34BP2+12×PP'×AP=24+16√3故答案为:24+16√3【点评】本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.【典例7】(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为2π3+√3.【点拨】连接OE ,作OF ⊥DE ,先求出∠COE =2∠D =60°、OF =12OD =1,DF =OD cos ∠ODF =√3,DE =2DF =2√3,再根据阴影部分面积是扇形与三角形的面积和求解可得. 【解答】解:如图,连接OE ,作OF ⊥DE 于点F ,∵四边形ABCD 是平行四边形,且∠A =150°, ∴∠D =30°,则∠COE =2∠D =60°, ∵CD =4, ∴CO =DO =2,∴OF =12OD =1,DF =OD cos ∠ODF =2×√32=√3, ∴DE =2DF =2√3, ∴图中阴影部分的面积为60⋅π⋅22360+12×2√3×1=2π3+√3, 故答案为:2π3+√3.【点睛】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S =nπr 2360是解题的关键.【典例8】(2019•泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 9√2 .【点拨】过D 作DH ⊥AC 于H ,根据等腰三角形的性质得到AC =BC =15,∠CAD =45°,求得AH =DH ,得到CH =15﹣DH ,根据相似三角形的性质即可得到结论.【解答】解:过D 作DH ⊥AC 于H , ∵在等腰Rt △ABC 中,∠C =90°,AC =15, ∴AC =BC =15, ∴∠CAD =45°, ∴AH =DH , ∴CH =15﹣DH , ∵CF ⊥AE ,∴∠DHA =∠DF A =90°, ∴∠HAF =∠HDF , ∴△ACE ∽△DHC , ∴DH AC=CH CE,∵CE =2EB , ∴CE =10, ∴DH 15=15−DH 10,∴DH =9, ∴AD =9√2, 故答案为:9√2.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.【典例9】(2019•乐山)如图1,在四边形ABCD 中,AD ∥BC ,∠B =30°,直线l ⊥AB .当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是 .【点拨】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.【典例10】(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.【点拨】由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,即可得到C1,C2,C3,C4,C5的纵坐标,根据图象得出C1(2,1),C2(5,2),C3(11,4),即可得到C1,C2,C3,C4,C5…在一条直线上,直线的解析式为y=13x+13,把C5的纵坐标代入即可求得横坐标.【解答】解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=13x+13,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=13x+13,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).【点睛】此题考查了待定系数法求一次函数的解析式、等腰直角三角形和正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想的应用.【典例11】(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt △OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为(﹣22017,22017√3).【点拨】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,√3),A3的坐标为(﹣2,2√3),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8√3),A6的坐标为(16,﹣16√3),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2√3,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2√3,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2√3,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2√3,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017√3,故答案为:(﹣22017,22017√3).【点睛】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.【典例12】(2019•南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积最大值为144;③当OD 最大时,点D 的坐标为(25√2626,125√2626).其中正确的结论是 ②③ .(填写序号)【点拨】①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DF A ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出. 【解答】解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为90×12×π180=6π,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点,∴OE ⊥AB ,OE =12AB =12,∴S △AOB =12×24×12=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12, ∴DE =√AD 2+AE 2=√52+122=13, ∴OD =DE +OE =13+12=25, 设DF =x ,∴OF =√OD 2−DF 2=√252−x 2, ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DF A =∠AOB , ∴∠DAF =∠ABO , ∴△DF A ∽△AOB ∴DF OA =DA AB ,∴x OA=524,∴OA =24x5, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD AB =OF OA,∴2524=√252−x 224x 5,解得x =25√2626,x =−25√2626舍去,∴OF=125√26 26,∴D(25√2626,125√2626).故③正确.故答案为:②③.【点睛】本题考查四边形综合题、直角形的性质、矩形的性质、相似三角形的判定和性质等知识.解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.【典例13】(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=√2+√6.【点拨】如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=√22BE′=√2,在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【典例14】(2019•宜宾)如图,△ABC 和△CDE 都是等边三角形,且点A 、C 、E 在同一直线上,AD 与BE 、BC 分别交于点F 、M ,BE 与CD 交于点N .下列结论正确的是 ①③④ (写出所有正确结论的序号).①AM =BN ;②△ABF ≌△DNF ;③∠FMC +∠FNC =180°;④1MN=1AC+1CE【点拨】①根据等边三角形性质得出AC =BC ,CE =CD ,∠ACB =∠ECD =60°,求出∠BCE =∠ACD ,根据SAS 推出两三角形全等即可;②根据∠ABC =60°=∠BCD ,求出AB ∥CD ,可推出△ABF ∽△DNF ,找不出全等的条件; ③根据角的关系可以求得∠AFB =60°,可求得MFN =120°,根据∠BCD =60°可解题; ④根据CM =CN ,∠MCN =60°,可求得∠CNM =60°,可判定MN ∥AE ,可求得MN AC=DN CD=CD−CN CD,可解题.【解答】证明:①∵△ABC 和△CDE 都是等边三角形, ∴AC =BC ,CE =CD ,∠ACB =∠ECD =60°, ∴∠ACB +∠ACE =∠ECD +∠ACE , 即∠BCE =∠ACD , 在△BCE 和△ACD 中, {BC =AC∠BCE =∠ACD CE =CD,∴△BCE ≌△ACD (SAS ),∴AD =BE ,∠ADC =∠BEC ,∠CAD =∠CBE , 在△DMC 和△ENC 中, {∠MDC =∠NEC DC =BC ∠MCD =∠NCE =60°, ∴△DMC ≌△ENC (ASA ), ∴DM =EN ,CM =CN ,∴AD ﹣DM =BE ﹣EN ,即AM =BN ; ②∵∠ABC =60°=∠BCD , ∴AB ∥CD , ∴∠BAF =∠CDF , ∵∠AFB =∠DFN ,∴△ABF ∽△DNF ,找不出全等的条件;③∵∠AFB +∠ABF +∠BAF =180°,∠FBC =∠CAF , ∴∠AFB +∠ABC +∠BAC =180°, ∴∠AFB =60°, ∴∠MFN =120°, ∵∠MCN =60°, ∴∠FMC +∠FNC =180°; ④∵CM =CN ,∠MCN =60°, ∴△MCN 是等边三角形, ∴∠MNC =60°, ∵∠DCE =60°, ∴MN ∥AE , ∴MN AC=DN CD=CD−CN CD,∵CD =CE ,MN =CN , ∴MN AC =CE−MN CE ,∴MNAC=1−MNCE ,两边同时除MN 得1AC=1MN−1CE,∴1MN=1AC+1CE.故答案为①③④【点睛】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.【典例15】(2019•资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=95.【点拨】如图,作CH ⊥AB 于H .首先证明∠ACB =90°,解直角三角形求出AH ,再证明CE ′=AH 即可.【解答】解:如图,作CH ⊥AB 于H .由翻折可知:∠AE ′C =∠AEC =90°,∠ACE =∠ACE ′, ∵CE ′∥AB , ∴∠ACE ′=∠CAD , ∴∠ACD =∠CAD , ∴DC =DA , ∵AD =DB , ∴DC =DA =DB , ∴∠ACB =90°, ∴AB =√AC 2+BC 2=5, ∵12•AB •CH =12•AC •BC ,∴CH =125,∴AH =√AC 2−CH 2=95, ∵CE ′∥AB ,∴∠E ′CH +∠AHC =180°, ∵∠AHC =90°, ∴∠E ′CH =90°, ∴四边形AHCE ′是矩形, ∴CE ′=AH =95, 故答案为95.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.【典例16】(2019•达州)如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线y =﹣x 2+2x +m +1与直线y =m +2有且只有一个交点;②若点M (﹣2,y 1)、点N (12,y 2)、点P (2,y 3)在该函数图象上,则y 1<y 2<y 3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y =﹣(x +1)2+m ; ④点A 关于直线x =1的对称点为C ,点D 、E 分别在x 轴和y 轴上,当m =1时,四边形BCDE 周长的最小值为√34+√2.其中正确判断的序号是 ①③④ .【点拨】①把y =m +2代入y =﹣x 2+2x +m +1中,判断所得一元二次方程的根的情况便可得判断正确; ②根据二次函数的性质进行判断;③根据平移的公式求出平移后的解析式便可;④因BC 边一定,只要其他三边和最小便可,作点B 关于y 轴的对称点B ′,作C 点关于x 轴的对称点C′,连接B′C′,与x轴、y轴分别交于D、E点,求出B′C′便是其他三边和的最小值.【解答】解:①把y=m+2代入y=﹣x2+2x+m+1中,得x2﹣2x+1=0,∵△=4﹣4=0,∴此方程两个相等的实数根,则抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点,故此小题结论正确;②∵抛物线的对称轴为x=1,∴点P(2,y3)关于x=1的对称点为P′(0,y3),∵a=﹣1<0,∴当x<1时,y随x增大而增大,又∵﹣2<0<12,点M(﹣2,y1)、点N(12,y2)、点P′(0,y3)在该函数图象上,∴y2>y3>y1,故此小题结论错误;③将该抛物线向左平移2个单位,再向下平移2个单位,抛物线的解析式为:y=﹣(x+2)2+2(x+2)x+m+1﹣2,即y=﹣(x+1)2+m,故此小题结论正确;④当m=1时,抛物线的解析式为:y=﹣x2+2x+2,∴A(0,2),C(2,2),B(1,3),作点B关于y轴的对称点B′(﹣1,3),作C点关于x轴的对称点C′(2,﹣2),连接B′C′,与x轴、y轴分别交于D、E点,如图,则BE+ED+CD+BC=B′E+ED+C′D+BC=B′C′+BC,根据两点之间线段最短,知B′C′最短,而BC的长度一定,∴此时,四边形BCDE周长=B′C′+BC最小,为:√B′M2+C′M2+√BM2+CM2=√32+52+√12+12=√34+√2,故此小题结论正确;故答案为:①③④.【点睛】本题考查二次函数的应用、二次函数的图象与性质、二次函数与坐标轴的交点、求线段和的最小值等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.【典例17】(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=12x经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=12x2−114x+3.(填一般式)【点拨】点C (0,3),反比例函数y =12x 经过点B ,则点B (4,3),由勾股定理得:(4﹣x )2=4+x 2,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点C (0,3),反比例函数y =12x经过点B ,则点B (4,3), 则OC =3,OA =4, ∴AC =5,设OG =PG =x ,则GA =4﹣x ,P A =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2, 解得:x =32,故点G (32,0),将点C 、G 、A 坐标代入二次函数表达式得:{c =394a +32b +c =014a +4b +c =0,解得:{ a =12b =−114c =3,故答案为:y =12x 2−114x +3.【点睛】本题考查的是二次函数综合运用,涉及到矩形基本性质、反比例函数基本性质与应用,其中用勾股定理求OG 的长度,是本题解题的关键.【典例18】(2018•凉山州)△AOC 在平面直角坐标系中的位置如图所示,OA =4,将△AOC 绕O 点,逆时针旋转90°得到△A 1OC 1,A 1C 1,交y 轴于B (0,2),若△C 1OB ∽△C 1A 1O ,则点C 1的坐标 (43,83) .【点拨】如图作C 1H ⊥x 轴于H .由△C 1OB ∽△C 1A 1O ,推出OC 1A 1C 1=OB OA 1=12,由tan ∠C 1A 1H =OBOA 1=C 1K A 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,构建方程即可解决问题; 【解答】解:如图作C 1H ⊥x 轴于H .∵△C 1OB ∽△C 1A 1O , ∴OC 1A 1C 1=OB OA 1=12,∵tan ∠C 1A 1H =OBOA 1=C 1HA 1H =12,设C 1H =m ,则A 1H =2m ,OH =2m ﹣4,∴A 1C 1=√5m ,OC 1=√m 2+(2m −4)2, ∴√5m =2√m 2+(2m −4)2, 解得m =83或85(舍弃),∴C 1(43,83).(本题也可以证明tan ∠OC 1H =OH HC 1=12,S 设C 1(m ,2m ),根据A 1H =4m ,构建方程)【点睛】本题考查相似三角形的性质、坐标与图形的旋转等知识,解题的关键是学会利用参数构建方程解决问题,属于中考填空题中的压轴题.【精练1】(2019秋•河东区期末)如图,在反比例函数y =−6x (x <0)的图象上任取一点P ,过P 点分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为 .【点拨】设出点P 的坐标,四边形PMON 的面积等于点P 的横纵坐标的积的绝对值,把相关数值代入即可.【解答】解:设点P 的坐标为(x ,y ),∵点P 的反比例函数解析式上, ∴xy =﹣6,易得四边形PMON 为矩形, ∴四边形PMON 的面积为|xy |=6, 故答案为6.【点睛】考查反比例函数的比例系数的意义;用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.注意面积应为正值.【精练2】(2016秋•江阴市校级月考)如图,正方形ABCD 的边长为1cm ,M 、N 分别是BC 、CD 上两个动点,且始终保持AM ⊥MN ,则△ADN 的最小面积为 .【点拨】设BM =xcm ,则MC =(1﹣x )cm ,当AM ⊥MN 时,利用互余关系可证△ABM ∽△MCN ,利用相似比求CN ,根据三角形的面积公式表示出△ADN 的面积,用二次函数的性质求面积的最小值. 【解答】解:设BM =xcm ,则MC =(1﹣x )cm , ∵∠AMN =90°,∴∠AMB +∠NMC =90°,∠NMC +∠MNC =90°, ∴∠AMB =∠MNC , 又∵∠B =∠C , ∴△ABM ∽△MCN ,则AB MC=BM CN,即11−x=x CN,解得:CN =x(1−x)1=x (1﹣x ), ∴S △ADN =S 正方形ABCD =12×1×[1﹣x (1﹣x )]=12x 2−12x +12, ∵12<0,∴当x =12cm 时,S △ADN 最小,最小值是4×12×12−(−12)24×12=38(cm 2).故答案是:38cm 2.【点睛】本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.【精练3】(2019秋•香坊区期末)等边△ABC 中,点P 是BC 所在直线上一点,且PC :BC =1:4,则tan ∠APB 的值是 .【点拨】过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a ,分类讨论:当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a ;当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a ,然后分别利用正切的定义求解即可. 【解答】解:如图,过A 作AD ⊥BC 于D ,设等边△ABC 的边长为4a ,则DC =2a ,AD =2√3a ,PC =a , 当P 在BC 的延长线上时,DP =DC +CP =2a +a =3a , 在Rt △ADP 中,tan ∠APD =AD DP =2√3a 3a =2√33; 当P 点在线段BC 上,即在P ′的位置,则DP ′=DC ﹣CP ′=a , 在Rt △ADP ′中,tan ∠AP ′D =AD DP′=2√3aa =2√3.故答案为2√3或2√33.【点睛】本题考查了解直角三角形:利用三角函数和勾股定理求三角形中未知的边或角的过程叫解直角三角形.也考查了分类讨论思想的运用.【精练4】(2019秋•长清区期中)如图,在△ABC 中,∠BAC =90°,AB =AC =√2,点D 、E 分别在BC 、AC 上(点D 不与点B 、C 重合),且∠ADE =45°,若△ADE 是等腰三角形,则CE = .【点拨】可得∠B =∠C =45°,可证得△DCE ∽△ABD ,由于D 与B 、C 不重合,显然∠ADE =∠AED=45°不符合题意,即AD≠AE,所以此题分两种情况讨论:①AD=DE,此时(2)的相似三角形全等,由此可求得CD、BD的长,进而可得CE、AE的值.【解答】解:∵点D不能与B点重合,∴AD=AE不能成立,(或:∵∠ADE=45°,若AD=AE,则∠AED=ADE=45°,从而∠DAE=90°,即B与D重合,这与已知条件矛盾).①当AE、DE为腰,即AE=DE时(如图1),∠EAD=∠EDA=45°,此时,AD平分∠BAC,∴D为BC边的中点(“三线合一”性质),且E也为AC边的中点,∴CE=AE=√2 2;②当AD、DE为腰,即AD=DE时(如图2),∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC +∠B +∠BAD =180,∠DEC +∠C +∠CDE =180°, ∴∠ADC +∠B +∠BAD =∠DEC +∠C +∠CDE , ∴∠EDC =∠BAD , ∴△ABD ∽△DCE 此时AD 与DE 为对应边,∴△ABD ≌△DCE ,DC =AB =√2, CE =BD =BC ﹣CD =2−√2. 因此CE 的长为2−√2或√22. 故答案为:2−√2或√22. 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的判定,解答时证明三角形相似是关键. 【精练5】(2019秋•江岸区校级月考)我们把函数y ={x 2−2x −3(x ≥0)x 2+2x −3(x ≤0)的图象记为C ,若直线y =x +b与图象C 有且只有三个公共点,则b 的取值是 .【点拨】画出分段函数的图象,结合图象找到直线与该图象有三个交点的两端情况:直线经过点(0,﹣3)时;直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时. 【解答】解:根据函数解析式分别画出函数图象,如图所示: 当直线经过点(0,﹣3)时,此时函数与直线y =x +b 恰有三个交点, ∴b =﹣3,当直线y =x +b 与y =x 2+2x ﹣3(x ≤0)部分只有一个交点时, ∴x 2+2x ﹣3=x +b , ∴b =−134; ∴b =﹣3或b =−134时两图象有三个交点; 故答案为−134或﹣3.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.【精练6】(2018秋•越秀区期末)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④6a﹣2b+c<0;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2,其中正确的判断是(填写所有正确判断的序号)【点拨】根据抛物线的开口方向,对称轴,抛物线与x轴的交点情况,二次函数图象上点的坐标特征判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴−b2a=−1,a+b+c=0,∴b=2a,c=﹣3a,∵抛物线开口向上,∴a>0,∴b>0,c<0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确;∵9a﹣3b+c=0,b=2a,c=﹣3a,∴6a﹣2b+c=6a﹣4a﹣3a=﹣a<0,故④正确;∵抛物线对称轴x=﹣1,∴x=﹣0.5与x=﹣1.5的函数值相等,∵﹣1.5>﹣2,∴则y1<y2;故⑤错误;故答案为:②③④.【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,灵活运用数形结合思想.【精练7】(2019春•东海县期中)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若P A=3,PB=4,PC=5,则四边形APBQ的面积为【点拨】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=AQ=3,∠P AQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=3,接着证明△APC≌△ABQ得到PC=QB=5,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S=S△BPQ+S△APQ进行计算.四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠P AQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12BP×PQ+√34×PQ2=6+9√34故答案为:6+9√3 4【点睛】本题考查了旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是本题的关键.【精练8】(2019•吉林)如图,在扇形OAB中,∠AOB=90°.D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB̂上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).【点拨】连接OC,根据同样只统计得到▱ODCE是矩形,由矩形的性质得到∠ODC=90°.根据勾股定理得到OC=10,根据扇形的面积公式和矩形的面积公式即可得到结论.【解答】解:连接OC,∵∠AOB=90°,四边形ODCE是平行四边形,∴▱ODCE是矩形,∴∠ODC=90°.∵OD=8,OE=6,∴OC=10,∴阴影部分图形的面积=90⋅π×102360−8×6=25π﹣48.故答案为:25π﹣48.【点睛】本题考查了扇形的面积的计算,矩形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.【精练9】(2019•虞城县一模)如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.【点拨】根据题意和函数图象可以得到BE和BC的长,然后根据当t=5时,y=10可以得到AB的长,然后根据QD平分∠PQC,可得DG=DC,进而可以求得相应的t的值.【解答】解:由题意可得,BE =5,BC =12, ∵当t =5时,S =10, ∴10=5×AB2,得AB =4, 作EH ⊥BC 于点H ,作EF ∥PQ ,P 1Q 2∥EF ,作DG ⊥P 1Q 2于点G , 则EH =AB =4,BE =BF =5, ∵∠EHB =90°, ∴BH =√52−42=3, ∴HF =2,∴EF =√42+22=2√5, ∴P 1Q 2=2√5,设当点P 运动到P 1时,Q 2D 平分∠P 1Q 2C ,则DG =DC =4,P 1D =17﹣AE ﹣EP 1=12﹣3﹣(t ﹣5)=14﹣t , ∴(14−t)×42=2√5×42,解得,t =14﹣2√5, 故答案为:14﹣2√5.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【精练10】(2018秋•市中区期末)将正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图所示方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2019的横坐标是 .【点拨】根据直线y=x+1可求与x轴、y轴的交点坐标,得出第一个正方形的边长,得出点B1的横坐标,根据第二个正方形与第一个正方形的关系,可求出第二个正方形的边长,进而确定B2的横坐标,依此类推,可得出B2019的横坐标.【解答】解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.【点睛】此题主要考查了一次函数图形上的点与坐标特征,规律型问题常用的方法是,分别求出前几个数据,然后依据变化规律,得出一般的结论.本题就是先求出B1的横坐标为21﹣1,B2的横坐标为22﹣1,B3的横坐标为23﹣1,B4的横坐标为24﹣1,……进而得到B n的横坐标为2n﹣1.【精练11】(2019•鄂尔多斯模拟)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56个点的坐标为.【点拨】根据题意和图象中的点的坐标,可以发现这些点的变化规律,从而可以求得第56个点的坐标.【解答】解:由题意可得,横坐标是1的点有1个,横坐标是2的点有2个,横坐标是3的点有3个,…,∵56=(1+2+3+…+10)+1,∴第56个点的坐标为(11,10),故答案为:(11,10)【点睛】本题考查规律性:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.【精练12】(2019春•徐州期中)如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P 在运动过程中所经过的路径长度为cm.【点拨】根据题意可以判断出点P的运动轨迹是4段弧长和2段线段的长度.【解答】解:连接BP,如图所示:∵P是EF的中点,∴BP=12EF=12×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×90π×1180+2×1=2π+2.故答案为:2π+2.【点睛】本题考查了轨迹、矩形的性质、直角三角形斜边上的中线等于斜边的一半的性质以及弧长的计算.判断出点的P运动的轨迹是解题的关键.【精练13】(2018秋•雨花区校级期末)如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是AC的中点,直角∠EDF的两边分别交AB、BC于点E、F,给出以下结论:①AE=BF;②S四边形BEDF=12S△ABC;③EF=BD;④∠BFE=∠CDF;⑤△DEF是等腰直角三角形,当∠EDF在△ABC内绕顶点D旋转时(点E不与点A、B重合),上述结论始终成立的有个.。
2019备战中考数学一元一次方程专题-综合能力提升练习(含解析)一、单选题1.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A. 10x+20=100B. 10x-20=100C. 20-10x=100D. 20x+10=1002.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A. 9<x<10B. 10<x<11 C. 11<x<12 D. 12<x<133.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A. 7折B. 8折C. 9折D. 6折4.把方程x=1变形为x=2,其依据是()A. 等式的性质1B. 等式的性质2 C. 分式的基本性质 D. 不等式的性质15.如果x=y,a为有理数,那么下列等式不一定成立的是()A. 4﹣y=4﹣x B. x2=y2C.D. ﹣2ax=﹣2ay6.若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A. 2B. 4C.D. 127.某工程甲独做12天完成,乙独做8天完成,现在由甲先做3天,乙再参加合做.设完成此工程一共用了x天,则下列方程正确的是()A. +=1B. +=1 C. +=1 D. +=18.某商店一套服装进价为300元,如果按标价的八折销售可获利80元,那么该服装的标价是()A. 375元B. 380元C. 450元D. 475元9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A. 1B. 2C. 3D. 410.已知a+ =b﹣= =2019,且a+b+c=2019k,那么k的值为()A.B. 4C. ﹣D. ﹣411.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是()A. 10岁B. 15岁C. 20岁D. 30岁12.已知3是关于x的方程2x-a=1的解,则a的值是()A. -5B. 5C. 7D. 2二、填空题13.方程﹣=1可变形为﹣=________.14.用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是________15.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .16.根据图中提供的信息,可知一个杯子的价格是________元.17.已知x=﹣1是关于x的方程2x﹣3a=﹣4的解,则a为________.18.校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.19.方程2x﹣3=6的解是________.三、计算题20.解方程:x﹣=1﹣.21.计算题(1)计算:;(2)解方程:.22.定义新运算符号“*”的运算过程为a*b= a﹣b,试解方程2*(2*x)=1*x.23.解方程:﹣3(2+x)=2(5﹣x).四、解答题24.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.25.已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?五、综合题26.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使=b,点Q为PB的中点,请画出图形并求出线段AQ的长.27.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?28.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?答案解析部分一、单选题1.【答案】A【考点】一元一次方程的实际应用-和差倍分问题【解析】【解答】根据题意得,月存钱为,则可列方程为故A符合题意.故答案为:A.【分析】根据x个月存的钱+原有的20元=100元列方程.2.【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:根据题意得:x+3.6=15,解得:x=11.4 ;故答案为: C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x的值,从而得出答案。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
备战中考数学专题练习(全国通用)几何体的表面积(含答案)一、单项选择题1.把14个棱长为1的正方体,在空中上堆叠成如下图的立方体,然后将显露的外表局部染成白色,那么白色局部的面积为〔〕A.21B.24C.33D.372.附图的长方体与以下选项中的平面图形均是由边长为1公分的小正方体严密堆砌而成.假定以下有一平面图形的外表积与附图的外表积相反,那么此图形为何?〔〕A.B.C.D.3.图中的几何体,由两个正方体组合而成,大正方体的棱长为a,小正方体的棱长是b,那么这个几何体的外表积等于〔〕A.B.C.D.4.假定干个正方体外形的积木摆成如下图的塔形,平放于桌面上,下面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,假设塔形露在外面的面积超越7,那么正方体的个数至少是〔〕A.2B.3C.4D.55.如图,将一张边长为3的正方形纸片按虚线裁剪后,恰恰围成一个底面是正三角形的棱柱,这个棱柱的正面积为〔〕A.9B.9﹣3C.D.6.圆柱的底面半径为3cm,母线长为5cm,那么圆柱的正面积是〔〕A.30cm2B.30πcm2C.15cm2D.15πcm27.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,失掉一个如下图的零件,那么这个零件的外表积是〔〕A.20B.22C.24D.26二、填空题8.如图,几个棱长为1的小正方体在地板上堆积成一个模型,外表喷涂白色染料,那么染有白色染料的模型的外表积为________.9.用一些棱长为a的正方形,摆成如下图的外形,请你求出该物体的外表积.________.10.用一个长3cm宽2cm的长方形纸卷一个圆柱,那么圆柱的正面积为________,底面周长为________.11.一个正方体边长2cm,这个正方体的外表积为________cm2,体积为________cm3.12.如图,一把翻开的雨伞可近似的看成一个圆锥,伞骨〔面料下方可以把面料撑起来的支架〕末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制造这样的一把雨伞至少需求绸布面料为________平方分米.13.如图,把14个棱长为1cm的正方体木块,在空中上堆成如下图的平面图形,然后向显露的外表局部喷漆,假定1cm2需用漆2g,那么共需用漆________g.14.两个完全相反的长方体的长.宽.高区分为5cm.4cm.3cm,把它们叠放在一同组成个新长方体,在这个新长方体中,体积是________cm3,最大外表积是________cm2.15.用一个长3cm宽2cm的长方形纸卷一个圆柱,那么圆柱的正面积为________cm2,底面周长为________三、解答题16.有3个棱长区分是3cm,4cm,5cm的正方体组分解如下图的图形.其露在外面的外表积是多少?〔整个平面图形摆放在地上〕17.如下图,木工徒弟把一个长为1.6米的长方体木料锯成3段后,外表积比原来添加了80cm2,那么这根木料原本的体积是多少?四、综合题18.棱长为a的正方体摆放成如图的外形.〔1〕试求其外表积;〔2〕假定如此摆放10层,其外表积是多少?19.如图,是按规律摆放在墙角的一些小正方体,从上往下区分记为第一层,第二层,第三层…第n层…〔1〕第三层有________个小正方体.〔2〕从第四层至第六层〔含第四层和第六层〕共有________个小正方体.〔3〕第n层有________个小正方体.〔4〕假定每个小正方体边长为a分米,共摆放了n层,那么要将摆放的小正方体能看到的外表局部涂上防锈漆,那么防锈漆的总面积为________分米2.20.棱长为a的正方体,摆放成如下图的外形.〔1〕假设这一物体摆放三层,试求该物体的外表积;〔2〕依图中摆放方法类推,假设该物体摆放了上下20层,求该物体的外表积.答案局部一、单项选择题1.【答案】C【考点】几何体的外表积【解析】【解答】解:依据题意得:第一层显露的外表积为:1×1×6﹣1×1=5,第二层显露的外表积为:1×1×6×4﹣1×1×13=11,第三层显露的外表积为:1×1×6×9﹣1×1×37=17,所以白色局部的面积为:5+11+17=33.故答案为:C.【剖析】先区分求出每层显露的外表积,再求和即可。
分式及其运算一、基础过关练1.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个2.(2022·四川绵阳·中考二模)下列分式属于最简分式的是( ) A .265xyxB .x y y x--C .22x y x y++D .2293x y x y-+3.(2022·广东·中考三模)若分式55m m --的值为零,则m =( ) A .5-B .5C .5±D .04.(2022·山西·中考真题)化简21639a a ---的结果是( ) A .13a + B .3a - C .3a + D .13a -5.(2022·辽宁丹东·中考真题)在函数y x 的取值范围是( ) A .x ≥3B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠06.(2022·山东威海·中考真题)试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .aa b- B .a ba- C .a a b+ D .224aa b -7.(2022·湖北襄阳·中考真题)化简分式:ma mba b a b+++=_____. 8.(2022·贵州黔西·中考二模)已知23x y =,则x y y+=______. 9.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________.10.(2022·湖南娄底·中考模拟)函数y =x 的取值范围是______. 11.(2022·内蒙古·包头市中考三模)2241244a a a a a -⎛⎫-÷= ⎪+++⎝⎭______________. 12.(2022·贵州遵义·模拟预测)已知a 为24a ≤≤范围的整数,则22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭的值是______.13.(2022·陕西·西安市中考三模)分式化简:221441111a a a a a a --+⎛⎫-+÷+⎪++⎝⎭.14.(2022·辽宁抚顺·中考模拟)先化简,再求值:222364(1)244a a a a a a -+--÷+++,其中112cos 45()2a -=+.15.(2022·湖南娄底·中考真题)先化简,再求值:3242244x x x x x ⎛⎫++÷ ⎪--+⎝⎭,其中x 是满足条件2x ≤的合适的非负整数.16.(2022·贵州·仁怀市中考二模)先化简分式2222112111a a a a a a a ⎛⎫+++-÷ ⎪---⎝⎭,再从-2,-1,14个数中选择一个合适的数作为a 的值代入求值.17.(2022·湖北恩施·中考二模)已知2021x =,2022y =,求222225454x xy y x y x yx xy x y x+++-÷+--的值.18.(2022·甘肃嘉峪关·中考三模)先化简,再求值:2222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b 满足0b =.19.(2022·黑龙江哈尔滨·中考真题)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.20.(2022·湖南·中考真题)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值.二、能力提升练21.(2022·黑龙江绥化·2x -在实数范围内有意义,则x 的取值范围是( ) A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠22.(2022·四川南充·中考真题)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .23.(2022·重庆·中考二模)阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效.将分式分离常数可类比假分数变形带分数的方法进行.如:()()21231223111a a a a a a a a a a a -+-+--+-+==+=---a ﹣121a +-,这样,分式就拆分成一个分式2a 1-与一个整式a ﹣1的和的形式,下列说法正确的有( )个.①若x 为整数,42x x ++为负整数,则x =﹣3;②6226182x x +≤+<9;③若分式25932x x x +-+拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:5m ﹣1116n +-(整式部分对应等于5m ﹣11,真分式部分对应等于16n -),则m 2+n 2+mn 的最小值为27. A .0B .1C .2D .324.(2022·浙江中考三模)若要使得分式211x -有意义,则x 的取值范围为_______.25.(2022·北京市中考一模)在函数0(4)y x =+-中,自变量x 的取值范围是___________. 26.(2022·四川成中考模拟)已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.27.(2022·四川达州·0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.28.(2022·湖北·广水市中考二模)对于实数0x >,规定()1=+xf x x ,例如()222213f ==+,111212312f ⎛⎫== ⎪⎝⎭+,那么计算1111(1)(2)(3)(2020)2020201920182f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+++++⋯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是______.29.(2022·北京朝阳·中考模拟)(1)计算:23(3)3x xx x--- (2)计算:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭ (3)先化简,再求值:已知ab =3,求222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭的值.答案与解析一、基础过关练1.(2022·湖南怀化·中考真题)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个2.(2022·四川绵阳·中考二模)下列分式属于最简分式的是( ) A .265xyxB .x y y x--C .22x y x y ++D .2293x y x y-+A .5-B .5C .5±D .0【答案】A【分析】根据分式的值为零的条件列式计算即可.【详解】解:由题意得:|m |−5=0且m −5≠0, 解得:m =−5, 故选:A .【点睛】本题考查的是分式的值为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.(2022·山西·中考真题)化简21639a a ---的结果是( ) A .13a + B .3a - C .3a + D .13a -A .x ≥3B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠0【答案】D【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组即可得到答案. 【详解】解:由题意得:x +3≥0且x ≠0, 解得:x ≥﹣3且x ≠0, 故选:D .【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.6.(2022·山东威海·中考真题)试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .aa b- B .a ba- C .a a b+ D .224aa b -7.(2022·湖北襄阳·中考真题)化简分式:ma mba ba b+++=_____. 8.(2022·贵州黔西·中考二模)已知3y =,则y=______. 【详解】解:9.(2022·江苏南通·中考真题)分式22x -有意义,则x 应满足的条件是___________.【答案】0x ≥且3x ≠##x ≠3且x ≥0【分析】根据二次根式中的被开方数是非负数与分母不能为0进行求解. 【详解】由题意知,0x ≥且30x -≠, 解得,0x ≥且3x ≠, 故答案为:0x ≥且3x ≠.【点睛】本题考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义,①当函数表达式是分式时,考虑分式的分母不能为0;②当函数表达式是二次根式时,被开方数非负. 11.(2022·内蒙古·包头市中考三模)2241244a a a a a -⎛⎫-÷= ⎪+++⎝⎭______________.12.(2022·贵州遵义·中考模拟)已知a 为24a ≤≤范围的整数,则22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭的值是______. 【答案】-113.(2022·陕西·西安市中考三模)分式化简:2214411 11a a aaa a--+⎛⎫-+÷+⎪++⎝⎭.14.(2022·辽宁抚顺·中考模拟)先化简,再求值:222364(1)244a a aa a a-+--÷+++,其中112cos45()2a-=+.分式化简求值的方法.15.(2022·湖南娄底·中考真题)先化简,再求值:3242244x x x x x ⎛⎫++÷ ⎪--+⎝⎭,其中x 是满足条件2x ≤的合适的非负整数. x16.(2022·贵州·仁怀市中考二模)先化简分式2222112111a a a aa a a ⎛⎫+++-÷ ⎪---⎝⎭,再从-2,-1,14个数中选择一个合适的数作为a 的值代入求值.17.(2022·湖北恩施·中考二模)已知2021x =,2022y =,求225454x xy y x y x yx xy x y x+++-÷+--的值.18.(2022·甘肃嘉峪关·中考三模)先化简,再求值:2222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b 满足0b =.19.(2022·黑龙江哈尔滨·中考真题)先化简,再求代数式21211x x x x ⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.20.(2022·湖南·中考真题)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值.二、能力提升练21.(2022·黑龙江绥化·2x -在实数范围内有意义,则x 的取值范围是( ) A .1x >- B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可; 【详解】解:由题意得:x +1≥0且x ≠0, ∴x ≥-1且x ≠0, 故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.22.(2022·四川南充·中考真题)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .23.(2022·重庆·中考二模)阅读材料:在处理分数和分式的问题时,有时由于分子大于分母,或分子的次数高于分母的次数,在实际运算时难度较大,这时,我们可将分数(分式)拆分成一个整数(整式)与一个真分数(真分式)的和(差)的形式,通过对它的简单分析来解决问题,我们称这种方法为分离常数法,此法在处理分式或整除问题时颇为有效.将分式分离常数可类比假分数变形带分数的方法进行.如:()()21231223111a a a a a a a a a a a -+-+--+-+==+=---a ﹣121a +-,这样,分式就拆分成一个分式2a 1-与一个整式a﹣1的和的形式,下列说法正确的有()个.①若x为整数,42xx++为负整数,则x=﹣3;②6226182xx+≤+<9;③若分式25932x xx+-+拆分成一个整式与一个真分式(分子为整数)的和(差)的形式为:5m﹣1116n+-(整式部分对应等于5m﹣11,真分式部分对应等于16n-),则m2+n2+mn的最小值为27.A.0B.1C.2D.3212x为负整数,3,x∴=-故①的结论正确;∵( 226182xx++=(x −1)2+27, ∵(x −1)2≥0,∴m 2+n 2+mn 有最小值为27, ∴③的结论正确, 故选:D .【点睛】本题主要考查了分式的加减法,整式的加减法,本题是阅读型题目,理解并熟练应用题干中的方法是解题的关键.24.(2022·浙江·中考三模)若要使得分式211x -有意义,则x 的取值范围为_______.【答案】x ≠±1【分析】根据分式有意义的条件即可求出答案. 【详解】解:由题意可知:|x 2-1|≠0, ∴x 2-1≠0, ∴x ≠±1, 故答案为:x ≠±1.【点睛】本题考查分式的有意义条件,解题的关键是熟练运用分式有意义的条件. 25.(2022·北京市中考一模)在函数0(4)y x =+-中,自变量x 的取值范围是___________. 【答案】3x >-且4x ≠【分析】根据二次根式有意义的条件、分母不为0、零指数幂的概念列出不等式,解不等式,得到答案. 【详解】解:由题意得,3040x x +>-≠,, 解得,3x >-且4x ≠, 故答案为:3x >-且4x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式有意义的条件、零指数幂的概念是解题的关键.26.(2022·四川成都·中考模拟预测)已知非零实数x ,y 满足1xy x =+,则3x y xy xy-+的值等于_________.27.(2022·四川达州·0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.【详解】解:a 111a S =+2221S a =+…,1001001S a =+100S ++=1故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得28.(2022·湖北·广水市中考二模)对于实数0x >,规定()1=+xf x x ,例如()222213f ==+,111212312f ⎛⎫== ⎪⎝⎭+,那么计算1111(1)(2)(3)(2020)2020201920182f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+++++⋯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是______.29.(2022·北京朝阳·中考模拟预测)(1)计算:23(3)3x xx x--- (2)计算:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭ (3)先化简,再求值:已知ab =3,求222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭的值.。
第十七节尺规作图【知识点梳理】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【课堂练习】一.选择题(共8小题)1.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF 【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE 是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=•BC•AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于12DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF 是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.15.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.16.如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).【考点】N3:作图—复杂作图;KX:三角形中位线定理.【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.【解答】解:如图,△ABC的一条中位线EF如图所示,方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.17.如图,已知△ABC,∠B=40°.(1)在图中,用尺规作出△ABC的内切圆O,并标出⊙O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求∠EFD的度数.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论.【解答】解:(1)如图1,⊙O即为所求.(2)如图2,连接OD,OE,∴OD⊥AB,OE⊥BC,∴∠ODB=∠OEB=90°,∵∠B=40°,∴∠DOE=140°,∴∠EFD=70°.18.在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:(1)在直线l上任取两点A、B;(2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;(3)作直线PQ.参考以上材料作图的方法,解决以下问题:(1)以上材料作图的依据是:(3)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【考点】N3:作图—复杂作图;MD:切线的判定.【分析】(1)根据线段垂直平分线的性质,可得答案;(2)根据线段垂直平分线的性质,切线的性质,可得答案.【解答】解:(1)以上材料作图的依据是:线段垂直平分线上的点到线段两端点的距离相等,故答案为:线段垂直平分线上的点到线段两端点的距离相等;(2)如图.19.“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.20.如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB为边的平行四边形;(2)在图2中,画出一个以AF为边的菱形.【考点】N3:作图—复杂作图;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,延长DC交AB的延长线于M,四边形AFDM是菱形.【解答】解:(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、DF,∠延长DC交AB的延长线于M,四边形AFDM是菱形.21.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【考点】N4:作图—应用与设计作图;KI:等腰三角形的判定;KK:等边三角形的性质;L6:平行四边形的判定.【分析】(1)根据等腰三角形的定义作图可得;(2)根据平行四边形的判定作图可得.【解答】解:(1)如图①、②所示,△ABC和△ABD即为所求;(2)如图③所示,▱ABCD即为所求.。
一、选择题1.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .52.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.33.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 4.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .1305.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( )A .B .C .D .6.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)7.如果√(2a −1)2=1−2a ,则a 的取值范围是( ) A .a <12 B .a ≤12 C .a >12 D .a ≥128.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°11.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A.3 B.23C.32D.612.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 13.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+14.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.15.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°16.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5 17.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.1818.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个19.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁20.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.532D.5321.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°22.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)23.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.624.下列四个实数中,比1-小的数是( ) A .2-B .0C .1D .225.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,026.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .427.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .28.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .29.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)30.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A.6 B.5 C.3 D.32【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.C4.A5.C6.A7.B8.B9.D10.D11.B12.C13.D14.B15.C16.C17.B18.C19.D20.D21.A22.D23.A24.A25.D26.B27.B28.C29.D30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.2.B解析:B【解析】【分析】【详解】ABC =D 故选B .3.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4.A解析:A 【解析】 【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=. 【详解】 解:AB//CD ,EFC 40∠=,BAF 40∠∴=, BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A . 【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.5.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.6.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.B解析:B 【解析】试题分析:根据二次根式的性质1可知:√(2a −1)2=|2a −1|=1−2a ,即2a −1≤0故答案为B.a ≤12.考点:二次根式的性质.8.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 12.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.13.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.14.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.15.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.16.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.17.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.18.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.19.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 20.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,在Rt△OAE中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.21.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.22.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.23.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.24.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.25.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.26.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.27.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.28.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.29.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
初三中考数学专项练习解二元一次方程组(含解析)一、单选题1.已知+|2x﹣3y﹣18|=0,则x﹣6y的立方根为()A.-3B.3C.±3D.2.m为正整数,已知二元一次方程组有整数解,则m2的值为()A.4B.49C.4或49D.1或493.若y=kx+b中,当x=﹣1时,y=1;当x=2时,y=﹣2,则k与b为()A.B.C.D.4.一元一次方程组的解的情形是()A.B.C.D.5.已知方程组与有相同的解,则a,b的值为()A.B.C.D.6.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=37.方程组的解是()A.B.C.D.8.用代入法解方程组先消去未知数最简便.()A.xB.yC.两个中的任何一个都一样 D.无法确定9.解方程组比较简便的方法为()A.代入法 B.加减法 C.换元法 D.三种方法都一样10.假如2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.﹣B.﹣C.D.﹣311.用加减法解方程组C中,消x用____法,消y用____法()A.加,加B.加,减C.减,加D.减,减12.已知a、b满足方程组则a-b的值是()A.-1B.0C.1D.213.二元一次方程组的解为()A.B.C.D.14.解方程组,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2二、填空题15.已知|2x+y+1|+(x+2y﹣7)2=0,则(x+y)2=________.16.当a=________ 时,方程组的解中,x与y的值到为相反数.17.方程组的解是________.三、运算题18.解下列方程组①②.19.解下列方程组(1)(2).20.解二元一次方程组.21.解方程:(1)(2)22.解下列方程组:四、解答题23.解下列方程组:①②.24.用合适的方法解方程组:.25.已知关系x、y的方程组的解为正数,且x的值小于y 的值.解那个方程组五、综合题26.解下列方程组(1)(2).27.已知关于的方程组,(1)若用代入法求解,可由①得:=________③,把③代入②解得=________,将其代入③解得=________,∴原方程组的解为________;(2)若此方程组的解互为相反数,求那个方程组的解及的值.答案解析部分一、单选题1.已知+|2x﹣3y﹣18|=0,则x﹣6y的立方根为()A.-3B.3C.±3D.【答案】B【考点】解二元一次方程组【解析】解:∵+|2x﹣3y﹣18|=0,∴,②﹣①×2得:y=﹣4,把y=﹣4代入①得:x=3,则x﹣6y=3+24=27的立方根为3,故选B【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x﹣6y的立方根.2.m为正整数,已知二元一次方程组有整数解,则m2的值为()A.4B.49C.4或49D.1或49【答案】A【考点】解二元一次方程组【解析】【解答】解方程组可得,∵方程组有整数解,∴m+3为10和15的公约数,且m为正整数,∴m+3=5,解得m=2,∴m2=4,故选A.【分析】先解方程组,由条件方程组的解为整数,再讨论即可求得m的值,进一步运算m2即可.3.若y=kx+b中,当x=﹣1时,y=1;当x=2时,y=﹣2,则k与b为()A.B.C.D.【答案】B【考点】解二元一次方程组【解析】【解答】解:依照题意得:,解得:k=﹣1,b= 0,故选B.【分析】解二元一次方程组即可得到结论.4.一元一次方程组的解的情形是()A.B.C.D.【答案】A【考点】解二元一次方程组【解析】【解答】解:,①﹣②得:5y=﹣5,即y=﹣1,把y=﹣1代入①得:x=5,则方程组的解为,故选A【分析】方程组利用加减消元法求出解即可.5.已知方程组与有相同的解,则a,b的值为()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:解方程组:它的解满足方程组,解得:解之得,代入,解得,故选D.【分析】因为方程组有相同的解,因此只需求出一组解代入另一组,即可求出未知数的值.6.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【答案】C【考点】解二元一次方程组【解析】【解答】解:由题意,得,解得.故选C.【分析】两个单项式的和为单项式,则这两个单项式是同类项再依照同类项的定义列出方程组,即可求出m、n的值.7.方程组的解是()A.B.C.D.【答案】A【考点】解二元一次方程组【解析】【解答】解:,①×2﹣②得:13x=26,解得:x=2,把x=2代入①得:y=﹣0.25,则方程组的解为,故选A【分析】方程组利用加减消元法求出解即可.8.用代入法解方程组先消去未知数最简便.()A.xB.yC.两个中的任何一个都一样 D.无法确定【答案】B【考点】解二元一次方程组【解析】【解答】解:用代入法解方程组先消去未知数y最简便.故选B.【分析】观看方程组第二个方程的特点发觉消去y最简便.9.解方程组比较简便的方法为()A.代入法 B.加减法 C.换元法 D.三种方法都一样【答案】B【考点】解二元一次方程组【解析】【解答】∵方程组中x的系数相等,∴用加减消元法比较简便.故选B.【分析】用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.假如系数相等,那么相减消元;假如系数互为相反数,那么相加消元.10.假如2x+3y﹣z=0,且x﹣2y+z=0,那么的值为()A.﹣B.﹣C.D.﹣3【答案】A【考点】解二元一次方程组【解析】【解答】解:,①×2+②×3得7x+z=0,即z=﹣7x,因此= =﹣.故选A.【分析】尽管原题中有三个未知数,然而可把2x+3y﹣z=0和x﹣2y+z=0组成方程组,把其中的z当成已知量,结果中得x、y全部用含有z的式子来表示,即可求出x:z的值.11.用加减法解方程组C中,消x用____法,消y用____法()A.加,加B.加,减C.减,加D.减,减【答案】C【考点】解二元一次方程组【解析】【解答】∵两方程中x的系数相等,y的系数互为相反数,∴消x用减法,消y用加法比较简单.故选C.【分析】观看方程组中两方程的特点,由于x的系数相等,y的系数互为相反数,故消x用减法,消y用加法.12.已知a、b满足方程组则a-b的值是()A.-1B.0C.1D.2【答案】A【考点】解二元一次方程组【解析】【分析】要求a-b的值,通过观看后可让两个方程相减得到.其中a的符号为正,因此应让第二个方程减去第一个方程即可解答.【解答】②-①得:a-b=-1.故选A.【点评】要想求得二元一次方程组里两个未知数的差,有两种方法:求得两个未知数,让其相减;观看后让两个方程式(或整理后的)直截了当相加或相减.13.二元一次方程组的解为()A.B.C.D.【答案】B【考点】解二元一次方程组【解析】解:①+②得:3x=6,解得:x=2,把x=2代入②得:2﹣y=3,解得:y=﹣1,即方程组的解是,故选B.【分析】①+②即可求出x,把x的值代入②即可求出y,即可得出方程组的解.14.解方程组,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2【答案】C【考点】解二元一次方程组【解析】【解答】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选C.【分析】观看两方程中y的系数符号相反,系数存在2倍关系,只需由①×2+②,即可消去y。
考前专练17一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的相反数是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .3412x x x =gB .623(6)(2)3x x x -÷-= C .23a a a -=-D .22(2)4x x -=-3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠=o ,30D ∠=o ,则AOC ∠的大小为( )A .60oB .70oC .80oD .120o4.下列说法正确的是( ) A .4的平方根是2 B .将点(23)--,向右平移5个单位长度到点(22)-, C .38是无理数D .点(23)--,关于x 轴的对称点是(23)-,5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( ) A .12B .22C .32D .336.某种商品零售价经过两次降价后的价格为降价前的81%, 则平均每次降价( ) A .10% B .19% C .9.5% D .20% 7.顺次连接等腰梯形四边中点所得四边形是( ) A .菱形 B .正方形 C .矩形 D .等腰梯形8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 39.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120o,AB的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ) A .2100cm π B .2400cm 3π C .2800cm πD .2800cm 3π二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上. 11.一方有难,八方支援.截至6月3日12时,中国因汶川大地震共接受国内外捐赠款物423.64亿元,用科学记数法表示为 元. 12.如图6,O e 中OA BC ⊥,25CDA ∠=o,则AOB ∠的度数为 .13.当m = 时,关于x 的分式方程213x mx +=--无解. 14.如图7,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x(单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m .15.如图8,张华同学在学校某建筑物的C点处测得旗杆顶部A点的仰角为30o,旗杆底部B点的俯角为45o.若旗杆底部B点到建筑物的水平距离9BE=米,旗杆台阶高1米,则旗杆顶点A离地面的高度为米(结果保留根号).16.如图9,在锐角AOB∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.三、解答题:17.(本小题满分7分)化简求值:222161816416x xx x x x⎛⎫-+÷⎪++--⎝⎭,其中21x=.18.(本小题满分6分)为了了解学生课业负担情况,某初中在本校随机抽取50名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的.并将抽查结果绘制成了一个不完整的频数分布直方图,如图10所示.(1)请补全频数分布直方图;(2)被调查50名学生每天完成课外作业时间的中位数在组(填时间范围);(3)若该校共有1200名学生,请估计该校大约有名学生每天完成课外作业时间在80分钟以上(包括80分钟).参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBDBAADCD二、填空题(每小题3分,共18分) 11.104.236410⨯ 12.50o13.6-14.1015.1033+16.66三、解答题 17.解:原式4(4)(4)44x x x x x x -⎛⎫=++-⎪+-⎝⎭g ··············································· (2分) 2(4)(4)x x x =-++ ················································································· (3分)22416x x =-+. ···················································································· (4分)当21x =+时,原式22(21)4(21)16=+-++ ······································· (5分)18=. ··································································································· (7分) 18.(1)如图1. ····················································································· (2分)(2)80-100. ························································································ (4分) (3)840 ································································································ (6分)。