初一数学绝对值例题
- 格式:doc
- 大小:43.00 KB
- 文档页数:4
初一数学绝对值经典例题初一数学的绝对值问题,可能很多同学一开始都觉得有点迷糊,感觉好像是个“虚无缥缈”的概念,听起来就是不太懂,做起来也糊里糊涂的。
但是,别急,今天我们就来好好聊聊这个“绝对值”,让大家能轻松搞定,保证你以后遇到这类题目,头都不会疼了!咱们就像在讲故事一样,把它从头到尾讲明白,绝对不让你有半点疑问。
绝对值到底是什么?简单来说,绝对值就是“数值的大小”,不管这个数是正数还是负数,它的绝对值永远都是正数。
比如说,数轴上的0就是“起点”,正数向右走,负数向左走。
那绝对值其实就像一个量尺,量的是距离,无论是向右还是向左,都是正的。
你看看,正3的绝对值是3,负3的绝对值也是3,咱们把它说的简单点,绝对值就是“数值本身的大小”,不管它是不是带有负号,都会把负号给去掉,变成正数。
明白了吧?这就是绝对值的秘密。
举个例子,你平时如果走路,也许有时候走得很远,走到负数位置了,哈哈,没错,就像走到某个地方特别远,可能是负数的意思,但不管你怎么走,最终你走的这段距离,都是一个正的长度。
比如说你离家出走,走了5步,最后的绝对值就是5,说明你离家的距离就是5步。
再看一个例子:假设有一个小朋友站在0点上,他往前走了4步,那么4的绝对值就是4。
假如他转个弯走回去了,走了4步,负号表示他是往回走的,但他到底走了多少步,还是4步。
所以4和4的绝对值一样,都是4!你看,这不就是很简单嘛。
这时候可能有人会问了:那如果我碰到一个像7这样的负数,绝对值不是应该还是7吗?哈哈,这就是个误会啦!负数的绝对值肯定是正数,7的绝对值就是7,不管它长得多么“凶猛”,都得变得温顺,像个小猫一样,变成正7才对!所以说,绝对值永远都不带负号,大家记住了没有?有个小窍门,帮助你记住绝对值:它就像是一个“魔术师”,它能让所有的负数都“变脸”,让它们看起来都像正数一样。
它的工作就是消除负号,保留数值的大小。
有同学可能会觉得,这些数的绝对值,怎么看都是比较简单的,可是要是碰到像“|x5|”这种看起来有点复杂的东西怎么办?哈哈,别怕!其实这就像是一个谜题,看看它前面是什么,弄清楚它的“心思”就行了。
初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。
2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2)一般地①正数大于0,0大于负数,正数大于负数。
②两个负数,绝对值大的反而小。
小试牛刀:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a,则a。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x<y<0,那么︱x︱︱y︱。
7.︱x-1︱=3,则x =。
8.若︱x+3︱+︱y-4︱=0,则x+y=。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x︱<л,则整数x=。
11.已知︱x︱-︱y︱=2,且y=-4,则x=。
12.已知︱x︱=2,︱y︱=3,则x+y=。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x+1︱的最小值是,这时,x值为。
15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。
绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值 简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。
绝对值的性质:(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0)(2) |a|= 0 (a=0) (代数意义)-a (a <0)(3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0;(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,且|a|≥-a ;(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)(6) |ab|=|a|·|b|;|b a |=||||b a (b ≠0); (7) |a|2=|a 2|=a 2;(8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|[例1](1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?分析:(1) 结合数轴画图分析。
绝对值大于2.1而小于4.2的整数有±3,±4,有4个(2) 答案C 不完善,选择D.在此注意复习巩固知识点3。
初一数学上册《绝对值》练习题及答案初一数学上册《绝对值》练习题及答案学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步,所以店铺为大家整理了一份绝对值练习题,供大家参考。
一、选择题1.(2007年嘉兴市)-3的绝对值是()(A)3(B)-3(C)13(D)-132.绝对值等于其相反数的数一定是A.负数B.正数C.负数或零D.正数或零3.若│x│+x=0,则x一定是()A.负数B.0C.非正数D.非负数二、填空题4.│3.14-|= .5.绝对值小于3的所有整数有.6.数轴上表示1和-3的两点之间的距离是;7.(2007年深圳市)若,则的值是()A.B.C.D.8.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的'克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15-10+30-20-40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?10.写出绝对值大于2.1而不大于5的所有整数_一个正数增大时,它的绝对值,一个负数增大时,它的绝对值.(填增大或减小)1.如果|a|=4,|b|=3,且a>b,求a,b的值.2.(1)对于式子|x|+13,当x等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.现已知:|a|+a=0,求a的取值范围.因为|a|+a=0,所以|a|与a互为相反数,所以|a|=-a,所以a的取值范围是a0.阅读以上解题过程,解答下题已知:|a-1|+(a-1)=0,求a的取值范围.以上就是给大家带来的绝对值练习题,大家还满意吗?希望对大家有所帮助,祝大家考试顺利。
【初一数学上册《绝对值》练习题及答案】。
初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。
掌握绝对值的概念和性质对于解决数学问题非常重要。
下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。
1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。
所以绝对值的结果总是非负数。
对于a) |-5|,-5与0之间的距离是5,所以结果是5。
对于b) |0|,0与0之间的距离是0,所以结果是0。
对于c) |3|,3与0之间的距离是3,所以结果是3。
2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。
因为5与-5的绝对值都是5。
对于b)|2x - 3| = 7,需要分情况讨论。
当2x - 3 = 7时,解得x = 5。
当2x - 3 = -7时,解得x = -2。
3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。
当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。
当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。
所以综合起来,-5 < x < 1。
对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。
当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。
典型例题一
例题 计算7.10)323(3122.16-⎥⎦
⎤⎢⎣⎡--+-+- 分析 利用绝对值的概念可以去掉式子中的绝对值符号,利用在“相反数”一节学到的知识,可以将3
23-化简,这样,就可以利用小学知识完成本题了. 解 7.10)323(312
2.16-⎥⎦⎤⎢⎣⎡--+-+- .
5.116
5.5)3
23312()7.102.16(7.103
233122.16=+=++-=-++= 说明 本题出现在读者尚未学习有理数的运算之时,式子又比较长,不知读者刚刚见到这个题目时,心中是否有畏难情绪产生.而前面的“分析”是寻找使问题发生转化的途径,经过转化,题目就变容易了.这种情形在数学中极为常见,要特别注意学习怎样对题目特点,使问题由复杂变简单,由不熟悉的变为熟悉的.。
绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ =3 ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
绝对值一.选择题(共16小题)1.相反数不不小于它自身旳数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数旳是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数旳一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不对旳旳是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数旳数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数旳一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣旳相反数是()A.﹣ B.C.±D .﹣8.﹣旳相反数是()A.B.﹣C .D .﹣9.下列各组数中,互为相反数旳是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴旳单位长度为1.如果点B,C表达旳数旳绝对值相等,那么点A表达旳数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所相应旳点,其中有一点是原点,并且MN=NP=PR=1.数a相应旳点在M与N之间,数b相应旳点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么如下判断对旳旳是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上旳位置如图所示,其相应旳数分别是a和b.对于如下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中对旳旳是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上旳位置如图所示,则下列各式中错误旳是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3旳绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|旳值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y旳值等于.19.﹣2旳绝对值是,﹣2旳相反数是.20.一种数旳绝对值是4,则这个数是.21.﹣旳绝对值是.22.如果x、y都是不为0旳有理数,则代数式旳最大值是.23.已知+=0,则旳值为.24.计算:|﹣5+3|旳成果是.25.已知|x|=3,则x旳值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们懂得,|m|=.目前我们可以用这一结论来化简具有绝对值旳代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|旳零点值).在实数范畴内,零点值m=﹣1和m=2可将全体实数提成不反复且不漏掉旳如下3种状况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分如下3种状况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决如下问题:(1)分别求出|x﹣5|和|x﹣4|旳零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|旳最小值.28.同窗们都懂得|5﹣(﹣2)|表达5与(﹣2)之差旳绝对值,也可理解为5与﹣2两数在数轴上所对旳两点之间旳距离,试摸索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件旳整数x,使得|x+5|+|x﹣2|=7成立旳整数是.(3)由以上摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|与否有最小值?如果有,写出最小值;如果没有,阐明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)旳值.30.求下列各数旳绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值旳知识回答问题:(1)探究:①数轴上表达5和2旳两点之间旳距离是;②数轴上表达﹣2和﹣6旳两点之间旳距离是;③数轴上表达﹣4和3旳两点之间旳距离是;(2)归纳:一般地,数轴上表达数m和数n旳两点之间旳距离等于|m﹣n|.(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表达数a旳点位于﹣4与3之间,求|a+4|+|a﹣3|旳值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|旳值最小,最小值是多少?请阐明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表达旳数分别为﹣3,0,1,点P为数轴上任意一点,其表达旳数为x.(1)如果点P到点A,点B旳距离相等,那么x=;(2)当x=时,点P到点A,点B旳距离之和是6;(3)若点P到点A,点B旳距离之和最小,则x旳取值范畴是;(4)在数轴上,点M ,N表达旳数分别为x1,x2,我们把x1,x2之差旳绝对值叫做点M,N之间旳距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度旳速度从点O沿着数轴旳负方向运动时,点E以每秒1个单位长度旳速度从点A沿着数轴旳负方向运动、点F 以每秒4个单位长度旳速度从点B沿着数轴旳负方向运动,且三个点同步出发,那么运动秒时,点P 到点E,点F旳距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表达有理数a、b,则A、B两点之间旳距离可以表达为|a﹣b|.根据阅读材料与你旳理解回答问题:(1)数轴上表达3与﹣2旳两点之间旳距离是.(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为.(3)代数式|x+8|可以表达数轴上有理数x与有理数所相应旳两点之间旳距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|旳最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a旳值.36.如图,数轴上旳三点A,B,C分别表达有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求旳值;(2)若b≠0,且,求旳值.参照答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21..22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|旳零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式旳最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范畴内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范畴内不成立)∴综上所述,符合条件旳整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)旳摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表达5和2旳两点之间旳距离是3,②数轴上表达﹣2和﹣6旳两点之间旳距离是4,③数轴上表达﹣4和3旳两点之间旳距离是7;(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表达数a旳点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间旳距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B旳距离之和是6,∴点P在点A旳左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B旳右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B旳距离之和最小,因此x旳取值范畴是﹣3≤x≤1;(4)设运动时间为t,点P表达旳数为﹣3t,点E表达旳数为﹣3﹣t,点F表达旳数为1﹣4t,∵点P到点E,点F旳距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为|x﹣7|,(3)代数式|x+8|可以表达数轴上有理数x与有理数﹣8所相应旳两点之间旳距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|旳最小值即|1007﹣(﹣1008)|=.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,由于a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,由于a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,由于a﹣b=﹣10<0,符题意;因此a+b=﹣6;④当a=﹣8,b=﹣2时,由于a﹣b=﹣6<0,符题意,因此a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一种0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
初一数学绝对值经典练习题绝对值经典练1、判断题:⑴、|-a|=|a|。
⑵、-|0|=0.⑶、|-3^2|=-3^2.⑷、-(-5)>-|-5|。
⑸、如果a=4,则|a|=4.⑹、如果|a|=4,则a可能是4或-4.⑺、任何一个有理数的绝对值都是非负数。
⑻、绝对值小于3的整数有-2,-1,0,1,2.⑼、-a不一定小于0,当a>0时,-a<0.⑽、如果|a|=|b|,那么a可能等于b或者等于-b。
⑾、绝对值等于本身的数是非负数。
⑿、只有1的倒数等于它本身。
⒀、若|-X|=5,则X可能是-5或5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数。
⒂、一个数的绝对值等于它的相反数,那么这个数一定是0.2、填空题:⑴、当a0.⑵、当a>0时,a>0.⑶、当a0.⑷、当a≠0时,|a|>0.⑸、当aa。
⑹、当a=0时,-a=a。
⑺、当a<0时,|a|=-a。
⑻、绝对值小于4的整数有-3,-2,-1,0,1,2,3.⑼、如果mn。
⑽、当k+3=0时,|k|=3.⑾、若a、b都是负数,且|a|>|b|,则a<b。
⑿、|m-2|=1,则m=3或1.⒀、若|x|=x,则x=0或1.⒁、倒数和绝对值都等于它本身的数是-1或1.⒂、有理数a、b在数轴上的位置如图所示,则|a|=3;|b|=2.⒃、-2/3的相反数是2/3,倒数是-3/2,绝对值是2/3.⒄、绝对值小于10的整数有19个,其中最小的一个是-9.⒅、一个数的绝对值的相反数是-0.04,这个数是0.04.⒆、若a、b互为相反数,则|a|=|b|。
⒇、若|a|=|b|,则a和b的关系为a=b或a=-b。
3、选择题:⑴、下列说法中,错误的是B。
绝对值等于5的数是-5或5.⑵、如果|a|=|b|,那么a与b之间的关系是C。
a与b互为相反数。
⑶、绝对值最小的有理数是C。
-1.4、计算下列各题:⑴、|-8|-|-5|=8-5=3⑵、(-3)+|-3|=-3+3=0⑶、|-9|×(+5)=45D、15÷|-3|=-55、填表a -a |a|1 -1 13 -3 357 57 571 -1 12 2 24 -4 41/12 -1/12 1/1212 12 120.1) 0.1 0.16、比较下列各组数的大小:⑴、-3< -2⑵、-0.5< |-2.5|⑶、-π< -3.14⑷、-0.2731< -|2|7、把下列各数用“‹”连接起来:⑴、5‹|-3|‹-3‹|-38)‹-[−(−8)];⑵、1‹-5‹-6;⑶、|-5|‹-6‹-(-5)‹-(-10)‹-|-10|;⑷(|∆|+|∆|)×(-O)=-10,求O、∆,其中O和∆表示整数。
一:若a的绝对值等于负a,则a一定是什么,为什么?A. 正数 B. 负数 C.非负数 D.非正数
a一定是非正数,
如果a为正数,如a=1,则绝对值为1,不等于-a,
如果a为0,则绝对值为0,等于-a,
如果a为负数,如a=-1,则绝对值为1,等于-a
所以选D
二:0是最小的有理数吗?不是,但是是绝对值最小的有理数。
有理数包括正有理数、负有理数和零。
所以没有最小的有理数。
三:有理数是否包括0?
有理数包括整数和分数,整数包括0,正整数和负整数,自然包括0。
四:非负有理数包括0.46吗?小数是有理数吗?为什么?
对的,小数不一定是有理数,因为无限不循环小数是无理数。
但分数一定是有理数。
例:5÷ 59=0.084745762711864406779661016949152540--84745762.......
循环节是84745762711864406779661016949152540
所以5÷59的值是一个无限循环小数,虽然循环节很长,但它的确是一个有理数。
0.46=23/50所以也是有理数
无理数不能表示成P/Q,P,Q都是整数而能表示成P/Q,P,Q都是整数的数一定是有理数
循环小数怎么化成分数呢?比如
0.12345345345...=0.12+0.345345345.../100
=12/100+345/999,然后通分。
如果是无理数,这个转化步骤根本无法进行。
因为没有循环节存在,而只要有循环节存在,一定可以化成分数的。
有理数:有限小数和无限循环小数统称为有理数
无理数:无限不循环小数
所有的分数都是有理数,就算你用分子除以分母,最终一定会循环的
五:任何数都不等于它的相反数?判断,说出理由。
认为错举出反例。
证明:设有一个数x与其相反数相等,x=-x,解得x=0,所以:"任何数都不等于它的相反数"是错误的
六:符号相反的数互为相反数,是对的还是错的?为什么?错,只有符号不同的两个数。
若两个实数a和b满足b=﹣a。
我们就说b是a的相反数。
在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称:正数的相反数是负数,负数的相反数是正数;0的相反数是0。
比如像-2和2这样,只有符号不同的两个数,绝对值相等叫做互为相反数。
七:什么是整数?
整数(Integer):像-2,-1,0,1,2这样的数称为整数。
(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。
整数的全体构成整数集,整数集合是一个数环。
在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。
正整数、零与负整数构成整数系。
一个给定的整数n可以是负数,非负数,零或正数。
八:什么是分数?
把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
表示这样的一份的数叫分数单位。
九:什么是自然数?
所有大于等于0的整数都是自然数
十:正数和负数有什么区别
正数:大于0的数,负数:小于0的数
十一:0是不是正数还是负数
实数分为三类:正数(大于0),负数(小于0)和零。
因此,0既不是正数也不是负数。
十二:在数轴上表示两个互为相反数的点到原点的距离关系是(相等)
/ /表示绝对值
a和-a为相反数
a到原点的距离=/a/
-a到原点的距离=/a/
十三:已知有理数a,b互为相反数,|x|=3求a+b+x+(-2)的值
∵a、b互为相反数|x|=3
∴a+b=0 x=±3
∴a+b+x-2=0+3-2=1
或a+b+x-2=0-3-2=-5
十四:如果a和b表示有理数,在什么条件下,a+b和a-b 互为相反数?
a+b和a-b互为相反数,即a+b+a-b=0,2a=0,
所以条件是:a=0
十五:若有理数a,b互为相反数,则它们一定异号,这句话对么?
若有理数a,b互为相反数,则a+b=0,a=-b
即它们一定异号
十六:绝对值小于4的所有整数的和
绝对值小于4的所有整数有-1 -2 -3,1 2 3
正数+负数正好等于零,所以这类题做出来都是0
十七:绝对值大于2且小于5的所有负整数的和是多少?
3,4,-3,-4绝对值大于2小于5.(-3)+(-4)= -7
十八:若绝对值a=3,绝对值b=2,则绝对值a+b=多少?
/a/=3,那么a=3或-3,/b/=2,那么b=2或-2
当a=3,b=2的时候,/a+b/=5
a=3,b=-2的时候,/a+b/=1
a=-3,b=2的时候,/a+b/=1
a=-3,b=-2的时候,/a+b/=5
也就是ab同号的时候,/a+b/=5
ab异号的时候,/a+b/=1
十九:|m-n|=n-m,m的绝对值等于4,n的绝对值等于3, 则m-n等于?
由|m-n|=n-m得,m<n,
m的绝对值等于4,n的绝对值等于3,则m=-4,n=3获4
m-n=-7或-8
二十:x+1的绝对值-6的最小值是多少,此时x^2009等于多少?
x+1的绝对值-6的最小值是-6,此时x=-1
x^2009=(-1)^2009=-1
二十一:已知a的绝对值=1,b的绝对值=2,c的绝对值=3,且a大于b大于c,求a+b+c的值。
∵a>b>c ,a最大为1 ∴b只能是-2 c<b,∴只能是-3 又∵-1>-2,∴a=1或-1 b=-2 c=-3
∴a+b+c=-6或-4
二十二:若1小于a小于3,求1-a的绝对值加3-a的绝对值的值。
因为a>1,所以|1-a| =a-1
因为a<3,所以|3-a|=3-a,所以|1-a|+|3-a|=a-1+3-a=2
二十三:已知有理数x,y,z,且x-3的绝对值+2 y+1的绝对值+7(2z+1)的2次方=0,求x+y+z的相反数的倒数。
因为答案是0,绝对值和2次方的结果都是≥0。
三个值加起来为0,则分别都为0.
由此得x=3,y=-0.5,z=-0.5。
x+y+z=2. 相反数为-2.倒数为-1/2。
7(2z+1)的2次方怎么算出的-0.5?
因为是7(2z+1)的2次方是≥0的,根据之前所说,每个部分都为0,所以前面的7可以省去,也就是(2z+1)²=0,那么2z+1=0,z=-1/2
十六:什么是实数?
实数包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”,意义是“实在的数”。
十七:什么叫科学记数法?
把一个大于10(或者小于1)的整数记为a×10^n的形式(其中1≤a<10),这种记数法叫做科学记数法.
任何数的0次方都等于1
当有了负整数指数幂的时候,小于1的正数也可以用科学计数法表示。
例如:0.00001=10的负5次方,即小于1的正数也可以用科学计数法表示为a乘10 的负n次方的形式,其中a是正整数数位只有一位的正数,n是正整数
用幂的形式,有时可以方便的表示日常生活中遇到的一些较大的数,如:光的速度大约是300 000 000米/秒;全世界人口数大约是:6 100 000 000
这样的大数,读、写都很不方便,考虑到10的幂有如下特点:
10的二次方=100,,10的四次方=10 000……。
一般的,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,。