人教版数学七年级上册期末复习:动点问题和绝对值问题压轴题
- 格式:docx
- 大小:195.79 KB
- 文档页数:19
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
人教版七年级上册数学期末动点问题压轴题训练1.已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.2.如图,已知数轴上的A点对应的数是a,点B对应的数是b,且满足()2510+-=+.||a b(1)求数轴上到点A、点B距离相等的点C对应的数;(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出的值;若不存在,请说明理由.3.已知M=(a+18)x3﹣6x2+12x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c,数轴上有一动点P从点A 出发,以每秒2个单位长度的速度沿数轴向终点C移动,设移动时间为t秒.(1)则a=___,b=___,c=___.(2)当点P运动到点B时,点Q从点O出发,以每秒6个单位长度的速度沿数轴在点O和点C之间往复运动,①求t为何值时,点Q第一次与点P重合?①当点P运动到点C时,点Q的运动停止,求此时点Q一共运动了多少个单位长度,并求出此时点Q在数轴上所表示的有理数.①设点P,Q所对应的数分别是m、n,当6<t<8时,|c﹣n|+|b﹣m|=8,求t的值.4.如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A、B的速度比为1:3(速度单位:每秒1个单位长度).(1)动点A的运动速度为每秒______ 个单位长度,动点B的运动速度为______个单位长度.(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从()2中标出的位置同时向数轴负方向运动,再经过多长时间,A、B两点相距4个单位?5.在如图的数轴上,一动点Q从原点O出发,沿数轴以每秒钟4个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度(1)求出2.5秒钟后动点Q所处的位置表示的数是_______;(2)求出5秒钟后动点Q所处的位置表示的数是_______;(3)数轴上有一个定点A与原点O相距10个单位长度,问:动点Q从原点出发,可能与点A 重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.6.已知:数轴上点A 、C 对应的数分别为a 、c ,且满足27(1)0a c ++-=,点B 对应的数为3-,(1)求数=a ______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P ,Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.7.已知:ABC 中,BC a =,AC b =,AB c =,a 是最小的合数,b 、c 满足等式:()2560b c -+-=,点P 是ABC 的边上一动点,点P 从点B 开始沿着ABC 的边按BA AC CB →→顺序顺时针移动一周,回到点B 后停止,移动的路径为S ,移动的速度为每秒3个单位长度.如图1所示.(1)试求出ABC 的周长;(2)当点P 移动到AC 边上时,化简:436445S S S -+-+-;(3)如图2所示,若点Q 是ABC 边上一动点,P 、Q 两点分别从B 、C 同时出发,即当点P 开始移动的时候,点Q 从点C 开始沿着ABC 的边顺时针移动,移动的速度为每秒5个单位,试问:当t 为何值时,P , Q 两点的路径(在三角形边上的距离)相差3?此时点P 在ABC 哪条边上?8.如图,数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,a ,c 满足()2380a c ++-=.(1)a =_____,b =_____,c =_____;(2)若动点P 、Q 分别从A 、B 同时出发,点P 以速度为3个单位长度/秒向右运动;点Q 以速度为1个单位长度/秒向左运动,求经过几秒后P 、Q 两点重合?(3)点A ,B ,C 在数轴上移动,点A 以每秒1个单位长度的速度向左移动,同时点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右移动.设t 秒后,点A ,B ,C 分别移动到点1A ,1B ,1C ,若点1A 与点1B 之间的距离表示为11A B ,点1B 与点1C 之间的距离表示为11B C ,试问311B C ﹣211A B 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求其值.9.如图,在长方形ABCD 中,AB =CD =10,AD =BC =6.动点P 从点A 出发,每秒1个单位长度的速度沿A →B 匀速运动,到B 点停止运动;同时点Q 从点C 出发,以每秒2个单位长度的速度沿C →B →A 匀速运动,到A 点停止运动.设P 点运动的时间为t 秒(t >0).(1)点P 在AB 上运动时,P A =______,PB =______,点Q 在AB 上运动时,BQ =______,QA =______(用含t 的代数式表示); (2)求当t 为何值时,AP =BQ ;(3)当P ,Q 两点在运动路线上相距3个单位长度时,请直接写出t 的值.10.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q①问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.11.已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且AB =12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)解决问题:①当t =1秒时,写出数轴上点B ,P 所表示的数;①若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与Q 相距3个单位长度? (2)探索问题:若M 为AQ 的中点,N 为BP 的中点.当点P 在P 、Q 上运动过程中,探索线段MN 与线段PQ 的数量关系(写出过程).12.已知数轴上三点A,O,B表示的数分别为8,0,4-,(1)动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,点P运动________秒追上点R,此时点P在数轴上表示的数是________.(2)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从B点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒时,点M、N两点间的距离为5个单位?-,2-,1,3.5及其所对应的点A,B,C,D;13.(1)在数轴上标出数: 4.5(2)A,D两点间的距离=;(3)若动点P、Q分别从B、C同时出发,沿数轴的负方向运动;设P、Q两点的运动时间为t秒,已知点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,问①t为何值时P,Q两点重合?①t为何值时P,Q两点之间的距离为1?14.已知数轴上,M表示-10,点N在点M的右边,且距M点40个单位长度.点P,点Q 是数轴上的动点.(1)直接写出点N所对应的数.(2)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发,以3个单位长度/秒向左运动,设点P,Q在数轴上的D点相遇,求点D表示的数.(3)若点P从点M出发,以5个单位长度/秒的速度向右运动,同时点Q从点N出发.以3个单位长度/秒向右运动,问经过多少秒时,P,Q两点相距8个单位长度?15.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8.请直接写出x的值.x=;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?16.如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动.3秒后,两点相距12个单位长度.已知动点A、B的速度比是1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点分别从(1)中标出的位置同时向数轴负方向运动,①问经过几秒钟,原点恰好处于两个动点的正中间;①再经过多长时间,OB=2OA?17.如图,已知点A ,B ,C 是数轴上三点,点C 对应的数为6,4BC =,12AB =.(1)求点A ,B 对应的数;(2)动点P ,Q 同时从A ,C 出发,分别以每秒6个单位和3个单位的速度沿数轴正方向运动,M 为AP 的中点,N 在CQ 上,且13CN CQ =,设运动时间为(0)t t >。
压轴题:动点问题以及绝对值问题总结一、填空题1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)数轴上表示3和5两点之间的距离是________,数轴上表示2和-5两点之间的距离是________.(2)在数轴上表示数x的点与﹣2的点距离是3,那么x=________.(3)如果x表示一个有理数,那么|x+4|+|x﹣2|的最小值是________.(4)如果x表示一个有理数,当x=________时,|x+3|+|x﹣6|=11.2.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=________,若|x﹣2|=|x+1|,则x=________;(2)若|x﹣2|+|x+1|=3,则x的取值范围是________;(3)若|x﹣2|+|x+1|=5,则x的值是________;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是________.二、综合题3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=________;B,C两点间距离=________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?4.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=________,BC=________;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.5.已知a是最大的负整数,与互为相反数,在数轴上,所对应的点分别为A,B,C,点P为该数轴上一动点,其对应的数为x.(1)a=________,b=________,c=________;(2)化简:;(3)三个点在数轴上运动,其中点A以每秒3个单位长度的速度向左运动,同时,点B与点C分别以每秒2个单位长度和5个单位长度的速度向右运动,试求几秒后B点到点A、点C的距离相等?6.已知A,B在数轴上对应的数分别用a,b表示,且|2b+20|+|a-0|=0,P是数轴上的一个动点,0为原点。
人教版七年级上册数学期末数轴动点问题压轴题1.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1) 设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2) 若点P,Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?2.阅读下列材料:根据绝对值的定义,∣x∣表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P,Q 表示的数为x1,x2时,点P与点Q之间的距离为PQ=∣x1−x2∣.根据上述材料,解决下列问题:如图,在数轴上,点A,B表示的数分别是−4,8(A,B两点的距离用AB表示),点M,N 是数轴上两个动点,分别表示数m,n.(1) AB=个单位长度;若点M在A,B之间,则∣m+4∣+∣m−8∣=;(2) 若∣m+4∣+∣m−8∣=20,求m的值;(3) 若点M、点N既满足∣m+4∣+n=6,也满足∣n−8∣+m=28,则m=;n=.3.已知M,N在数轴上,M对应的数是−3,点N在M的右边,且距M点4个单位长度,点P,Q是数轴上两个动点;(1) 直接写出点N所对应的数;(2) 当点P到点M,N的距离之和是5个单位时,点P所对应的数是多少?(3) 如果P,Q分别从点M,N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P,Q两点相距2个单位长度时,点P,Q 对应的数各是多少?4.点A,B在数轴上分别表示有理数a,b,在数轴上A,B两点之间的距离AB=∣a−b∣.如图,已知数轴上两点A,B对应的数分别为−1,3,点P为数轴上一动点,其对应的数为x.(1) A,B两点之间的距离是.(2) 设点P在数轴上表示的数为x,则x与−4之间的距离表示为.(3) 若点P到点A、点B的距离相等,求点P对应的数.(4) 数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,请说明理由.(5) 现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少.5.如图,在数轴上,点A,B表示的数分别是−4,8(A,B两点间的距离用AB表示),点M,N是数轴上两个动点,分别表示数m,n.(1) AB=个单位长度;若点M在A,B之间,则∣m+4∣+∣m−8∣=.(2) 若∣m+4∣+∣m−8∣=20,求m的值.6.已知数轴上A,B,C三个点表示的数分别是a,b,c,且满足∣a+24∣+∣b+10∣+(c−10)2=0;动点P从点A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t s.(1) 求a,b,c的值.(2) 若点P到点A的距离是点P到点B的距离的2倍,求点P表示的数.(3) 当点P运动到点B时,点Q从点A出发,以每秒3个单位长度的速度向点C运动,点Q到达点C后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P,Q两点之间的距离为2?请说明理由.7.如图,在一条不完整的数轴上,一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1) 若点A表示的数为0,求点B、点C表示的数;(2) 如果点A,C表示的数互为相反数,求点B表示的数;(3) 在(1)的条件下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两支小虫在数轴上的点D处相遇,则点D表示的数是什么?8.已知数轴上A,B两点表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P到点A,点B的距离相等,求点P表示的数;(2) 数轴上是否存在点P,使点P到点A,点B的距离之和为5?若存在,直接写出x的值;若不存在,说明理由.9.已知A,B两点在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,已知数轴上A,B两点对应的数分别为−1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与−4表示的点之间的距离表示为.若点P到A,B两点的距离相等,则点P对应的数为.若点P到A,B两点的距离之和为8,则点P对应的数为.现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?10.已知数轴上两点A,B对应的数分别为−1,3,点P为数轴上一动点.(1) 若点P到点A、点B的距离相等,写出点P对应的数;(2) 若点P到点A,B的距离之和为6,那么点P对应的数;(3) 点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时P点以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立刻以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?11.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.12.如图,已知数轴上有A,B两点(点A在点B的左侧),且两点距离为6个单位长度.动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1) 图中如果点A,B表示的数是互为相反数,那么点P表示的数是.(2) 当t=2秒时,点A与点P之间的距离是个长度单位.(3) 当点A为原点时,点P表示的数是.(用含t的代数式表示)(4) 求当t为何值时,点P到点A的距离是点P到点B的距离的2倍.13.已知A,B在数轴上对应的数分别用a,b表示,且(12ab+10)2+∣a−2∣=0,点P是数轴上的一个动点.(1) 求出A,B之间的距离.(2) 若P到点A和点B的距离相等,求出此时点P所对应的数.(3) 数轴上一点C距A点3√6个单位长度,其对应的数c满足∣ac∣=−ac.当P点满足PB=2PC时,求P点对应的数.14.如图,数轴上点A,B表示的有理数分别为−6,3,点P是射线AB上一个动点(不与点A,B重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1) 若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为;(2) 点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.15.已知A,B两点在同一条数轴上运动,点A从原点出发向数轴负方向运动,同时点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A,B的速度比为1:3.(1) 问点A,B每秒分别运动多少个单位长度?(2) 画出数轴并在数轴上标出A,B两点从原点出发运动2秒时的位置.(3) 若原点记为O,A,B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,满足OB=2OA?16.如图,线段AB上有三个点C,D,E,AB=18,AC=2BC,D,E为动点(点D在点E的左侧),并且始终保持DE=8.(1) 当E为BC的中点时,求AD的长;(2) 若点D从点A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位长度,经过t秒后,在AD,BE两条线段中,其中一条的长度恰好是另一条的两倍,求t的值.17.如图,已知数轴上两点A,B表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P为AB的中点,则点P表示的数为;(2) 若点P在原点的右侧,且到点A,B的距离之和为8,则x的值为.(3) 某时刻点A,B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时沿数轴向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当运动到点A,B之间的距离为3个单位长度时,求此时点P表示的数.18.已知数轴上A,B两点表示的数分别为−1,3,点P为数轴上一动点,其表示的数为x.(1) 若点P到点A,点B的距离相等,求点P表示的数;(2) 数轴上是否存在点P,使点P到点A,点B的距离之和为5?若存在,直接写出x的值;若不存在,说明理由.19.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动.(1) A,B两点的距离为;Q点出发3秒后所到的点表示的数为.(2) 当点Q从点A出发几秒钟时,能追上点P?(3) 当点Q从点A出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.20.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1) 则a=,b=.(2) 当P点运动到数2的位置时.Q点对应的数是多少?(3) 是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.答案1. 【答案】(1) −4;6−5t(2) ①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a−5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】(1) 6−10=−4;t秒后,P点表示的数为6−5t.2. 【答案】(1) 12;12(2) 由(1)知,点M在A,B之间时,∣m+4∣+∣m−8∣=12,不符合题意;当点M在点A左边,即m<−4时,−m−4−m+8=20,解得m=−8;当点M在点B右边,即m>8时,m+4+m−8=20,解得m=12.综上所述,m的值为−8或12.(3) 11;−9【解析】(1) ∵点A,B表示的数分别是−4,8,∴AB=∣8−(−4)∣=12,∵点M在A,B之间,∴∣m+4∣+∣m−8∣=AM+BM=AB=12.(3) ∵∣m+4∣+n=6,∴∣m+4∣=6−n≥0,∴n≤6,∴∣n−8∣=8−n,∴8−n+m=28,∴n=m−20,∵∣m+4∣+n=6,∴∣m+4∣+m−20=6,即∣m+4∣+m−26=0,当m+4≥0,即m≥−4时,m+4+m−26=0,解得:m=11,此时n=−9;当m+4<0,即m<−4时,−m−4+m−26=0,此时m的值不存在.综上,m=11,n=−9.3. 【答案】(1) 1.(2) (5−4)÷2=0.5,① −3−0.5=−3.5,② 1+0.5=1.5.故点P所对应的数是−3.5或1.5.(3) ①(4+2×5−2)÷(3−2)=12÷1=12(秒),点P对应的数是−3−5×2−12×2=−37,点Q对应的数是−37+2=−35;②(4+2×5+2)÷(3−2)=16÷1=16(秒);点P对应的数是−3−5×2−16×2=−45,点Q对应的数是−45−2=−47.【解析】(1) −3+4=1.故点N所对应的数是1.4. 【答案】(1) 4(2) ∣x+4∣(3) (−1+3)÷2=1.故点P对应的数是1.(4) 存在.点P在点A的左边时,x的值是−1−(8−4)÷2=−3;点P在点B的右边时,x的值是3+(8−4)÷2=5.故x的值是−3或5.(5) 点A在点B的左边时,(4−3)÷(2−0.5)×2+(−1)=13,点A所对应的数是13;点A在点B的右边时,(4+3)÷(2−0.5)×2+(−1)=813,点A所对应的数是813,故点A所对应的数是13或813.5. 【答案】(1) 12;12(2) 当m<−4时,−m−4−m+8=20,解得m=−8;当m>8时,m+4+m−8=20,解得m=12;当−4≤m≤8时,不合题意.综上所述,m的值为−8或12.【解析】(1) 因为点A,B表示的数分别是−4,8,所以AB=8−(−4)=12,因为点M在A,B之间,所以∣m+4∣+∣m−8∣=AM+BM=AB=12.6. 【答案】(1) a,b,c分别为−24,−10和10.(2) 4或−443(3) 经过6s,8s,13s或14s都满足,理由略.7. 【答案】(1) 若点A表示的数为0,因为0−4=−4,所以点B表示的数为−4.因为−4+7=3,所以点C表示的数为3.(2) 若点A,C表示的数互为相反数,因为AC=7−4=3,所以原点距离点A,C各1.5个单位长度,结合数轴可得点A表示的数为−1.5.因为−1.5−4=−5.5,所以点B表示的数为−5.5.(3) 7÷(0.5+0.2)=10(秒),故小虫P与小虫Q出发10秒后相遇,则点D表示的数是3−0.2×10=1.8. 【答案】(1) 1.(2) 3.5或−1.5.9. 【答案】4;∣x+4∣;1;−3或5,若点A在点B的左边,则(4−3)÷(2−0.5)×2+(−1)=13所以点A所对应的数是1;3若点A在点B的右边,则(4+3)÷(2−0.5)×2+(−1)=81,3所以点A所对应的数是81.3综上,点A所对应的数是13或813.【解析】由题意,得A,B两点之间的距离是3−(−1)=4;点P与−4表示的点之间的距离表示为∣x−(−4)∣=∣x+4∣.又(−1+3)÷2=1,所以点P对应的数是1.若点P在点A 的左边,则x的值是−1−(8−4)÷2=−3;若点P在点B的右边,则x的值是3+ (8−4)÷2=5.综上,点P对应的数为−3或5.10. 【答案】(1) 1(2) −2或4(3) 设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4,∴6x=24.答:点P所经过的总路程是24个单位长度.【解析】(1) ∵1−(−1)=2,2的绝对值是2,1−3=−2,−2的绝对值是2,∴点P对应的数是1.(2) 当P在AB之间,PA+PB=4(不可能有),当P在A的左侧,PA+PB=−1−x+3−x=6,得x=−2;当P在B的右侧,PA+PB=x−(−1)+x−3=6,得x=4.故点P对应的数为−2或4.11. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P 到 B 点时,Q 从 A 出发,Q 点速度为每秒 3 个单位长度,3 秒运动距离为 3×3=9,−26+9=−17,∴Q 点出发 3 秒后所到的点表示为 −17,3 秒钟 P 点运动距离为 3×1=3,又 −10+3=−7,PQ 两点距离为 −7−(−17)=10,∴Q 点出发 3 秒后所到点表示数为 −17,此时 P ,Q 两点的距离为 10.12. 【答案】(1) −3+2t(2) 4(3) 2t(4) 2 或 6.【解析】(1) 当 A ,B 互为相反数,A =−3,B =3,故 P =−3+2t .故答案为:−3+2t .(2) 当运动 2 s ,P 运动了 4 个单位,故距起点 4 个单位.故答案为:4.(3) 当 A 为原点,即 A =0,故 P =0+2t =2t .故答案为:2t .(4) 当 P 在 AB 之间,则 AB =3PB ,PB =2,PA =4,故 t =42=2 s ,当 P 在 B 的右侧时, PA =2PB ,BA =PB ,故 PA =12,故 t =122=6.13. 【答案】(1) ∵(12ab +10)2≥0,∣a −2∣≥0, 又 (12ab +10)2+∣a −2∣=0,∴{12ab +10=0,a −2=0,∴{a =2,b =−10,∴A 点代表的数为 2,B 点对应的数为 −10,∴AB 的距离 =2−(−10)=12.(2) ∵P 到 A ,B 的距离相等.∴P 为 AB 中点,∴P 点对应的数为:2+(−10)2=−4.(3) ∵c距离A3√6个单位长度,∴c代表的数为:2±3√6,又∵∣ac∣=−ac,∴ac<0,即a⋅c异号,∴c对应的数为:2−3√6,设P点对应的数为m,则PB=∣m−(−10)∣=∣m+10∣,PC=∣∣m−(2−3√6)∣∣=∣∣m−2+3√6∣∣,∵PB=2PC,∴∣m+10∣=2∣∣m−2+3√6∣∣,①当点P在c点右侧时,即m>2−3√6时,∣(m+10)∣=m+10,∣∣m−2+3√6∣∣=m−2+3√6,∴m+10=2(m−2+3√6),m=14−6√6(满足题意).②当点P在c点左侧,B点右侧时,即−10<m<2−3√6时∣m+10∣=m+10,∣∣m−2+3√6∣∣=−m+2−3√6,∴m+10=2(−m+2−3√6),m=−2−2√6(满足题意).③当点P在B点左侧时,即m<−10时,∣m+10∣=−m−10,∣∣m−2+3√6∣∣=−m+2−3√6,∣∣m−2+3√6∣∣=m−2+3√6,∴−(m+10)=(−m+2−3√6)×2,m=14−6√6(舍去).∴综上P点对应的数为:14−6√6或−2−2√6.14. 【答案】(1) 6;6(2) MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>−6且a≠3)当−6<a<3时,如图,AP=a+6,BP=3−a,因为M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点,所以MP=23AP=23(a+6),NP=23BP=23(3−a),所以MN=MP+NP=6;当a>3时,如图,AP=a+6,BP=a−3,因为M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.所以MP=23AP=23(a+6),NP=23BP=23(a−3),所以MN=MP−NP=6.综上所述,点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.15. 【答案】(1) 设点A每秒运动x个单位长度,则点B每秒运动3x单位个长度.根据题意,得2(x+3x)=16.解得x=2.所以3x=3×2=6.所以点A,B每秒分别运动2个单位长度、6个单位长度.(2) A,B两点从原点出发运动2秒时的位置如图所示.(3) 设再经过t秒,OB=2OA.分两种情况:当点B在点O的右边时,根据题意,得12−6t=2(4+2t),解得t=0.4,当点B在点O的左边时,根据题意,得6t−12=2(4+2t.),解得t=10,综上,再经过0.4秒或10秒,满足OB=2OA.16. 【答案】(1) 因为AB=AC+BC=18,AC=2BC,所以AC=23AB=12,BC=13AB=6.因为E为BC的中点,所以BE=12BC=3.因为DE=8.所以AD=AB−BE−DE=18−3−8=7.(2) 根据题意,得AD=2t,BE=AB−AD−DE=10−2t,其中0<t<5.当BE=2AD时,10−2t=4t.解得t=53;当AD=2BE时,2t=2(10−2t).解得t=103.综上,t的值为53或103.17. 【答案】(1) 1(2) 5(3) 设运动的时间为t秒,则此时点A,B,P表示的数分别为−1+2t,3+0.5t,1−6t,分以下两种情况:①当点A在点B的左边时,根据题意,得(3+0.5t)−(−1+2t)=3,解得t=23,所以1−6t=1−6×23=−3.②当点A在点B的右边时,根据题意,得(−1+2t)−(3+0.5t)=3,解得t=14,3=−27.所以1−6t=1−6×143综上,此时点P表示的数为−3或−27.18. 【答案】(1) 1(2) 3.5或−1.519. 【答案】(1) 16;−17(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2=8秒,个单位/秒,162∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所的点表示为−17,A,B两点在数轴上表示的数分别为−26,−10,则A,B两点之间的距离为∣−26+10∣=16.20. 【答案】(1) −4;8(2) [2−(−4)]÷2=3(秒),14−1×3=11,故Q点对应的数是11.(3) P在C点的左边,则18−2t=t,解得t=6;P在C点的右边,则2t−18=t,解得t=18.综上所述,t的值为6或18.【解析】(1) ∵c=14,BC=6,∴b=14−6=8,∴AC=18,∴a=14−18=−4.。
人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
七年级数学上册压轴题精选一.数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为a —b ;向右运动b 个单位后所表示的数为a+b 。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
2.若数轴上点A 表示的数为x ,点B 表示的数为1-,则A 与B 两点之间的距离用式子可以表示为_____________,若在数轴上点A 在点B 的右边,则式子可以化简为_____________。
3.A 点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t ,则A 点运动的路程可以用式子表示为______________。
4.若数轴上点A 表示的数为1-,A 点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t ,则A 点运动t 秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3; 2、1x +,x+1; 3、2t ; 4、12t -+二、例题精讲:1、如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ,B 点在原点的右侧,所表示的数是b ,并且a 、b 满足2a 16(b )0++8=-(1)点A 表示的数为 _________,点B 表示的数为________。
(2)若点P 从点A 出发沿数轴向右运动,速度为每秒3个单位长度,点Q 从点B 出发沿数轴向左运动,速度为每秒1个单位长度,P 、Q 两点同时运动,并且在点C 处相遇,试求点C 所表示的数。
2023-2024学年人教版数学七年级上册期末动点问题压轴题专项训练(五)1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 .2.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧有点P,使点P到点A、点B的距离之和为8。
请直接写出x的值。
x= 。
(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动。
当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?3.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由.(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?4.如图,在长方形ABCD中,点E是AB边上一个定点,点P是BC边上一个动点,连结EP,将△BEP 沿EP折叠至△B'EP.(1)若∠AEB '比∠BEP 大15°,求∠AEP 的大小.(2)连结PD ,若PD ⊥PE ,请判断∠B 'PD 和∠CPD 的大小关系,并说明理由.5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且|2b+20|+|a-20|=0,P 是数轴上的一个动点,0为原点。
(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离。
人教版七上期末复习数轴类动点压轴题1.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.2.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.3.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.5.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1 (1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)动点P从点A出发,沿数轴正方向运动,M为线段AP的中点,N为线段PB的中点.在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.6.如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为﹣10.点B表示的数为6,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)7.【新知理解】如图①,点C在线段AB上,图中有三条线段AB、AC和BC.若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”);【问题解决】(2)如图②,点A和B在数轴上表示的数分别是﹣20和40,点C是线段AB的巧点,求点C在数轴上表示的数.【应用拓展】(3)在(2)的条件下,动点P从点A发,以每秒2个单位的速度沿AB向点B匀速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达终点时,两个点运动同时停止.当A、P、Q三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间t(s)的所有可能取值.8.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=,b=,c=;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,此时,A与B两点间的距离为个单位长度;(3)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示即可);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A 与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.10.已知数轴上两点A、B对应的数分别为a和b,且满足|a+4|+(b﹣3)2=0,点M为数轴上一动点,请回答下列问题:(1)请直接写出a、b的值,并画出图形;(2)点M为数轴上一动点,点A、B不动,问线段BM与AM的差即BM﹣AM的值是否一定发生变化?请回答.(3)设点A以每秒x个单位向左运动,点M从表示y数的点以每秒x个单位向左运动,点B以每秒y个单位向右运动t秒后①A、B、M三点分别表示什么数(用x、y、t表示);②线段BM与AM的差即BM﹣AM的值是否一定发生变化?请回答,并说明理由.参考答案1.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.2.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.3.解:(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.故答案是:﹣1;1;5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,则:|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(1﹣x)+2(x+5)=x+1﹣1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0.∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)=x+1﹣x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,∴BC﹣AB=(3t+4)﹣(3t+2)=2,即BC﹣AB值的不随着时间t的变化而改变.(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B之间的距离每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C之间的距离每秒钟增加3个单位长度.又∵BC﹣AB=2,∴BC﹣AB的值不随着时间t的变化而改变.4.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.5.解:(1)设OA=2x,则OB=x,由题意得,2x+x=15,解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为﹣10、5,故答案为:﹣10;5;(2)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15﹣1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=,答:2或秒后A、B相距1个单位长度;(3)在点P运动的过程中,线段MN的长度不发生变化,分两种情况:①当P在点B的左侧时,如图1,∵M为线段AP的中点,N为线段PB的中点,∴PM=AP,PN=PB,∴MN=PM+PN=AP+PB=AB=;②当P在点B的右侧时,如图2,同理得:PM=AP,PN=PB,∴MN=PM﹣PN=AP﹣PB=AB=;综上,在点P运动的过程中,线段MN的长度不发生变化,AB=.6.解:(1)因为点A表示的数为﹣10.点B表示的数为6,所以AB=6﹣(﹣10)=16.因为点C是AB的中点,所以AC=BC=AB=8所以点C表示的数为﹣10+8=﹣2故答案为:﹣2;(2)①设t秒后点O恰好是PQ的中点.由题意,得10﹣2t=6﹣t解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=8﹣2t,QC=8﹣t,所以8﹣2t=2(8﹣t)或8﹣t=2(8﹣2t)解得t=;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC∵PC=2t﹣8,PQ=16﹣3t∴2t﹣8=2(16﹣3t)或16﹣3t=2(2t﹣8)解得t=5或t=;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ∵PQ=3t﹣16,QC=8﹣t∴3t﹣16=2(8﹣t)或8﹣t=2(3t﹣16)解得t=或t=.综上,t=,5,,,秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.7.解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40﹣x,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC时,有60=2(x+20),解得,x=10;②当BC=2AC时,有40﹣x=2(x+20),解得,x=0;③当AC=2BC时,有x+20=2(40﹣x),解得,x=20.综上,C点表示的数为10或0或20;(3)由题意得,AP=2t,AQ=60﹣4t,PQ=,i)若0≤t≤10时,点P为AQ的“巧点”,有①当AQ=2AP时,60﹣4t=2×2t,解得,t=;②当PQ=2AP时,60﹣6t=2×2t,解得,t=6;③当AP=2PQ时,2t=2(60﹣6t),解得,t=;ii)若10<t≤15时,点Q为AP的“巧点”,有①当AP=2AQ时,2t=2×(60﹣4t),解得,t=12;②当PQ=2AQ时,6t﹣60=2×(60﹣4t),解得,t=;③当AQ=2PQ时,60﹣4t=2(6t﹣60),解得,t=.综上,所求运动时间t(s)的所有可能取值为,6,,12,,.8.解:(1)∵b是最小的正整数,∴b=1.∵(c﹣5)2+|a+b|=0,∴,∴a=﹣1,b=1,c=5.故答案为:a=﹣1,b=1,c=5;(2)AB=1﹣(﹣1)=2,故AB的长为2个单位;(3)①由题意,得t秒钟过后A点表示的数为:﹣1﹣t,C点表示的数为:5+3t,∴AC=5+3t﹣(﹣1﹣t)=6+4t;故答案为:6+4t;②由题意,得BC=4+2t,AB=2+2t,∴BC﹣AB=4+2t﹣(2+2t)=2.∴BC﹣AB的值是不随着时间t的变化而改变,其值为2.9.解:(1)∵b是最小的正整数,∴b=1,∵(c﹣6)2+|a+b|=0,(c﹣6)2≥0,|a+b|≥0,∴c=6,a=﹣1,b=1,故答案为﹣1,1,6.(2)由题意﹣1<x<1,∴|x+1|﹣|x﹣1|﹣2|x+5|=x+1+x﹣1﹣2x﹣10=﹣10.(3)不变,由题意BC=5+5nt﹣2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC﹣AB=(5+3nt)﹣(2+3nt)=3,∴BC﹣AB的值不变,BC﹣AB=3.10.解:(1)如图1,由题意得:a+4=0,b﹣3=0,则a=﹣4,b=3;(2)线段BM与AM的差即BM﹣AM的值发生变化,理由是:设点M对应的数为c,由BM=|c﹣b|,AM=|c﹣a|,则分三种情况:①当点M在点B的右侧时,如图2,BM﹣AM=c﹣b﹣c+a=a﹣b=﹣4﹣3=﹣7,②当点M在点A与B之间时,BM﹣AM=b﹣c﹣c+a=a+b﹣2c=﹣4+3﹣2c=﹣1﹣2c,③当点M在点A的左侧时,BM﹣AM=b﹣c﹣a+c=b﹣a=3+4=7,(3)①点A表示的数为:﹣4﹣tx;点B表示的数为:3+yt;点M表示的数为:y﹣tx;②线段BM与AM的差即BM﹣AM的值一定发生变化,理由是:∵y>0,∴M不能在A的左侧,所以分二种情况:i)当点M在点B的右侧时,如图2,BM﹣AM=﹣AB=﹣(3+yt+4+tx)=﹣7﹣yt﹣tx,ii)当点M在点A与B之间时,如图3,BM﹣AM=3+yt﹣y+tx﹣(y﹣tx+4+tx)=﹣1﹣2y+tx+yt,。
人教版七年级上册数学期末动点问题压轴题训练1.在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为4,点C到点B的距离为9,如图所示,设点A、B、C所对应的数的和是m.(1)若以A为原点,则m=___________;若以B为原点,则m=___________.(2)若原点O在图中数轴上,且点B到原点O的距离为6,求m的值.(3)动点M从点A出发,以每秒2个单位长度的速度向终点C移动,动点N从点B出发,以每秒1个单位长度的速度向终点C移动,t秒后M,N两点间距离是2,则t=___________秒(直接写出答案).b≥时,将点A向右移动2个单2.在数轴上有A,B两点,点B表示的数为b.对点A给出如下定义:当0位长度,得到点P;当0b<时,将点A向左移动b个单位长度,得到点P.称点P为点A关于点B的“联动点”.如图,点A表示的数为1-.b=时,点A关于点B的“联动点”P;(1)在图中画出当4(2)点A从数轴上表示1-的位置出发,以每秒1个单位的速度向右运动,点B从数轴上表示7的位置同时出发,以相同的速度向左运动,两个点运动的时间为t秒.①点B表示的数为___________(用含t的式子表示);②是否存在t,使得此时点A关于点B的“联动点”P恰好与原点重合?若存在,请求出t的值;若不存在,请说明理由.3.如图,已知线段24AB=,动点P从A出发,以每秒2个单位的速度沿射线AB方向运动,运动时间为t t>),点M为AP的中点.秒(0(1)若点P 在线段AB 上运动,当t 为多少时,PB AM ?(2)若点P 在射线AB 上运动,N 为线段PB 上的一点.①当N 为PB 的中点时,求线段MN 的长度;②当2PN NB 时,是否存在这样的t ,使M ,N ,P 三点中的一个点是以其余两点为端点的线段的中点?如果存在,请求出t 的值;如不存在,请说明理由.4.已知150a b ++-=,点A 、B 在数轴上对应的数分别是a 、b ;(1)求a 、b 的值,并在数轴上标出点A 和点B ;(2)若动点P 从点A 出发沿数轴正方向运动,点P 的速度是每秒1个单位长度,求几秒后点P 与点B 的距离是3个单位长度;(3)在(2)的条件下,动点Q 以每秒2个单位长度的速度,从点B 出发向数轴正方向运动,求几秒后点P 与点Q 的距离等于3个单位长度.5.点A 、B 在数轴上的位置如图所示,P 是数轴上的一个动点.(1)当P 、B 两点之间的距离为1时,则点P 表示的数为__________;(2)当点P 将A 、B 两点之间的距离三等分时,则点P 表示的数为__________;(3)现在点A 以每秒2个单位长度、点B 以每秒1个单位长度的速度同时向右运动,同时点P 以每秒4个单位长度的速度从表示数1的点向左运动,当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?6.已知数轴上有A、B、C三个点对应的数分别是a,b,c,且2++++-=,点O为原点.a b c|24||10|(10)0a____________;=b____________;=c____________;(1)请写出=(2)以AB为长,BO为宽,作出长方形EFGH,其中G与A重合,H与B重合(如图所示),将这个长方形总绕着右边的端点在数轴上不断滚动(无滑动),求出E点第3次落在数轴上对应的数字;(3)将(2)中的长方形EFGH,G与A重合,H与B重合时开始计时,该长方形以2个单位长度/秒向右移动,当H点与C点重合时停止运动,整个过程中速度保持不变.数轴上一动点P与长方形同时开始运动,从C 点出发,沿数轴向左移动,速度为3个单位长度/秒,设它们的运动时间为t,求t为何值时,点P与点H之PH=).间的距离为5(即57.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题:(1)如果点A表示数-4,将点A向右移动3个单位长度,那么终点B表示的数是,A、B两点间的距离是________;(2)如果点A表示数-2,将A点向右移动188个单位长度,再向左移动266个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(3)一般地,如果A点表示的数为a,将A点向右移动b个单位长度,再向左移动n个单位长度,那么终点B 表示的数是_________,A,B两点间的距离是________.(4)在(..1.)的条件下.....,动点P从点B出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 妙(t>0),当t为何值时,P、A两点之间的距离为9个单位长度?8.在数轴上点A 表示a ,点B 表示b ,且a 、b 满足570a b ++-=.(1)求a ,b 的值,并计算点A 与点B 之间的距离.(2)若动点P 从A 点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后,点P 到达B 点?(3)若动点P 从A 点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q 从B 点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,运动几秒后,P 、Q 两点间的距离为4个单位长度?9.已知数轴上有A 、B 、C 三点,分别表示有理数26,1010--,,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:P A = ,PC = ;(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止.①求当t 为何值时Q 点追上P 点?②当P 、Q 两点运动停止时,求点P 和点Q 的距离.10.已知数轴上两点A 、B 对应的数分别为2-、5,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,直接写出点P 对应的数是___________;(2)若点P 到点A 、点B 的距离之和为8.请直接写出x 的值为___________;(3)现在点A 、点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动,当点A 与点B 之间的距离为5个单位长度时,求点P 所对应的数是多少?11.如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是___________.(2)求当t等于多少秒时,点P到达点A处?(3)t=3时,点P表示的数是___________.(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.12.在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是_______.(2)动点P从点B出发,沿着数轴的正方向以每秒3个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?,12.13.数轴上有A,B,C三点,其中点A,B表示的数分别为3(1)线段AB的长为_________;(2)若13AC AB=,求点C表示的数;(3)在(2)的条件下点P,Q是该数轴上沿正方向同时出发的两个动点,点P以每秒3个单位长度的速度从点C出发,点Q以每秒1个单位长度的速度从点B出发,设运动时间为t秒.①请用含t的式子表示点P运动t秒后,到达位置上表示的数_______________;②当P,Q两点到点B的距离相等时,求t的值.14.已知a是最小的正整数,b是7-的相反数,2c=--,且a、b、c分别是点A、B、C在数轴上对应的数,动点P从点A出发沿数轴正方向匀速运动,动点Q同时从点B出发也沿数轴正方向匀速运动.点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,设点P的运动时间为t秒.(1)a=______,b=______,c=______;(2)当t=1时,线段PQ长为______;(3)若P、Q出发的同时,动点M从点C出发沿数轴正方向匀速运动,速度为每秒4个单位长度.再运动几秒,M能追上P?再运动几秒,M能追上Q?15.有A,B两点,在数轴上分别表示实数a、b,若a的绝对值是b的绝对值的4倍,且A,B两点的距离是15个单位,(1)探讨a、b的值.①A,B两点都在原点的左侧时,a=___________,b=___________;②若规定A在原点的左侧、B在原点的右侧,a=___________,b=___________;(2)数轴上现有两个动点P、Q,动点P从A点出发向B点运动,每秒2个单位;动点Q从B点出发向A点运动,每秒1个单位,两点同时出发,当其中一点到达终点时另一点也随之停止,经过t秒后P、Q两点相距3个单位,求此时t的值.16.如图,数轴上有三点A B C ,,,表示的数分别是423--,,,请回答:(1)若使C B ,两点的距离等于A B ,两点的距离,即CB AB =,则需将点C 向左移动______个单位长度;(2)点P 是数轴上的一个动点,其表示的数为x ,则43x x ++-的最小值是__________.(3)若有两只小青蛙M N ,,它们在数轴上的点表示的数分别为m n ,,满足439m m ++-=且423n n n ++++-的值最小,求两只小青蛙M N ,之间的距离__________.(4)点P Q R ,,同时分别从A B C ,,出发,点P 以每秒5个单位长度向数轴正方向运动,点Q 以每秒4个单位长度向数轴正方向运动,点R 以每秒2个单位长度向数轴负方向运动,当8PQ PR +=时,点R 对应的数是__________.17.已知多项式32(10)2053a x x x ++-+是关于x 的二次多项式,且二次项系数为b ,数轴上两点A ,B 对应的数分别为a ,b .(1)a =___________,b =___________,线段AB =___________;(2)若数轴上有一点C ,使得32AC BC =,点M 为AB 的中点,求MC 的长; (3)有一动点G 从点A 出发,以1个单位每秒的速度向终点B 运动,同时动点H 从点B 出发,以56个单位每秒的速度在数轴上作同向运动,设运动时间为t 秒(30t <),点D 为线段GB 的中点,点F 为线段DH 的中点,点E 在线段GB 上且13GE GB =,在G ,H 的运动过程中,求DE DF +的值.18.如图,数轴上相邻两点之间的距离为1个单位长度,四个点A ,B ,C ,D 对应的数分别为a 、b ,c ,d .a b -表示点A 和B 之间的距离.(1)a b c d -+-=;(2)求3a -b -c -d 的值;(3)若a +b +c +d =2,求a 的值;(4)在(3)的条件下,动点P 从A 点出发以1个单位长度/秒的速度向左运动,动点Q 从B 点出发以4个单位长度/秒的速度向左运动,动点M 从C 点出发以2个单位长度/秒的速度向右运动,动点N 从D 出发以3个单位长度/秒的速度向右运动,P ,Q ,M ,N 四点同时出发,第几秒时,线段QM 的三等分点恰好是线段PN 的中点?(直接写出结果)19.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 ___________个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长,小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 ___________步,落脚点表示的数是 ___________;(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 ___________种,其中移动所走的距离和最小的是 ___________个单位;(4)若数轴上有个动点表示的数是x ,则423x x x ++++-的最小值是 ___________.20.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =20,(1)写出数轴上点B 表示的数______; (2)53-表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如3x -的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.试探索:①若82x ,则x =______; ②128x x 的最小值为______.(3)动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒.当t =______,A ,P 两点之间的距离为2;(4)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴匀速运动,Q 点以P 点速度的两倍,沿数轴匀速运动,设运动时间为t (t >0)秒.当P ,Q 之间的距离为4时,求t 的值.参考答案:1.(1)17;5(2)m 的值为23或13-(3)6或22.(2)①7t -,②不存在,3.(1)8;(2)①12.②当487t =时,P 是MN 的中点;当965t =时,N 是MP 的中点.4.(1)1a =-,5b =,(2)3秒或9秒(3)1秒或3秒5.(1)3或5(2)0或2(3)点P 所对应的数是11-或35-.6.(1)24-,10-,10(2)E 点第3次落在数轴上对应的数是96(3)当=3t 或=5t 时,点P 与点H 之间的距离为57.(1)-1,3;(2)-80,78;(3)a b n +-,b n -;(4)=3t 或=6t8.(1)5a =-,=7b ,A 与B 之间的距离为12个单位长度(2)6秒11(3)2秒或4秒9.(1)t ;36t -;(2)①24;②24.10.(1)1.5;(2) 2.5-或5.5;(3)7-或-47.11.(1)1(2)5秒(3)2(4)1.5或3.5秒12.(1)6-(2)经过83秒或4秒点P 与点A 的距离是2个单位长度 (3)经过2秒或307秒,点Q 到点B 的距离是点P 到点A 的距离的2倍13.(1)15(2)8-或2 (3)①83t -+或23t +;②2.5或5或1014.(1)1,7,2-(2)5(3)运动32秒,M 能追上P ,再运动32秒,M 能追上Q15.(1)①20a =-,5b =-;②12a =-,=3b(2)4或者616.(1)3;(2)7;(3)6或3;(4)54-或114.17.(1)10-,20,30;(2)3或75;(3)252.18.(1)4 (2)14-(3)3a=-(4)43t=秒或29秒19.(1)3(2)197,100-(3)3,7(4)720.(1)-12(2)①6或10;②20(3)5或3(4)43或4或812。
人教版七年级上册数学期末动点问题压轴题(含答案)1.如图,已知在原点为O 的数轴上三个点A 、B 、C ,20cm OA AB BC ===,动点P 从点O 出发向右以每秒2cm 的速度匀速运动;同时,动点Q 从点C 出发向左以每秒cm a 的速度匀速运动.设运动时间为t 秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若3a =,那么经过多长时间P ,Q 两点相距20cm ? (3)当40cm PA PB +=,10cm QB QC -=时,求a 的值.2.如图,数轴上两个动点A ,B 起始位置所表示的数分别为8-,4,A ,B 两点各自以一定的速度在数轴上运动,已知A 点的运动速度为2个单位/秒.(1)若A ,B 两点同时出发相向而行,正好在原点处相遇,请直接写出B 点的运动速度. (2)若A ,B 两点于起始位置按上述速度同时出发,向数轴正方向运动,几秒时两点相距8个单位长度?(3)若A ,B 两点于起始位置按上述速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,如果在运动过程中,始终有2CA CB =,求C 点的运动速度.3.如图,已知数轴上的点A 对应的数是a ,点B 对应的数是b ,满足()2510a b ++-=.(1)=a __________,b =__________.(2)直接写出数轴上到点A 、点B 距离相等的点C 对应的数__________.(3)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请直接写出的值;若不存在,请说明理由.4.如图1,A ,B 两点在数轴上对应的数分别为-12和 4.(1)A ,B 两点之间的距离为 ;(2)若在数轴上存在一点P ,使得 3BP AP =,求点P 表示的数.(3)如图2,现有动点P ,Q ,若点P 从点A 出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左运动,当点Q 到达原点O 后立即以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t 秒.求:当2OP OQ =时t 的值.5.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a 、b 满足()220100a b ++-=.(1)求线段AB 的长.(2)在数轴上是否存在点C ,使得2AC BC =,若存在,求出C 点对应的数;若不存在,请说明理由;(3)动点P 、Q 两点分别从点A 、B 同时出发朝数轴正方向运动,速度分别是3个单位长度/秒,2个单位长度/秒,问经过多少秒时,12PQ AB =6.如图,点A 、B 、C 是数轴上三点,点A 、B 、C 表示的数分别为一10、2、6.我们规定:数轴上两点之间的距离用字母表示.例如:点A 与点B 之间的距离,可记为A B .(1)写出AB = ,BC = ,AC = (2)点P 是A 、C 之间的点,点P 在数轴上对应的数为x . ①若PB = 5时,则x =①P A = ,PC = (用含x 的式子表示);(3)动点M 、N 同时从点A 、C 出发,点M 以每秒2个单位长度的速度沿数轴向右运动,点N 以每秒2个单位长度的速度沿数向左运动,设运动时间为t (t >0)秒.求当t 为何值时,点M 、N 之间相距2个单位长度?7.如图,已知数轴上三点A ,B ,C 对应的数分别为1-,3,5,点P 为数轴上一动点,其对应的数为x .(1)若点P 是线段AC 的中点,则x =________,BP =________; (2)若8AP CP +=,求x 的值;(3)若点P ,点Q 两个动点分别以2个单位长度/秒和1个单位长度/秒的速度同时从点A ,点B 出发,沿数轴的正方向运动,运动时间为t 秒.当t 的值是多少时2PQ =?8.如图,点O 为数轴的原点,A ,B 在数轴上按顺序从左到右依次排列,点B 表示的数为8,AB =12.(1)直接写出数轴上点A 表示的数.(2)动点P 、Q 分别从A 、B 同时出发,点P 以每秒3个单位长度的速度沿数轴向右匀速运动,点Q 以每秒2个单位长度的速度沿数轴向右匀速运动.①经过多少秒,点P是线段OQ的中点?①在P、Q两点相遇之前,点M为PO的中点,点N在线段OQ上,且QN=2OQ.问:3经过多少秒,在P、M、N三个点中其中一个点为以另外两个点为端点的线段的三等分点(把一条线段分成1:2的两条线段的点叫做这条线段的三等分点)?9.已知数轴上两点A,B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x,(1)若点P到点A、点B的距离相等,则点P对应的数是.(2)数轴上存在点P到点A、点B的距离之和为8,则x=.(3)若将数轴折叠,使﹣1与3表示的点重合,则点P与数表示的点重合(用含x代数式表示);(4)若点P从A点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t,在移动过程中,是否存在某一时刻t,使得点P到点A距离等于点P到点B距离的2倍,若存在,请求出t的值;若不存在,请说明理由.10.定义:数轴上有两点A,B,如果存在一点C,使得线段AC的长度是线段BC的长度的2倍,那么称点C为线段AB的“友好点”.(1)如图①,若数轴上A,B两点所表示的数分别是2,4,点C为线段AB上一点,且点C为线段AB的“友好点”,则点C表示的数为______;(2)如图①,若数轴上A,B两点所表示的数分别是4-,1-,点C为数轴上一点,若点C为线段AB的“友好点”,则点C表示的数为_______;(3)如图①,若数轴上点A表示的数是1-,点C表示的数是2,若点C为线段AB的“友好点”,则点B表示的数为________;(4)如图①,若数轴上点A表示的数是1-,点B表示的数是3,动点P从点A出发以每秒2个单位的速度向右匀速运动,设运动的时间为t秒. 当t为何值时,点P是线段AB的“友好点”.11.已知在纸面上有一个数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-4表示的点与______表示的点重合;(2)若8表示的点与-2表示的点重合,回答下列问题:①12表示的点与______表示的点重合;①数轴上A,B两点间的距离为2022(A在B的左侧),且A,B两点经折叠后重合,则A,B两点表示数分别为______,______.①在①的条件下,点C为数轴上的一个动点,从点O出发,以2个单位每秒的速度向右运动,求当时间t为多少秒时,AC之间的距离恰好是BC之间距离的2倍.12.数轴上点A表示数﹣6,点B表示数18,动点P在数轴上从点A出发以每秒4个单位长度的速度向右运动,点P出发1秒钟后,动点Q以每秒6个单位长度的速度也从点A出发向右运动.设点P的运动时间为t(0≤t≤6).(1)在运动过程中,点P表示的数为,点Q表示的数为;(用含t 的代数式表示)(2)当t的值为时,点Q追上点P,此时点P对应的数是;(3)动点Q出发后,求t为何值时,点P,Q,B三点中有一点到其余两点的距离相等.a-是最大的负整13.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足6数,9b +是绝对值最小的有理数.点C 在点A 左侧,到点A 的距离是2个单位长度.(1)AB 两点间的距离是 .(2)点P 、Q 为数轴上两个动点,点P 从A 点出发速度为每秒2个单位长度,点Q 从B 点出发速度为每秒3个单位长度.若P 、Q 两点同时出发,相向而行,运动时间为t 秒.求当t 为何值时,点P 与点Q 之间的距离是6个单位长度?(3)在(2)的条件下,在点P 、Q 运动的过程中,是否存在t 值,使点Q 到点A 、点B 、点C 的距离之和为15,若存在,直接写出此时点P 在数轴上所表示的数;若不存在,请说明理由.14.知识准备:数轴上A 、B 两点对应的数分别为a 、b ,则A 、B 两点之间的距离就是线段AB 的长,且||AB a b =-,AB 的中点C 对应的数为:()12a b +. 问题探究:在数轴上,已知点A 所对应的数是4-,点B 对应的数是10. (1)求线段AB 的长为________;线段AB 的中点对应的数是________.(2)数轴上表示x 和5-的两点之间的距离是________;若该距离是8,则x =________. (3)若动点P 从点A 出发以每秒6个单位长度的速度向右运动,同时动点Q 从点B 出发以每秒2个单位长度的速度向左运动.经过多少秒,P 、Q 两点相距6个单位长度?15.定义:点O 与点A 之间的距离表示为OA ,点O 与点B 之间的距离表示为OB .若点A 、点B 分别在原点的两侧,OA :OB =4:5,点A 对应的数是-16 (1)求点B 对应的数及AB 的长 ;(2)点P 为A 、B 之间的动点,其对应的数为x ,是否存在点P ,使得AP =2OP ,若存在,请求出x 的值,若不存在,请说明理由(3)在(1)的条件下,若点N 、M 分别从A 、O 同时向右出发,速度分别3个单位长度/秒,1个单位长度/秒,N 点到达B 点后,再立即以同样的速度返回点A 后停止,M 点到达B 点立即停止,设它们的移动时间为t 秒,请用含t 的代数式直接表示M 、N 两点之间的距离16.已知数轴上两点A ,B 对应的数分别为﹣8和4,点P 为数轴上一动点,若规定:点P 到A 的距离是点P 到B 的距离的3倍时,我们就称点P 是关于A →B 的“好点”.(1)若点P 到点A 的距离等于点P 到点B 的距离时,求点P 表示的数是多少; (2)①若点P 运动到原点O 时,此时点P 关于A →B 的“好点”(填是或者不是); ①若点P 以每秒1个单位的速度从原点O 开始向右运动,当点P 是关于A →B 的“好点”时,求点P 的运动时间;(3)若点P 在原点的左边(即点P 对应的数为负数),且点P ,A ,B 中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P 表示的数.17.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数_____,点P 表示的数_________(用含t 的代数式表示); (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点,P Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若点D 是数轴上一点,点D 表示的数是x ,请你探索式子||68x x ++-是否有最小值?如果有,直接写出最小值;如果没有,说明理由18.已知数轴上有A 、B 、C 三点,分别表示有理数:﹣18,﹣3,7,动点M 从A 点出发,以每秒1个单位长度的速度向右运动,设点M 运动时间为t 秒. (1)填空:AB = ,MA = .(可用含t 的代数式表示) (2)当t 为何值,点M 到点A 、C 的距离相等.(3)当点M 运动到B 点时,点N 从A 点出发,以每秒5个单位长度的速度向右运动.当t 为何值,2MC =NC .19.如图,在数轴上的A 点表示数a ,B 点表示数b ,a 、b 满足930a b ++-=.(1)分别求出点A 表示的数a 和点B 表示的数b . (2)在数轴上的C 点表示的数c 为最大的负整数. ①求C 点分别到A 点和B 点的距离.①若有动点P 从点A 出发,以每秒3个单位长度的速度向右移动,动点Q 从点C 出发,以每秒1个单位长度的速度向左移动,运动时间为()0t t >,当时间t 为多少时,P 、Q 两点相距4个单位长度?20.已知数轴上A ,B 两点对应的数分别为a ,b ,且a ,b 满足|a +9|=﹣(b ﹣5)2,动点P 从点A 出发,以2cm/s 的速度向右运动,同时点Q 从点B 出发以1cm/s 的速度向左运动,设运动时间为t s .(1)直接写出a ,b 的值,并在下面的数轴上画出点A 和点B ;(2)分别用含t 的式子表示OP 和OQ 的长; (3)当t 为何值时,OP=OQ ? (4)当t 为何值时,OP=2OQ ?参考答案:1.(1)30t = (2)8t =和16(3)1或3或15或352.(1)1个单位/秒 (2)4秒和20秒(3)43个单位/秒3.(1)5-;1 (2)2-(3)2 秒或6秒; 4.(1)16 (2)-8和-20(3)43或207或125.(1)30(2)存在,10-或50-(3)经过45秒或15秒时,12PQ AB =6.(1)12;4;16 (2)①-3;①10,6x x +- (3)t =3.5或t =4.57.(1)2,1 (2)-2或6 (3)2或68.(1)-4(2)①4秒;①2秒或9237秒或4秒或3611秒9.(1)1 (2)3-或5 (3)2x - (4)43t =或410.(1)2;(2)-2或2;(3)0.5或3.5;(4)t 的值是43或4,点P 是线段AB 的“友好点”.11.(1)4;(2)①-6;①-1008;1014;①170秒或1518秒12.(1)64(06)t t -+≤≤,126(16)t t -+≤≤;(2)3,6;(3)t =3或t =92时,P ,Q ,B三点中有一点到其余两点的距离相等13.(1)14;(2)t 为85或4;(3)存在,73-或113-14.(1)14;3;(2)5x +,3或-13;(3)经过1秒或2.5秒时,P 、Q 两点相距6个单位长度.15.(1)20,36;(2)163-或16;(3)当08t <时,162t -;当812t <时,216t -;当1214t <时,564t -;当1420t <时,456t -;当2024t <时,336t -.16.(1)-2;(2)①不是;①1秒或10秒;(3)﹣4,﹣5,﹣12,﹣14,﹣32,﹣44 17.(1)6-;85t -;(2)7秒;(3)有,14 18.(1)15;t ;(2)t =12.5,(3)当t 为503或1507,2MC =NC . 19.(1)点A 表示的数-9和点B 表示的数3;(2)①AC =8,BC =4;①当时间t =1或3时,P 、Q 两点相距4个单位长度.20.(1)9,5a b =-=,数轴见解析;(2)29,5OP t OQ t =-=-;(3)143或4;(4)194.。
七年级上:数轴上的动点问题,期末考试压轴题,常考题型
如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度,已知动点A,B的速度比为1:3(速度单位:1个单位长度每秒).
(1).求两个动点的运动速度。
(2).在数轴上画出A. B两点从原点出发2秒时的位置。
(3).A,B两点以(1)小题的速度大小同时从(2)小题中标出的位置出发向数轴的负方向运动,再过多长时间使OB=2OA?
数轴上的动点问题,是七年级上册数学里的一个重点,也是一个难点,很多同学面对这种问题的时候,觉得特别难。
其实,解决这一类问题,只要有两个原则:
1.找到点运动的轨迹,有没有转折点,有转折点,就要分类讨论。
2.化动为静,动点问题,不外乎就是速度、时间和距离这三个要素。
那么,就用行程问题的方法来解。
一般,都是通过构造一元一次方程来解,用一元一次方程形成问题的思想来解决。
掌握这两个原则,熟能生巧,学好七年级上册数轴上的动点问题,为初中数学的学习,打下坚实的基础。
七年级上册数学动点问题压轴题一、数轴上的动点问题。
1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。
(1)若点P到点A、点B的距离相等,求点P对应的数。
解析:因为点P到点A、点B的距离相等,所以PA = PB。
根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。
当x≥3时,x + 1=x 3,方程无解。
当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。
当x≤-1时,-(x + 1)=-(x 3),方程无解。
所以点P对应的数为1。
(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。
解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。
当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。
当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。
当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。
所以存在点P,x=(7)/(2)或x =-(3)/(2)。
2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。
(1)若点P到点A、点B的距离之和为5,求x的值。
解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。
当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。
当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。
当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。
当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。
今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。
请同学们认真、规范答题!老师期待与你一起分享你的学习成果!动点问题压轴大题一、线段上的动点问题1.(1)如图①,D是线段AB上任意一点,M,N分别是AD,DB的中点,若AB=16,求MN的长.(2)如图②,AB=16,点D是线段AB上一动点,M,N分别是AD,DB的中点,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.(3)如图③,AB=16,点D运动到线段AB的延长线上,其他条件不变,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.(4)你能用一句简洁的话,描述你发现的结论吗?2.如图,已知数轴上A,B两点对应的数分别为-2,6,O为原点,点P为数轴上的一动点,其对应的数为x.(1)PA=______,PB=______(用含x的式子表示).(2)在数轴上是否存在点P,使PA+PB=10?若存在,请求出x的值;若不存在,请说明理由.(3)点P以1个单位长度/s的速度从点O向右运动,同时点A以5个单位长度/s的速度向左运动,点B以20个单位长度/s的速度向右运动,在运动过程中,M,N分别是AP,OB的中点,问:AB -OPMN 的值是否发生变化?请说明理由.3.如图,线段AB =24,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒.(1)当PB =2AM 时,求x 的值.(2)当P 在线段AB 上运动时,试说明2BM -BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变.选择一个正确的结论,并求出其值.4、如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且AB =14.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t s(已知O 为原点,以向右为正).(1)写出数轴上点B 表示的数___,点P 表示的数____(用含t 的代数式表示); (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,问点P 运动多少秒时追上点Q?(3)若M 为AP 的中点,N 为PB 的中点.点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明变化规律;若不变,请你画出图形,并求出线段MN 的长;(4)若D 是数轴上一点,点D 表示的数是x ,请你探索式子|x +6|+|x -8|是否有最小值?如果有,直接写出最小值;如果没有,请说明理由.5、定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P 同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.二、角动的问题1、如图,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图①中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图②,经过t s后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图③,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.2、如图,已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)若∠AOB=120°,∠AOC=30°,求∠EOF的度数?(2)若∠AOB =α,求∠EOF 的度数(用含α的式子表示);(3)若将题中的“OE 平分∠BOC ,OF 平分∠AOC”改为“∠EOB =13∠COB ,∠COF =23∠COA ,且∠AOB =α,求∠EOF 的度数(用含α的式子表示). 3、如图,O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)若∠AOC=30°,求∠DOE 的度数;(2)若∠AOC=α,直接写出∠DOE 的度数(用含α的代数式表示); (3)在(1)的条件下,∠BOC 的内部有一射线OG ,射线OG 将∠BOC 分为1:4两部分,求∠DOG 的度数.4、一副三角板ABC 、DEF ,如图(1)放置,(∠D=30°、∠BAC=45°) (1)求∠DBA 的度数.(2)若三角板DBE 绕B 点逆时针旋转,(如图2)在旋转过程中BM 、BN 分别平分∠DBA 、∠EBC ,则∠MBN 如何变化?(3)若三角板BDE 绕B 点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?答案线段上的动点问题1.解:(1)MN =DM +DN =12AD +12BD =12(AD +BD)=12AB =8.(2)能.MN =DM +DN =12AD +12BD =12(AD +BD)=12AB =8.(3)能.MN =MD -DN =12AD -12BD =12(AD -BD)=12AB =8.(4)若点D 在线段AB 所在直线上,点M ,N 分别是AD ,DB 的中点,则MN =12AB.2.解:(1)|x +2|;|x -6| (2)分三种情况:∠当点P 在A ,B 之间时,PA +PB =8,故舍去; ∠当点P 在B 点右边时,PA =x +2,PB =x -6, 因为(x +2)+(x -6)=10,所以x =7;∠当点P 在A 点左边时,PA =-x -2,PB =6-x , 因为(-x -2)+(6-x)=10,所以x =-3. 综上,当x =-3或7时,PA +PB =10. (3)AB -OPMN 的值不发生变化.理由如下: 设运动时间为t s ,则OP =t ,OA =5t +2,OB =20t +6,AB =OA +OB =25t +8,AB-OP=24t+8,AP=OA+OP=6t+2,AM=12AP=3t+1,OM=OA-AM=5t+2-(3t+1)=2t+1,ON=12OB=10t+3,所以MN=OM+ON=12t+4.所以AB-OPMN=24t+812t+4=2.3.解:(1)当点P在点B左边时,PA=2x,PB=24-2x,AM=x,所以24-2x =2x,即x=6;当点P在点B右边时,PA=2x,PB=2x-24,AM=x,所以2x-24=2x,方程无解.综上可得,x的值为6.(2)当P在线段AB上运动时,BM=24-x,BP=24-2x,所以2BM-BP=2(24-x)-(24-2x)=24,即2BM-BP为定值.(3)∠正确.当P在AB延长线上运动时,PA=2x,AM=PM=x,PB=2x-24,PN=12PB=x-12,所以∠MN=PM-PN=x-(x-12)=12.所以MN长度不变,为定值12.∠MA+PN=x+x-12=2x-12,所以MA+PN的值是变化的.4、(1)-6;8-5t(2)点Q表示的数为-6-3t,当点P追上点Q时,8-5t=-6-3t,解得t=7,∠点P运动7 s时追上点Q;(3)没有变化.分两种情况.∠当点P在A,B两点之间运动时(如答图∠):变形4答图∠MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=7;∠当点P运动到点B的左侧时(如答图∠):变形4答图∠MN=MP-NP=12AP-12BP=12(AP-BP)=12AB=7.综上所述,线段MN的长度不发生变化,其值为7;(4)式子|x+6|+|x-8|有最小值,最小值为14.提示:当x>8时,原式=2x-2>14,当x<-6时,原式=2-2x>14,当-6≤x≤8时,原式=x+6-x+8=14,∠|x+6|+|x-8|有最小值14.也可通过数形结合,求D到A,B距离之和的最小值来解.5、解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)∠根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.∠(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=3.75;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、3.75秒或10秒时,点P是线段AQ的三等分点.二、角动的问题1、解:(1)∠∠∠AON+∠BOM=90°,∠COM=∠MOB,∠∠AOC=30°,∠∠BOC=2∠COM=150°,∠∠COM=75°,∠∠CON=15°,∠∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;∠是,理由如下:∠∠CON=15°,∠AON=15°,∠ON平分∠AOC;(2)15秒时OC平分∠MON,理由如下:∠∠AON+∠BOM=90°,∠CON=∠COM,∠∠MON=90°,∠∠CON=∠COM=45°,∠三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∠∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)OC平分∠MOB∠∠AON+∠BOM=90°,∠BOC=∠COM,∠三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∠∠COM为(90°﹣3t),∠∠BOM+∠AON=90°,可得:180°﹣(30°+6t )=(90°﹣3t ), 解得:t=23.3秒;2、(1)∵OF 平分∠AOC , ∠∠COF =12∠AOC =12×30°=15°,∠∠BOC =∠AOB -∠AOC =120°-30°=90°, ∠OE 平分∠BOC , ∠∠EOC =12∠BOC =45°, ∠∠EOF =∠COF +∠EOC =60°; (2)∠OF 平分∠AOC ,∠∠COF =12∠AOC ,同理∠EOC =12∠BOC ,本文使用Word 编辑,排版工整,可根据需要自行修改、打印,使用方便。
初一数学数轴绝对值动点压轴题(附答案详解)一、解答题(共20小题)1. 如图,数轴的原点为O,点A,B,C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)求点A,C分别对应的数;(2)求点P,Q分别对应的数(用含t的式子表示).(3)试问当t为何值时,OP=OQ?2. 已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P,Q两点从原点出发运动4秒时的位置.(2)如果P,Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P,Q到原点的距离相等?3. 阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与−2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4)求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.4. 如图1,在平面直角坐标系中,A(6,a),B(b,0)且(a−6)2+√b−2=0.(1)求点A,B的坐标;(2)如图1,P点为y轴正半轴上一点,连接BP,若S△PAB=15,请求出P点的坐标;(3)如图2,已知AB=√52,若C点是x轴上一个动点,是否存在点C,使BC=AB,若存在,请直接写出所有符合条件的点C的坐标;若不存在,请说明理由.5. 如图,A,B分别为数轴上的两点,A点对应的数为−5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.6. 数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是,点B对应的数是;(2)若数轴上有一点D,且BD=4,则点D表示的数是什么?(3)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.当点P和点Q间的距离为8个单位长度时,求t的值.7. 如图,已知点O是原点,点A在数轴上,点A表示的数为−6,点B在原点的右侧,且OB=4OA.3(1)点B对应的数是,在数轴上标出点B.(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P,Q两点表示的数:P是;Q是;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?8. 如图,半径为1个单位的圆片上有一点A与数轴的原点重合,AB是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,−1,−5,+4,+3,−2.当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?9. 结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示−3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于∣m−n∣.如果表示数a 和−1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于−4与2之间,则∣a+4∣+∣a−2∣的值为;(3)利用数轴找出所有符合条件的整数点x,使得∣x+2∣+∣x−5∣=7,这些点表示的数的和是.(4)当a=时,∣a+3∣+∣a−1∣+∣a−4∣的值最小,最小值是.10. 如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,当PB=2时,求运动时间t.11. A,B,C为数轴上的三点,动点A,B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点 C 对应的数为8.(1)若2秒后,a,b满足∣a+8∣+(b−2)2=0,则x=,y=,并请在数轴上标出A,B两点的位置.(2)若动点A,B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得∣a∣=∣b∣,使得z=.(3)若动点A,B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A 与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.12. 探索研究:(1)比较下列各式的大小(用“<”或“>”或“=”连接).①∣+1∣+∣4∣∣+1+4∣;②∣−6∣+∣−3∣∣−6−3∣;③∣10∣+∣−3∣∣10−3∣;④∣8∣+∣−5∣∣8−5∣;⑤∣0∣+∣+2∣∣0+2∣;⑥∣0∣+∣−8∣∣0−8∣.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,∣a∣+∣b∣∣a+b∣(用“<”或“>”或“=”或“≥”或“≤”连接).(3)根据(2)中得出的结论,当∣x∣+2017=∣x−2017∣时,则x的取值范围是;若x>0,且∣x∣+∣y∣=10,∣x+y∣=2,则y=.13. 阅读下面材料并回答问题.I阅读:数轴上表示−2和−5的两点之间的距离等于(−2)−(−5)=3;数轴上表示1和−3的两点之间的距离等于1−(−3)=4.一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数.II问题:如图,O为数轴原点,A,B,C是数轴上的三点,A,C两点对应的数互为相反数,且A点对应的数为−6,B点对应的数是最大负整数.(1)点B对应的数是,并请在数轴上标出点B位置;PC,求线段AP中点对应的数;(2)已知点P在线段BC上,且PB=25⋅x2−bx+2的值(a,b,c是点(3)若数轴上一动点Q表示的数为x,当QB=2时,求a+c100A,B,C在数轴上对应的数).14. 如图,已知数轴上点A表示的数为6,点B表示的数为−4,C为线段AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点C表示的数是;(2)当t=秒时,点P到达点A处;(3)点P表示的数是(用含字母t的代数式表示);(4)当t=秒时,线段PC的长为2个单位长度;(5)若动点Q同时从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,那么,当t=秒时,PQ的长为1个单位长度.15. 阅读理解.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子∣x+1∣+∣x−2∣取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<−1,−1≤x≤2和x>2,经研究发现,当−1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子∣x−2∣+∣x−4∣+∣x−6∣+∣x−8∣取最小值时,相应的x的取值范围是,最小值是.(2)已知y=∣2x+8∣−4∣x+2∣,求相应的x的取值范围及y的最大值.写出解答过程.16. 阅读思考:小聪在复习过程中,发现可以用“两数的差”来表示“数轴上两点间的距离”,探索过程如下:如图甲所示,三条线段的长度可表示为AB=4−2=2,CB=4−(−2)=6,DC=(−2)−(−4)=2,于是他归纳出这样的结论:当b>a时,AB=b−a(较大数−较小数).(1)思考:你认为小聪的结论正确吗? .(2)尝试应用:①如图乙所示,计算:EF=,FA=.②把一条数轴在数m处对折,使表示−14和2014两数的点恰好互相重合,则m=.(3)问题解决:①如图丙所示,点A表示数x,点B表示−2,点C表示数2x+8,且BC=4AB,问:点A和点C分别表示什么数?②在上述①的条件下,在如图丙所示的数轴上是否存在满足条件的点D,使DA+DC=3DB?若存在,请直接写出点D所表示的数;若不存在,请说明理由.17. 如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程∣x+9∣=1的两解(a<b),(c−16)2与∣d−20∣互为相反数.(1)求a、b、c、d的值;(2)若A、B两点以每秒6个单位的速度向右匀速运动,同时C、D两点以每秒2个单位的速度向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍,若存在,求时间t;若不存在,请说明理由.18. 已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B,P所表示的数(可以用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距2个单位长度?(3)若M为AQ的中点,N为BP的中点.当点P在线段AB上运动过程中,探索线段MN与线段PQ的数量关系.19. 在数轴上依次有 A ,B ,C 三点,其中点 A ,C 表示的数分别为 −2,5,且 BC =6AB .(1)在数轴上表示出 A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从 A ,B ,C 三点同时出发,沿数轴负方向运动,它们的速度分别是 14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点 P ,使 P 到 A ,B ,C 的距离和等于 10?若存在求点 P 对应的数;若不存在,请说明理由.20. 已知数轴上三点 M ,O ,N 对应的数分别为 −3,0,1,点 P 为数轴上任意一点,其对应的数为x .(1)如果点 P 到点 M 、点 N 的距离相等,那么 x 的值是 . (2)当 x = 时,使点 P 到点 M ,点 N 的距离之和是 5;(3)如果点 P 以每秒钟 3 个单位长度的速度从点 O 向左运动时,点 M 和点 N 分别以每秒钟 1个单位长度和每秒钟 4 个单位长度的速度也向左运动,且三点同时出发,那么 秒钟时点 P 到点 M ,点 N 的距离相等.答案第一部分1. (1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1−6=−5,点C对应的数是1+2=3.(2)∵动点P,Q分别同时从A,C出发,分别以每秒2个单位长度和1个单位长度的速度沿数轴正方向运动,∴点P对应的数是−5+2t,点Q对应的数是3+t.(3)①当点P与点Q在原点两侧时,若OP=OQ,则5−2t=3+t,解得:t=23;②当点P与点Q在原点同侧时,若OP=OQ,则−5+2t=3+t,解得:t=8;当t为23或8时,OP=OQ.2. (1)设P的速度为x单位长度/秒,Q的速度为3x单位长度/秒.依题意,得4(x+3x)=16,∴x=1.∴P的速度为1单位长度/秒,Q的速度为3单位长度/秒.4秒时,P的位置在−4,Q的位置在12.(2)设再经过y秒时,点P,Q到原点的距离相等,①当点P,Q位于原点两侧时,12−3y=4+y,解得,y=2.②当点P,Q位于原点同侧时,3y−12=4+y,解得,y=8.所以再经过2秒或8秒时点P,Q到原点的距离相等.3. (1)5【解析】∣3−(−2)∣=5.(2)∣x−7∣(3)−8;−3或−13(4)如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.4. (1)∵(a−6)2+√b−2=0,又∵(a−6)2≥0,√b−2≥0,∴a=6,b=2,∴A(6,6),B(2,0).(2)设P(0,m)(m>0),∵S△PAB=S△POA+S△ABO−S△POB,∴15=12×m×6+12×2×6−12×2×m,9).∴P(0,92(3)C(2+2√13,0)或(2−2√13,0).【解析】∵AB=√52=2√13,B(2,0),∴BC=AB=2√13,∴C(2+2√13,0)或(2−2√13,0).5. (1)设相遇时间为x秒,4x+6x=55−(−5),解得:x=6,因此C点对应的数为−5+4×6=19.(2)设追及时间为y秒,6y−4y=55−(−5),解得:y=30,点D对应的数为−5−4×30=−125.(3)①相遇前PQ=20时,设相遇时间为a秒,4a+6a=55−(−5)−20,解得:a=4,因此Q点对应的数为−5+4×4=11,②相遇后PQ=20时,设相遇时间为b秒,4b+6b=55−(−5)+20,解得:b=8,因此C点对应的数为−5+4×8=27,故Q点对应的数为11或27.6. (1)−30;−10【解析】∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B在点C左侧,∴点B对应的数为10−20=−10,点A对应的数为−10−20=−30.(2)由于点B对应的数为−10,BD=4,∴点D表示的数为−14或−6.(3)当运动时间为t秒时,点P对应的数是4t−30,点Q对应的数是t−10,依题意,得:∣t−10−(4t−30)∣=8,∴20−3t=8或3t−20=8,解得:t=4或t=28.3.∴t的值为4或2837. (1)8数轴表示如图所示:【解析】∵点A表示的数为−6,∴OA=6,OA,∵OB=43∵点B在原点的右侧,∴点B对应的数是8.(2)①−6+t;8−3t②∵点P和点Q经过t秒后在数轴上的点D处相遇,∴−6+t=8−3t,∴t=7,2=−2.5.∴点D所表示的数=−6+72③∵P是−6+t;Q是8−3t,∴OP=∣−6+t∣,OQ=∣8−3t∣,∵点P与点Q分别到原点的距离相等,∴∣−6+t∣=∣8−3t∣,∴−6+t=8−3t或−6+t=3t−8,或t=1,∴t=72秒或1秒,点P与点Q分别到原点的距离相等.∴经过72【解析】①∵P的路程为t,Q的路程为3t,∴P是−6+t;Q是8−3t.8. (1)无理;−2π【解析】把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是−2π.(2)±4π【解析】把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是±4π.(3)2+1+5+4+3+2=17,故A点运动的路程共有34π,+2−1−5+4+3−2=1,故此时点A所表示的数是2π.9. (1)3;5;−4或2【解析】∣1−4∣=3,∣−3−2∣=5,∣a−(−1)∣=3,所以,a+1=3或a+1=−3,解得a=−4或a=2.(2)6【解析】因为表示数a的点位于−4与2之间,所以a+4>0,a−2<0,所以∣a+4∣+∣a−2∣=(a+4)+[−(a−2)]=a+4−a+2=6.(3)12【解析】使得∣x+2∣+∣x−5∣=7的整数点有−2,−1,0,1,2,3,4,5,−2−1+0+1+2+ 3+4+5=12.故这些点表示的数的和是12.(4)1;7【解析】a=1有最小值,最小值=∣1+3∣+∣1−1∣+∣1−4∣=4+0+3=7.10. (1)5【解析】∵B是线段OA的中点,∴BA=12OA=5.(2)6【解析】当t=3时,点P所表示的数是2×3=6.(3)当0≤t≤5时,动点P所表示的数是2t;当5≤t≤10时,动点P所表示的数是20−2t.(4)①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴∣2t−5∣=2,∴2t−5=2或2t−5=−2,解得t=3.5或t=1.5;②当5≤t≤10时,动点P所表示的数是20−2t,∵PB=2,∴∣20−2t−5∣=2,∴20−2t−5=2或20−2t−5=−2,解得t=6.5或t=8.5.综上所述,所求t的值为1.5或3.5或6.5或8.5.11. (1)4;1(2)103或56(3)2.75或9.2512. (1)=;=;>;>;=;=(2)≥(3)x≤0;−6或−413. (1)−1点B位置如图:【解析】点B对应的数是−1.(2)设点P对应的数为p,∵点P在线段BC上,∴PB=p−(−1)=p+1,PC=6−p,∵PB=25PC,∴p+1=25(6−p),∴p=1.设AP中点对应的数为t,则t−(−6)=1−t,∴t=−2.5,∴AP中点对应的数为−2.5.(3)由题意:a+c=0,b=−1,当点Q在点B左侧时,−1−x=2,x=−3,∴a+c100−x2−bx+2=0=0−(−1)×(−3)+2=−1,当点Q在点B左侧时,x−(−1)=2,x=1,∴a+c100−x2−bx+2=0−(−1)×1+2=3.14. (1)1【解析】(6−4)÷2 =2÷2= 1.故点C表示的数是1.(2)5【解析】[6−(−4)]÷2 =10÷2=5(秒).答:当t=5秒时,点P到达点A处.(3)2t−4【解析】点P表示的数是2t−4.(4)1.5秒或3.5【解析】P在点C左边,[1−2−(−4)]÷2=3÷2= 1.5(秒).P在点C右边,[1+2−(−4)]÷2=7÷2= 3.5(秒).答:当t=1.5秒或3.5秒时,线段PC的长为2个单位长度.(5)3秒或113【解析】点P,Q相遇前,依题意有(2+1)t=6−(−4)−1,解得t=3;点P,Q相遇后,依题意有(2+1)t=6−(−4)+1,解得t=113.答:当t=3秒或113秒时,PQ的长为1个单位长度.15. (1)4≤x≤6;8.(2)当x≥−2时,y=∣2x+8∣−4∣x+2∣=−2x,当−4≤x≤−2时,y=∣2x+8∣−4∣x+2∣=6x+16,当x≤−4时,y=∣2x+8∣−4∣x+2∣=2x,所以x=−2时,y有最大值y=4.16. (1)正确【解析】∵当b>a时,b−a的值为线段AB的实际长度.(2)2;3;1000(3)①∵BC=2x+8−(−2)=2x+10,AB=−2−x,又∵BC=4AB,∴2x+10=4(−2−x),解得x=−3,∴点A表示数−3,点C表示数2.②存在.设点D所表示的数为y,则(a)当y<−3时,DA=−3−y,DC=2−y,DB=−2−y,若DA+DC=3DB,则−3−y+2−y=3(−2−y),解得y=−5,满足条件;(b)当−3≤y<−2时,DA=y−(−3)=y+3,DC=2−y,DB=−2−y,若DA+DC=3DB,则y+3+2−y=3(−2−y),解得y=−113<−3,不符合题意;(c)当−2≤y<2时,DA=y−(−3)=y+3,DC=2−y,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+2−y=3(y+2),解得y=−13,满足条件;(d)当y≥2时,DA=y−(−3)=y+3,DC=y−2,DB=y−(−2)=y+2,若DA+DC=3DB,则y+3+y−2=3(y+2),解得y=−5,不符合题意.综上可知,存在点D表示的数为−5或−13时满足条件.17. (1)∵a,b是方程∣x+9∣=1的两根(a<b),∴a=−10,b=−8 .∵(c−16)2与∣d−20∣互为相反数,(c−16)2≥0,∣d−20∣≥0,∴c−16=0,d−20=0.∴c=16,d=20 .(2)可知:AC=26,BD=28,AB=2,CD=4.∵A、B两点以每秒6个单位的速度向右匀速运动,C、D两点以每秒2个单位的速度向左匀速运动,∴点A、C相遇时间t=26÷(6+2)=134,点B、D的相遇时间t=28÷(6+2)=72.∵点A、C相遇之后到B、D相遇之前,A、B两点都运动在线段CD上,∴当134<t<72时,A、B两点都运动在线段CD上.(3) 存在时间,使得 BC =4AD .理由:(1) 当 t =72 时,点 B 与点 D 相遇,此时 AD =AB =2,BC =CD =4; 当 A 、 D 相遇时 t =30÷8=154; 当 72<t <154 时,点 A 在线段 CD 上,此时 BC =4+8(t −72)=8t −24,AD =2−8(t −72)=30−8t . 若 BC =4AD ,则 8t −24=4(30−8t ),解得 t =3.6;(2) 当 t =154 时,点 A 与点 D 相遇,此时 BC =CD +AB =6,AD =0; 当 t >154 时,点 A 在 CD 的延长线上,此时 BC =8t −24,AD =8t −30 .若 BC =4AD ,则 8t −24=4(8t −30),解得 t =4.综上所述,t =3.6 或 t =4 时,BC =4AD .18. (1) ∵ 点 A 表示的数为 8,B 在 A 点左边,AB =12,∴ 点 B 表示的数是 8−12=−4.∵ 动点 P 从点 A 出发,以每秒 3 个单位长度的速度沿数轴向左匀速运动,设运动时间为 t (t >0)秒, ∴ 点 P 表示的数是 8−3t .(2) 设点 P 运动 x 秒时,与 Q 相距 2 个单位长度.则 AP =3x ,BQ =2x .∵AP +BQ =AB −2,∴3x +2x =10.解得:x =2.∵AP +BQ =AB +2,∴3x +2x =14.解得:x =145.∴ 点 P 运动 2 秒或 145 秒时与点 Q 相距 2 个单位长度.(3) 如图:当 P 在 Q 的左侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 即 MN +PQ =6.如图当 P 在 Q 的右侧时,MN =MQ +NP −PQ =12AP +12BP −PQ =12(AP +BP )−PQ =12AB −PQ =6−PQ . 综上,MN +PQ =6.19. (1)(2) 7÷(2−14)=4(秒),4×(12−14)−1=0.答:丙追上甲时,甲乙相距 0 个单位长度.(3) 设 P 点表示的数为 x ,由题意可得 ∣x +2∣+∣x +1∣+∣x −5∣=10.当 x <−2 时,−x −2−x −1−x +5=10.解得 x =−83. 当 −2<x <−1 时,x +2−x −1−x +5=10.解得 x =−4,不属于上述范围(舍).当 −1<x <5 时,x +2+x +1−x +5=10.解得 x =2.当 x >5 时,x +2+x +1+x −5=10.解得 x =4,不属于上述范围(舍).结合数轴,解得 x =−83,2,∴P 点表示的数为 −83 或 2.20. (1) −1(2) −3.5 或 1.5(3) 43 或 2 【解析】提示:①当点 M 和点 N 在点 P 同侧时,因为 PM =PN ,所以点 M 和点 N 重合. ②当点 M 和点 N 在点 P 两侧时,有两种情况.情况 1:如果点 M 在点 N 左侧;情况 2:如果点 M 在点 N 右侧.。
人教版七年级上册数学期末动点问题压轴题1.已知式子32(4)625M a x x x =++-+是关于x 的二次多项式,且二次项系数为b ,数轴上A ,B 两点所对应的数分别是a 和b .(1)则=a _____,b =_____;A ,B 两点之间的距离为_____;(2)有一动点P 从点A 出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2022次时,求点P 所对应的有理数;(3)若点A 以每秒2个单位长度的速度向左运动,同时点B 以每秒3个单位长度的速度向右运动,动点D 从原点开始以每秒m (0m >)个单位长度在A ,B 之间运动(到达A 或B 即停止运动),运动时间为t 秒,在运动过程中,2BD AD -的值始终保持不变,求D点运动的方向及m 的值.2.如图,数轴上点A 、B 表示的数分别是6-和4,点P 为数轴上的一个运动点,以每秒3个单位长度的速度,从点A 出发沿数轴向右运动.点P 出发的同时,动点Q 以每秒n 个单位长度的速度从点B 出发,沿数轴向左运动.设点P 运动时间为(t 秒).(1)A 、B 两点间的距离为______,点P 对应的数为______(用含t 的代数式表示); (2)若2n =,当P 、Q 两点对应的数互为相反数时,求t 的值;(3)若1n =,当P 、Q 两点到原点距离相等时,点P 表示的数为______;(4)点C 对应的数为1-,点P 出发的同时,动点M 以每秒2个单位长度的速度从点C 出发,沿数轴向左运动,点P 遇到点M 时,立即以原速返回点A ,点M 保持原速继续向左运动.点P 到达点A 时,各点同时停止运动.若当P 、M 两点距离为1时,P 、Q 两点对应的数的绝对值恰好相等,直接写出n 的值.3.已知数轴上A、B两点对应的数分别为1-和5-,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由;(3)若数轴上点M、N所对应的数为m、n,其中A为PM的中点,B为PN的中点,无论点P在何处,MNAB是否为一个定值?若是,求出定值;若不是,请说明理由.4.已知数轴上A,B两点对应数分别为2-和4,P为数轴上一动点,对应数为x.(1)若P为线段AB的三等分点,求P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点距离之和为10?若存在,求出x的值;若不存在,请说明理由.(3)若点A、点B和点(P点P在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间其中一个点到另外两个点的距离相等.5.如图,数轴上有三个点A,B,C表示的数分别是a,b,c,其中a,b,c满足2(7)|1|0a b+++=,c是最小的正整数.(1)=a___________;b=___________;c=___________;(2)为使A,B两点的距离与C,B两点距离相等,可将点B向左移动几个单位长度?(3)若动点P,Q分别从点A、点B出发,以每秒4个单位长度和每秒3个单位长度的速度向左匀速运动,动点R从点C出发,以每秒1个单位长度的速度向右匀速运动,点P,Q,R同时出发,设运动时间为t秒.①若动点Q到达点A后,速度变为每秒7个单位长度,继续向左运动,当t为何值时,点P 与点Q 距离3个单位长度?①记点P 与点Q 之间的距离为1d ,点Q 与点R 之间的距离为2d ,请用含t 的代数式表示1d 和2d ,并判断是否存在一个常数m ,使12md d -的值不随t 的变化而改变,若存在,求出m 的值;若不存在,请说明理由;6.如图,已知数轴上的点A 表示的数为6,点B 表示的数为4-,点C 到点A 、点B 的距离相等,动点P 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x (x 大于0)秒.(1)点C 表示的数是___________;(2)运动过程中点P 表示的数是____________(用含字母的式子表示); (3)当P ,C 之间的距离为2个单位长度时,求x 的值.7.如图,数轴上有A 、B 、C 三个点,A 、B 、C 对应的数分别是a 、b 、c ,且满足()22410100a b c ++++-=,动点P 从A 出发,以每秒1个单位的速度向终点C 运动,设运动时间为t 秒.(1)求是a 、b 、c 的值;(2)若点P 到点A 的距离是点P 到点B 的距离的2倍,求点P 对应的数;(3)当点P 运动到点B 时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.8.如图,已知数轴上有三点、、A B C ,若用AB 表示A 、B 两点的距离,AC 表示A C 、两点的距离且12AB BC =,点A 、点C 对应的数是分别是a c 、,且()250100a c ++-=.(1)线段BC 的长度为_____________个单位长度;(2)若点P Q 、分别从A C 、两点同时出发向左运动,速度分别为3个单位长度每秒、5个单位长度每秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(3)若点P Q 、仍然以(2)中的速度分别从A C 、两点同时出发向左运动,2秒后,得到线段AP 与线段CQ ,点M 为线段AP 的中点,点N 为线段CQ 的中点,若线段AP 与线段CQ 从此时的位置上同时出发分别以2个单位长度每秒、3个单位长度每秒的速度都向左运动,动点R 以1个单位长度每秒的速度从A 点出发向右运动,在线段CQ 追上线段PA 之前,点R 运动了多少秒时恰好满足68MN RQ +=.9.如图,已知在数轴上有三个点A ,B ,C ,O 是原点,其中A ,B ,C 三点表示的数分别是40,80,120,动点P 从点O 出发向右以每秒4个单位的速度匀速运动:同时,动点Q 从点C 出发,在数轴上向左匀速运动,速度为每秒a 个单位(1)a ;运动时间为t (单位:秒).(1)求:点P 从点O 运动到点C 时,运动时间t 的值.(2)若Q 的速度a 为每秒6个单位,那么经过多长时间P ,Q 两点相距60个单位? (3)当248PA PB QB QC +=-=时,请求出点Q 的速度a 的值(注:QB 表示Q 、B 两点之间的距离).10.已知多项式()32102053a x x x ++-+是关于x 的二次多项式,且二次项系数为b ,数轴上两点A ,B 对应的数分别为a ,b .(1)a =___________,b =___________,线段AB =___________; (2)若数轴上有一点C ,使得32AC BC =,点M 为AB 的中点,求MC 的长___________; (3)有一动点G 从点A 出发,以3个单位每秒的速度向右方向运动,同时动点H 从点B 出发,以1个单位每秒的速度在数轴上作同方向运动,设运动时间为t 秒(30t <),点D 为线段GB 的中点,点F 为线段DH 的中点,点E 在线段GB 上且13GE GB =,在G ,H 的运动过程中,求DE DF +的值___________.(用含t 的代数式表示)11.已知:如图,点A 、点B 为数轴上两点,点A 表示的数为a ,点B 表示的数为b ,a 与b 满足()2480a b ++-=.动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动,若在点B 处放一挡板(挡板厚度忽略不计),点P 在碰到挡板后立即返回,以3个单位长度/秒的速度在数轴上向左运动,到点A 停止,设点P 运动的时间为t (秒)(t >0).(1)直接写出a 、b 的值,=a ______,b =______; (2)点P 碰到挡板时,t 的值为______;(3)当4t =时,点P 表示的有理数为______;当7t =时,点P 表示的有理数为______; (4)试探究:点P 到挡板的距离与它到原点的距离可能相等吗?若能,直接写出相等时t 的值;若不能,请说明理由.12.已知点A 在数轴上对应的数为a ,点B 在数轴上对的数为b ,且320a b ++-=,A 、B 之间的距离记为AB a b =-或b a -,请回答问题:(1)直接写出a ,b ,AB 的值,=a ______,b = ______,AB = ______. (2)设点P 在数轴上对应的数为x ,若35x -=,则x =______.(3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为1-,动点P 表示的数为x .①若点P 在点M 、N 之间,则14x x ++-=______;①若点P 表示的数是5-,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M 、点N 的距离之和是8?13.如图,数轴上点A 表示10-,点O 表示0,点B 表示10,点C 表示18.动点P 从点A 出来,以2个单位长度/秒的速度沿着数轴的正方向运动;同时,动点Q 从点C 出发,以1个单位长度/秒的速度沿着数轴的负方向运动.当点P 到达点C 时,两点都停止运动,设点P 运动的时间为(t 秒).(1)点A 和点C 在数轴上相距______个单位长度; (2)当3t =时,求点P 与点Q 之间的距离; (3)求P 、Q 两点相遇时t 的值;(4)当点P 到点O 的距离与点Q 到点B 的距离相等时,直接写出t 的值.14.已知:如图数轴上有A B C 、、三点,点A 和点B 间距20个单位长度且点A 、B 表示的有理数互为相反数,40AC =,数轴上有一动点P 从点A 出发,以2个单位/秒的速度向右沿数轴运动,设运动时间为t 秒(0)t >.(1)点A 表示的有理数是______,点C 表示的有理数是______,点P 表示的数是______(用含t 的式子表示).(2)当t =______秒时,P B 、两点之间相距8个单位长度?(3)若点A 、点B 和点C 与点P 同时在数轴上运动,点A 以1个单位/秒的速度向左运动,点B 和点C 分别以3个单位/秒和4个单位/秒的速度向右运动,是否存在常数m ,使得72mAP BP CP +-为一个定值,若存在,请求出m 值以及这个定值;若不存在,请说明理由.15.数轴上两点间的距离可以表示为这两点所对应的数的差的绝对值,如数轴上表示3的点A 到数轴上表示2-的点B 的距离可以表示为:()325--=,若点P ,Q 是数轴上的两个动点,点P 从点A 出发向左每秒运动2个单位长度,点Q 从点B 出发向右每秒运动1个单位长度.(1)3秒后点P 到A 点的距离PA 为___________,t 秒后点P 到B 点的距离PB 为___________.(2)求出当Q 运动到A 点时,P 到B 点的距离PB .(3)当Q 运动到A 点右侧后,是否存在k 使得无论时间t 如何变化PB kQA -为定值?若存在,请直接写出此时的k 值以及该定值,若不存在,请说明理由.16.已知点A 、B 在数轴上分别表示有理数a ,b ,且a ,b 满足720a b ++-=,我们将A ,B 两点间的距离记为AB ,那么ABa b .若数轴上点C 表示的数为x ,点P ,点Q 为数轴上的两个动点,点P 从点A 出发,速度为每秒4个单位长度,点Q 同时从点B 出发,速度为每秒2个单位长度,回答下列问题: (1)A ,B 两点间的距离AB =________;(2)若点C 在点B 的右边,12AC BC +=,求x 的值;(3)若点P 和点Q 都向右运动,它们在点M 处相遇,求点M 所表示的数.17.如图,在数轴上点A 表示数a ,点B 表示数b ,且()26150a b ++-=.(1)填空:=a ________,b =________.(2)已知点C 为数轴上一动点,且满足27AC BC +=,求出点C 表示的数;(3)若点A 以每秒2个单位长度的速度向左运动,同时点B 以每秒3个单位长度的速度向右运动,动点D 从原点开始以每秒m 个单位长度运动,运动时间为t 秒,运动过程中,点D 始终在动线段AB 上,且2BD AD -的值始终是一个定值,求D 点运动的方向及m 的值.18.已知多项式10514293420x x y xy -+-的常数项是a ,次数是b a b ,、在数轴上分别表示的点是A B 、(如图),点A 与点B 之间的距离记作AB .(1)求a b ,的值; (2)求AB 的长;(3)动点P 从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A ,B 在数轴上运动,点A ,B 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.若点A 向右运动,点B 向左运动,AP PB =,求t 的值.参考答案:1.(1)-4,6,10; (2)1007;(3)向左运动,m 的值为13.2.(1)10,63t -+ (2)2 (3)-3或1.5(4)12或172或53.(1)点P 对应的数是3- (2)存在点P ,x 的值是1或7-, (3)MNAB为一个定值,定值是24.(1)点P 对应的数为0,2; (2)存在,4x =-或6x =(3)经过时间2分或5分或8分时,其中一个点到另外两个点的距离相等.5.(1)7,1,1a b c =-=-= (2)2个 (3)①t 为113或173时,①存在,当4m =时,12md d -的值不随t 的变化而改变 6.(1)1 (2)42x -+ (3)32x =或72x =7.(1)24a =-,10b =-,10c = (2)443-或4(3)当Q 点开始运动后第5、9、12.5、14.5秒时,P 、Q 两点之间的距离为4, 8.(1)40(2)当运动了52秒或30秒时,Q 到B 的距离与P 到B 的距离相等(3)在线段CQ 追上线段PA 之前,点R 运动了8秒或20秒时恰好满足68MN RQ +=9.(1)30秒 (2)6秒或18秒 (3)3221单位长度/秒或329单位长度/秒10.(1)10-;20;30 (2)3或75 (3)25211.(1)48-,; (2)6; (3)4,5; (4)4或 223.12.(1)3,2,5-; (2)2-或8; (3)2.5或10.5秒.13.(1)28 (2)19 (3)283(4)2或6答案第3页,共3页 14.(1)10-,30,102t -+(2)6或14(3)1m =-,这个定值为6015.(1)6,52t -(2)当Q 运动到A 点时,P 到B 点的距离PB 为5(3)此时的k 值为2,该定值为516.(1)9(2) 3.5x =(3)1117.(1)6-,15(2)点C 表示的数为9-或18;(3)D 点运动的方向为从原点向左运动,m 的值为13.18.(1)20,30a b =-=(2)50AB =(3)10t =或83t =。
人教版七年级上册数学期末动点问题压轴题1.如图,已知数轴上两点M N 、对应的数分别为3-、5,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点M 、点N 的距离相等,则点P 对应的数是___________. (2)数轴上存在点P 到点M 、点N 的距离之和为10,求x 的值.(3)若点P 从M 点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t ,在移动过程中,是否存在某一时刻t ,使得点P 到点M 距离等于点P 到点N 距离的3倍,若存在,请求出t 的值;若不存在,请说明理由.2.已知a b 、为常数,且满足()212200a b -++=,其中a b 、分别为点A 、点B 在数轴上表示的数,如图所示,动点E F 、分别从A B 、同时开始运动,点E 以每秒6个单位向左运动,点F 以每秒2个单位向右运动,设运动时间为t 秒. (1)求a b 、的值:(2)请用含t 的代数式表示点E 在数轴上对应的数为:________;点F 在数轴上对应的数为:________; (3)当E F 、相遇后,点E 继续保持向左运动,点F 在原地停留4秒后向左运动且速度变为原来的5倍,在整个运动过程中,当E F 、之间的距离为2个单位时,请直接写出运动时间t 的值.3.数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到一条“折线数轴”如图所示,我们称点A 和点D 在数轴上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍,设运动的时间为t 秒,问:答案第2页,共9页(1)求动点P 从点A 运动至D 点需要时间(2)求动点Q 运动到点O 时,点P 所在位置表示的数. (3),P Q 两点重合时,求运动时间t 秒.4.已知数轴上两点A 、B 对应的数分别为1-、3,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,则点P 对应的数为________, (2)利用数轴探究:找出满足316x x -++=的x 的所有值是________(3)当点P 以每秒6个单位长的速度从O 点向右运动时,点A 以每秒6个单位长的速度向右运动,点B 以每秒钟5个单位长的速度向右运动,问它们同时出发,几秒后P 点到点A 、点B 的距离相等?5.动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动,4秒后两点相距16个单位长度.已知动点A 、B 的速度比是1:3(速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动4秒时的位置; (2)若A 、B 两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间; (3)在(2)中A 、B 两点继续同时向数轴负方向运动时,另一动点C 同时从B 点位置出发向A 运动,当遇到A 后,立即返回向B 点运动,遇到B 点后立即返回向A 点运动,如此往返,直到B 追上A 时,C 立即停止运动,若点C 一直以25个单位长度/秒的速度匀速运动,那么点C 从开始到停止运动,运动的路程是多少单位长度?6.已知数轴上有A 、B 、C 三个点,分别表示有理数24-,10-,10,动点P 从A 出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=____,PC=____.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,则点P出发17秒后QA=____,PQ=_____.(3)在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.7.如图,已知数轴上的点A对应的数是a,点B对应的数是b,且满足()2510a b++-=(1)求数轴上点A、点B对应的数;(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,请用含t的式子表示B、P之间的距离;并求P点需要运动几秒到达B点;(3)在(2)的条件下,是否存在某个时刻t,恰好使得点P到点B的距离是P到点A的距离的1,若存在,2请求出t的值;若不存在,请说明理由.c-=,若点A沿数轴向右移动8.如图,已知数轴上A,B,C三个点表示的数分别是a,b,c,且10012个单位长度后到达点B,且点A,B表示的数互为相反数.(1)a的值为______,b c-的值为______;(2)动点P,Q分别同时从点A,C出发,点P以每秒1个单位长度的速度向终点C移动,点Q以每秒m个单位长度的速度向终点A移动,点P表示的数为x.①若点P,Q在点B处相遇,求m的值;①若点Q的运动速度是点P的2倍,当点P,Q之间的距离为2时,求此时x的值.,,三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关9.对于数轴上的A B C系,则称该点是其它两个点的“联盟点”.答案第4页,共9页例如:数轴上点A B C ,,所表示的数分别为134,,,此时点B 是点A C ,的“联盟点”. (1)若点A 表示数3-,点B 表示的数3,下列各数,101-,,所对应的点分别123,,C C C ,其中是点A B ,的“联盟点”的是 ;(2)点A 表示数6-,点B 表示的数12,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A B ,的“联盟点”,则此时点P 表示的数是 ;①若点P 在点B 的右侧,点P A B ,,中,有一个点恰好是其它两个点的“联盟点”,则此时点P 表示的数是 .10.对于数轴上的A B C ,,三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A B C ,,所表示的数分别为134,,,此时点B 是点A C ,的“联盟点”. (1)若点A 表示数3-,点B 表示的数3,下列各数,101-,,所对应的点分别123,,C C C ,其中是点A B ,的“联盟点”的是 ;(2)点A 表示数10-,点B 表示的数5,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A B ,的“联盟点”,求此时点P 表示的数;①若点P 在点B 的右侧,点P A B ,,中,有一个点恰好是其它两个点的“联盟点”,求此时点P 表示的数.11.如图,长方形ABCD 的长AB 、宽CB 分别为a 米、b 米,a 、b 满足2420a b -+-=,一动点P 从A 出发以1米/秒的速度沿A →D →C →B →A 运动,另一动点Q 从B 出发以2米/秒的速度沿B →C →D →A →B 运动,设P 、Q 同时出发,运动的时间为(83t <).(1)求a 、b 的值;(2)用含t 的式子表示APQ △的面积(写出推理过程);(3)若点P、Q相遇后点P沿原路立即返回,当点Q运动到距离A点13米处时,求此时点P距离A多远?12.在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为4,点C到点B的距离为9,如图所示,设点A、B、C所对应的数的和是m.(1)若以A为原点,则m=___________;若以B为原点,则m=___________.(2)若原点O在图中数轴上,且点B到原点O的距离为6,求m的值.(3)动点M从点A出发,以每秒2个单位长度的速度向终点C移动,动点N从点B出发,以每秒1个单位长度的速度向终点C移动,t秒后M,N两点间距离是2,则t=___________秒(直接写出答案).13.如图,已知数轴上的点A表示的数为6,点B表示的数为4-,点C到点A,B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒.(1)点C表示的数为.(2)当点P运动到达点A处时运动时间t为秒.(3)运动过程中点P表示的数的表达式为;(用含字母t的式子表示)(4)当t等于多少秒时,P,C之间的距离为2个单位长度.14.已知数轴上两点A,B对应的数分别为-3、9,点P为数轴上一动点,其对应的数为x.(1)若点P向右移动5个单位到达点A,则点P对应的数为___________;若点P到点A、点B的距离相等,则点P对应的数为___________;(2)数轴上存在点P到点A、点B的距离之和为16,求x.(3)若点P从A点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t,在移动过程中,存在某一时刻t,使得点P到点A距离等于点P到点B距离的2倍,请求出t的值.答案第6页,共9页15.已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且12AB =.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)当1t =秒时,写出数轴上点B ,P 、Q 所表示的数分别为_______________、_______________、_______________;(2)若点P ,Q 分别从A ,B 两点同时出发,当点P 与点Q 重合时,求t 的值;(3)若M 为线段AQ 的中点,点N 为线段BP 的中点.当点M 到原点的距离和点N 到原点的距离相等时,求t 的值.16.如图,数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,a ,c 满足()2380a c ++-=.(1)a =_____,b =_____,c =_____;(2)若动点P 、Q 分别从A 、B 同时出发,点P 以速度为3个单位长度/秒向右运动;点Q 以速度为1个单位长度/秒向左运动,求经过几秒后P 、Q 两点重合?(3)点A ,B ,C 在数轴上移动,点A 以每秒1个单位长度的速度向左移动,同时点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右移动.设t 秒后,点A ,B ,C 分别移动到点1A ,1B ,1C ,若点1A 与点1B 之间的距离表示为11A B ,点1B 与点1C 之间的距离表示为11B C ,试问311B C ﹣211A B 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求其值.17.如图,在长方形ABCD 中,AB =CD =10,AD =BC =6.动点P 从点A 出发,每秒1个单位长度的速度沿A →B 匀速运动,到B 点停止运动;同时点Q 从点C 出发,以每秒2个单位长度的速度沿C →B →A 匀速运动,到A 点停止运动.设P 点运动的时间为t 秒(t >0).(1)点P 在AB 上运动时,P A =______,PB =______,点Q 在AB 上运动时,BQ =______,QA =______(用含t 的代数式表示);(2)求当t 为何值时,AP =BQ ;(3)当P ,Q 两点在运动路线上相距3个单位长度时,请直接写出t 的值.18.点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a ﹣b |.已知数轴上A ,B 两点表示数a ,b 满足|a +2|+|b ﹣6|=0,点P 为数轴上一动点,其对应的数为x .(1)A ,B 两点之间的距离是 . (2)x 与﹣4之间的距离表示为 .(3)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为16?若存在,请求出x 的值;若不存在,说明理由.(4)现在点A ,点B 分别以2单位/秒和0.5单位/秒的速度同时向右运动,当点A 与点B 之间的距离为4个单位长度时,求点A 所对应的数是多少?参考答案1.(1)1 (2)4-或6(3)存在,t 的值为3或62.(1)1220a b ==-, (2)126202t t --+,(3)154秒或133秒272秒或292秒3.(1)15s(2)14(3)215秒 4.(1)1 (2)2-或4 (3)2秒或4秒答案第8页,共9页5.(1)A 点的运动速度是1单位长度/秒,B 点的速度是3单位长度/秒,图见解析 (2)2秒 (3)150单位长度6.(1),34t t -; (2)9,8;(3)能,4,2,3,4--.7.(1)数轴上点A 对应的数为5-,点B 对应的数为1 (2)B 、P 之间的距离为62t -,P 点需要运动3秒到达B 点 (3)2t =或68.(1)6-;4-; (2)①13m =;①43-或0;9.(1)13C C 、(2)①57133-,,;①547,,10.(1)13C C ,(2)①P 点表示的数是0或5-或25-;①P 点表示的数为20或35或12.511.(1)4,2a b ==(2)2Δ2,013,12883,23APQt t S t t t t t ⎧⎪≤≤⎪=-+<≤⎨⎪⎪-<<⎩(3)32或76米12.(1)17;5 (2)m 的值为23或13- (3)6或213.(1)1 (2)5 (3)24t - (4)1.5秒或3.5秒14.(1)-8;3; (2)x =-5或x =11; (3)4或12.15.(1)4-;5;2- (2)2.4 (3)816.(1)-3,1,8(2)经过1秒后P 、Q 两点重合 (3)不变,311B C ﹣211A B =1317.(1)t ,10﹣t ,2t ﹣6,16﹣2t(2)当t =2s 或t =6s 或t =10s 时,AP =BQ (3)当t =133s 或t =193s 时,P 、Q 两点在运动路线上相距的路程为3 18.(1)8(2)(﹣4﹣x )或(x +4) (3)存在,﹣6或10 (4)103或14。
压轴题:动点问题以及绝对值问题总结一、填空题1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)数轴上表示3和5两点之间的距离是________,数轴上表示2和-5两点之间的距离是________.(2)在数轴上表示数x的点与﹣2的点距离是3,那么x=________.(3)如果x表示一个有理数,那么|x+4|+|x﹣2|的最小值是________.(4)如果x表示一个有理数,当x=________时,|x+3|+|x﹣6|=11.2.阅读下列内容:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=________,若|x﹣2|=|x+1|,则x=________;(2)若|x﹣2|+|x+1|=3,则x的取值范围是________;(3)若|x﹣2|+|x+1|=5,则x的值是________;(4)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是________.二、综合题3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=________;B,C两点间距离=________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?4.如图,已知数轴上有A、B、C三个点,它们表示的数分别是18,8,﹣10.(1)填空:AB=________,BC=________;(2)若点A以每秒1个单位长度的速度向右运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向左运动.试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,试用含t的代数式表示P、Q两点间的距离.5.已知a是最大的负整数,与互为相反数,在数轴上,所对应的点分别为A,B,C,点P为该数轴上一动点,其对应的数为x.(1)a=________,b=________,c=________;(2)化简:;(3)三个点在数轴上运动,其中点A以每秒3个单位长度的速度向左运动,同时,点B与点C分别以每秒2个单位长度和5个单位长度的速度向右运动,试求几秒后B点到点A、点C的距离相等?6.已知A,B在数轴上对应的数分别用a,b表示,且|2b+20|+|a-0|=0,P是数轴上的一个动点,0为原点。
(1)在数轴上标出A、B的位置,并求出A、B之间的距离。
(2)已知线段OB上有点C且|BC|=6,求C点对应的数。
(3)在(2)的条件下,当数轴上有点P满足PB=2PC时,求P点对应的数。
7.已知数轴上的A、B两点分别对应的数字为a、b,且a、b满足|4a-b|+(a-4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速速延数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.8.根据下面给出的数轴,解答下面的问题:(1)观察数轴,与点A的距离为4的点表示的数是:________;(2)若将数轴折叠,使得A点与-3表示的点重合,则B点与数________表示的点重合;(3)若数轴上M、N两点所表示的数是-30、70,一只电子蚂蚁P从M出发,以2个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从N出发,以3个单位长度/秒的速度向左运动,经过多长时间,两只蚂蚁相距20个单位长度?并写出此时P、Q所在的位置.9.结合数轴与绝对值的知识回答下列问题:(1)表示﹣3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果|a+2|=3,那么a=________;(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为________;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是________;(4)当a=________时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是________.10.已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.请回答问题:(1)A、B两点间的距离是________,若点M到点A、点B的距离相等,那么x的值是________;(2)若点A先沿着数轴向右移动6个单位长度,再向左移动4个单位长度后所对应的数字是________;(3)当x为何值时,点M到点A、点B的距离之和是8;(4)如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M 运动到点A、点B之间,且点M到点A、点B的距离相等?11.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。
(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在−10处,求此时B 点的位置?12.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.13.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?14.如图,在数轴上点表示的数为20,点表示的数为-40,动点从点出发以每秒5个单位长度的速度沿负方向运动,动点从原点出发以每秒4个单位长度的速度沿负方向运动,动点从点出发以每秒8个单位的速度先沿正方向运动,到达原点后立即按原速反方向运动,三点同时出发,出发时间为(秒).(1)点在数轴上所表示的数分别为:________,________;(2)当两点重合时,求此时点在数轴上所表示的数;15.我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,直接下列问题答案:(1)|5﹣(﹣2)|的值为________;(2)若|x﹣3|=1,则x的值为________;(3)若|x﹣3|=|x+1|,则x的值为________;(4)若|x﹣3|+|x+1|=7,则x的值为________.16.己知有理数在数轴上所对应的点分别是三点,且满足:①多项式是关于的二次三项式:②(1)请在图1的数轴上描出三点,并直接写出三数之间的大小关系(用“<”连接) ;(2)点为数轴上点右侧一点,且点到点的距离是到点距离的2倍,求点在数轴上所对应的有理数;(3)点在数轴上以每秒1个单位长度的速度向左运动,同时点和点在数轴上分别以每秒个单位长度和4个单位长度的速度向右运动(其中),若在整个运动的过程中,点到点的距离与点到点的距离差始终不变,求的值.17.阅读材料:我们知道:点A.B在数轴上分别表示有理数a、b,A.B两点之间的距离表示为AB,在数轴上A.B两点之间的距离AB=|a-b|.所以式子|x−3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:(1)若|x−3|=4,则x=________;(2)式子|x−3|=|x+1|,则x=________;(3)若|x−3|+|x+1|=9,借助数轴求x的值.18.阅读材料:在数轴上表示两个数的点之间的距离可以表示为,比如表示3的点与-2的点之间的距离表示为;可以表示数的点与表示数1的点之间的距离与表示数的点与表示数-2的点之间的距离的和,根据上述材料,回答下列问题:(1)解方程(2)的最小值是________.(3)的最小值是________此时的值为________.(4)拓展推广:如图所示:当表示数的点在点和点之间(包含点和点)时,表示数的点与点的距离与表示数的点和点的距离之和最小,且最小值为3,即的最小值是3,且此时的取值范围为-2≤x≤1已知数满足则的最小值是________最大值是________.(5)当的最小值是4.5时,求出的值及对应的值或取值范围.19.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.20.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空:________ ,________ .(2)若点P到点A、点B 的距离相等,求点P 对应的数.(3)现在点A、点B分别以2 个单位长度/秒和0.5 个单位长度/秒的速度同时向右运动,点P以3 个单位长度/秒的速度同时从原点向左运动.当点A与点B之间的距离为2个单位长度时,求点P所对应的数是多少?21.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=3时,OP=________(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?答案解析部分一、填空题1.【答案】(1)2;7(2))1或-5(3)6(4)7或-42.【答案】(1)0;(2)-1≤x≤2(3)-2或3(4)-1二、综合题3.【答案】(1)解:如图所示:(2)2.5;3(3)|a-b|(4)解:①依题意有2t﹣t=3,解得t=3.故t为3秒时P,Q两点重合;②依题意有2t﹣t=3﹣1,解得t=2;或2t﹣t=3+1,解得t=4.故t为2秒或3秒时P,Q两点之间的距离为1.4.【答案】(1)10;18(2)解:答:不变.∵经过t秒后,A、B、C三点所对应的数分别是18+t,8﹣2t,﹣10﹣5t,∴BC=(8﹣2t)﹣(﹣10﹣5t)= 3t+18,AB=(18+t)﹣(8﹣2t)=3t+10,∴BC﹣AB=(3t+18)﹣(3t+10)=8.∴BC﹣AB的值不会随着时间t的变化而改变(3)解:①当0<t≤10时,点Q还在点A处,P、Q两点所对应的数分别是18﹣t,18 ∴PQ═t,②当t>10时,P、Q两点所对应的数分别是18﹣t,18﹣3(t﹣10)由18﹣3(t﹣10)﹣(18﹣t)=0 解得t=15当10<t≤15时,点Q在点P的右边,∴PQ=[18﹣3(t﹣10)]﹣(18﹣t)=30﹣2t,当15<t≤28时,点P在点Q的右边,∴PQ=18﹣t﹣[18﹣3(t﹣10)]=2t-30.5.【答案】(1)-1;1;5(2)解:由,(3)解:由对应的数分别为:,设运动时间为,则后A对应的数为:,B对应的数为:,C对应的数为:,则:,,,即运动,B点到点A、点C的距离相等.6.【答案】(1)解:画数轴略依题意得解得所以点A表示20,点B表示-10A、B两点间的距离为AB=|20-(-10)|=30(2)解:设C点表示的数为x,则x<0因为|BC|=6所以|x-(-10)|=6即x+10=6解得x=-4所以C点对应的数为-4;(3)解:设P点对应的数为y则PB=|y-(-10)|PC=|y-(-4)|因为PB=2PC所以|y-(-10)|=2|y-(-4)|所以y+10=2(y+4)或y+10=-2(y+4 )解得y=2或y=-6 ……10分所以P点对应的数为2或-67.【答案】(1)解:∵|4a-b|+(a-4)2=0.∴4a-b=0,a-4=0,解得a=4,b=16,(2)解:设运动的时间为t,所以P点表示的数为4+3t,∵PA=PB∴P为AB中点,故P点表示的数为10,则4+3t=10,解得t=2,即P运动的时间为2秒,P表示的数为10;(3)解:设运动的时间为t,由题意得①点P向C运动时,P点表示的数为4+3t,Q点表示的数为16+t,∵PQ=10,∴解得t=1或11,t=1时,P点表示的数为4+3=7,符合题意,t=11时,P表示的数为37>32不符合题意,舍去;②点P向C运动时,P点表示的数为32-3(t- )=60-3t,Q点表示的数为16+t,∵PQ=10,∴解得t= 或,t= 时,P点表示的数为60-3× = >32,不符合题意,舍去;t= 时,P表示的数为60-3× = <32符合题意综上,P点对应的数是7或时,PQ=10.8.【答案】(1)-3或5(2)0.5(3)解:设时间为t秒,则点P表示的数为-30+2t,点Q表示的数为70-3t,若点P在点Q左侧,70-3t-(-30+2t)=20,解得:t=16,此时点P表示2,点Q表示22;若点P在点Q右侧,-30+2t-(70-3t)=20,解得:t=24,此时点P表示18,点Q表示-2.9.【答案】(1)5;﹣5或1(2)6(3)12(4)1;710.【答案】(1)6;﹣2(2)﹣3(3)解:根据题意得:|x﹣(﹣5)|+|x﹣1|=8,解得:x=﹣6或2;∴当x为=﹣6或2时,点M到点A、点B的距离之和是8;(4)解:设运动t分钟时,点M对应的数是﹣3t,点A对应的数是﹣5﹣t,点B对应的数是1﹣4t.当点A和点B在点M两侧时,有两种情况.情况1:如果点A在点B左侧,MA=﹣3t﹣(﹣5﹣t)=5﹣2t.MB=(1﹣4t)﹣(﹣3t)=1﹣t.因为MA=MB,所以5﹣2t=1﹣t,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,不符合题意,舍去.情况2:如果点A在点B右侧,MA=3t﹣t﹣5=2t﹣5,MB=﹣3t﹣(1﹣4t)=t﹣1.因为MA=MB,所以2t﹣5=t﹣1,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,符合题意.综上所述,三点同时出发,4秒钟时点M到点A,点B的距离相等.11.【答案】(1)解:设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:,解得x=1,所以B点的运动速度为1个单位/秒(2)解:设经过时间为t.则B在A的前方,B点经过的路程−A点经过的路程=6,则2t−t=6,解得t=6A在B的前方,A点经过的路程−B点经过的路程=6,则2t−t=12+6,解得t=18(3)解:设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:解得y=当C停留在−10处,所用时间为:秒B的位置为12.【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.13.【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为:80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.14.【答案】(1)20-5t;-4t(2)解:时,点所表示的数为;时,点做表示的数为.解得:,当时,;当时,.此时点在数轴上所表示的数为或-3015.【答案】(1)7(2)2或4(3)1(4)﹣2.5或4.516.【答案】(1)解:∵多项式是关于的二次三项式,∴=2,a-2≠0,∴a=﹣2,∵(b-1)2+=0,∴b-1=0,c-5=0,∴b=1,c=5,∴a,b,c三数之间的大小关系为a<b<c,如图,在图1数轴上描出A、B、C三点位置.故答案为:a<b<c.(2)解:设点P在数轴上所对应的有理数为x,由题意得,x+2=2(x-5),解得:x=12,∴点P在数轴上所对应的有理数是12(3)解:设运动时间为t,此时A对应的数为(-2-t);B对应的数为(1+mt);C对应的数为(5+4t).根据题意得,[(1+mt)-(-2-t)]-[(5+4t)-(1+mt)]=[1-(-2)]-(5-1),解得:m=17.【答案】(1)7或-1(2)1(3)|x−3|+|x+1|=9数轴上3和-1之间的距离为4,满足方程的对应点在-1的左边,或者在3的右边;若在-1的左边,则x=-3.5.若在3的右边,则x=5.5所以,原方程的解为x=-3.5.或者x=-3.5.故x的值为-3.5或5.518.【答案】(1)解:解x+2=1或x+2=-1解得x=-1或x=-3(2)8(3)5;0(4)-9;8(5)解:如图,当a>0时,∵的最小值是4.5∴a=4.5-1=3.5,此时x=0当a<-1时,∵的最小值是4.5∴a=0-4.5=-4.5, 此时x=-1.19.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.20.【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以2 个单位长度/秒、0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.21.【答案】(1)18(2)解:设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC-OC=OB,∴8x -6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P(3)解:设点R运动x秒时,PR=2.分两种情况:一种情况是当点R在点P的左侧时,8x=4+6x -2即x=1;另一种情况是当点R在点P的右侧时,8x=4+6x。