浙江省慈溪市横河初级中学九年级数学(上)课件 1.2反比例函数的图像和性质(2)
- 格式:ppt
- 大小:757.50 KB
- 文档页数:21
1.2反比例函数的图像和性质(2)1.判断下列说法是否正确(1)反比例函数图象的每个分支只能无限接近x 轴和y 轴,但永远也不可能到达x 轴或y 轴.( )(2)在y=3x中,由于3>0,所以y 一定随x 的增大而减小.( ) (3)已知点A (-3,a )、B (-2,b )、C (4,c )均在y=-2x的图象上,则a<b<c .( )(4)反比例函数图象若过点(a ,b ),则它一定过点(-a ,-b ).( ) 2.设反比例函数y=3mx的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 3.点(1,3)在反比例函数y=kx的图象上,则k= ,在图象的每一支上,y 随x 的增大而 .4.正比例函数y=x 的图象与反比例函数y=kx的图象有一个交点的纵坐标是2,求(1)x=-3时反比例函数y 的值;(2)当-3<x<-1时,反比例函数y 的取值范围.5.已知反比例函数的图象经过点A (2,6)(1)这个函数的图象分布在哪些象限?y 随x 的增大而如何变化? (2)点B (3,4)、C (-212,-445)和D (2,5)是否在这个函数的图象上?6.三个反比例函数(1) y=1k x (2)y=2kx (3)y=3k x在x 轴上方的图象如图所示,由此推出k 1,k 2,k 3的大小关系7.直线y=kx 与反比例函数y=-6x的图象相交于点A 、B ,过点A 作AC 垂直于y 轴于点C ,求S △ABC .8.已知函数y=-kx (k ≠0)和y=-4x的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,则S △BOC =_________.9.已知正比例函数y=kx 和反比例函数y=3x的图象都过点A (m ,1),求此正比例函数解析式及另一交点的坐标.参考答案1.(1)对;(2)错;(3)错;(4)对2.3m >3.3 减小4.k=4,(1)当x=-3时,y=43-;(2)443y -<<-5.(1)一、三,在每一象限内,y 随x 的增大而减小.(2)B 、C 两点在这个函数图象上,D 点不在这个函数图象上.6.略7.略8.略9.略。
1.2 反比例函数的图像和性质【知识要点】1.反比例函数(0)k y k x =≠的函数是由两个分支组成的曲线.2.当k>0时图像在一、三象限;当k<0时图像在二、四象限.3.反比例函数(0)k y k x=≠的图象关于直角坐标系的原点成中心对称. 课内同步精练●A 组 基础练习 1.反比例函数43y x=-的图象在( ) A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.若函数k y x=的图象在第一、三象限,则函数y=kx-3的图象经过( ) A.第二、三、四象限 B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限3.若反比例函数21m y x -=的图象在第二、四象限,则 m 的取值范围是 . 4.反比例函数k y x=的图象的两个分支关于 _______ 对称. 5.某个反比例函数的图象如图所示,根据图象提供的信息,求反比例函数的解析式.●B 组 提高训练6. 画出反比例函数8y x -=的图象.7.如图是反比例函数()0k y k x=≠的图象在第一象限的部分曲线,P 为曲线上任意一 点,PM 垂直x 轴于点M ,求△OPM 的面积(用k 的代数式表示).课外拓展练习●A 组 基础练习1.反比例函数,321,,4y y y x x x==-=的共同点是( ) A.图象位于同样的象限 B.自变量取值范围是全体实数C.图象关于直角坐标系的原点成中心对称.D.y 随x 的增大而增大2.以下各图表示正比例函数y=kx 与反比例函数()0k y k x-=<的大致图象,其中正确的是( )3.反比例函数k y x=经过(-3, 2),则图象在 象限. 4.若反比例函数3k y x +=图像位于第一、三象限,则k . 5若反比例函数图象经过(-1, 2 ),试问点(4,-2)是否在这个函数的图象上?为什么?●B 组 提高训练6.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x 的图象,请同学们观察,并说出来.同学甲:与直线y=-x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.。