薄壳结构
- 格式:ppt
- 大小:3.04 MB
- 文档页数:31
建筑结构选型——薄壳结构学校:专业班级:指导老师:小组成员:摘要大跨建筑中的壳体结构通常为薄壳结构,即壳体厚度于其中的最小曲率半径之比小于1/20,为薄壁空间结构的一种,它包括球壳、筒壳、双曲扁壳和扭壳等多种形式。
他们的共同特点在于通过发挥结构的空间作用,把垂直于壳体表面的外力分解为壳体面内的薄膜力,再传递给支座,弥补了板、壳等薄壁构件的面外薄弱性质,以比较轻的结构自重和较大的结构刚度及较高的承载能力实现结构的大跨度。
关键词形态分类受力特点应用与发展案例研究正文1 薄壳结构的定义壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
1.1薄壳结构的特点壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳)易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
薄壳结构原理薄壳结构是一种常见的工程结构形式,其原理是利用薄壳的受力性能来承担外部荷载,实现结构的稳定和强度。
薄壳结构具有较高的承载能力和较小的自重,因此在建筑、桥梁、船舶等领域得到广泛应用。
本文将从薄壳结构的原理入手,介绍其受力特点、设计要点和应用范围,帮助读者更好地理解和运用薄壳结构。
首先,薄壳结构的受力特点是指其在受外部荷载作用下的受力性能。
薄壳结构主要受力于膜力和弯曲力,而薄壳的受力特点主要体现在以下几个方面:1. 膜力作用,薄壳结构在受到外部荷载作用时,其表面会产生张力和压力,形成膜力。
薄壳结构的受力性能与膜力的分布和大小密切相关,合理设计薄壳结构的形状和厚度,可以有效地控制膜力的分布,提高结构的承载能力。
2. 弯曲力作用,除了膜力外,薄壳结构还会受到弯曲力的作用。
在外部荷载作用下,薄壳结构会发生弯曲变形,产生弯曲应力。
合理设计薄壳结构的截面形状和支撑方式,可以有效地减小弯曲应力,提高结构的稳定性。
其次,设计薄壳结构需要注意的要点包括结构形状、材料选择和支撑方式。
薄壳结构的设计要点主要包括以下几个方面:1. 结构形状,薄壳结构的形状对其受力性能有重要影响。
合理选择薄壳结构的形状,可以使结构在受力时获得较好的受力性能,提高结构的承载能力。
2. 材料选择,薄壳结构的材料选择直接影响其受力性能和使用寿命。
合理选择材料,可以提高薄壳结构的强度和稳定性,延长结构的使用寿命。
3. 支撑方式,薄壳结构的支撑方式对其受力性能和稳定性有重要影响。
合理选择支撑方式,可以有效地减小结构的变形和应力,提高结构的稳定性。
最后,薄壳结构在建筑、桥梁、船舶等领域有着广泛的应用。
薄壳结构的应用范围主要包括以下几个方面:1. 建筑领域,薄壳结构在建筑领域主要应用于大跨度建筑和特殊形状建筑。
例如,穹顶结构、折板结构和双曲面结构等都是薄壳结构的典型应用。
2. 桥梁领域,薄壳结构在桥梁领域主要应用于特殊形状桥梁和大跨度桥梁。
薄壳结构受力特点及天津博物馆案例分析班级:土木N073 学号:2007456791432 姓名:周峰近几年来,建筑师又在蛋壳的启示下,设计了小到自行车棚大到现代化的大型薄壳结构的建筑物。
这种建筑物既坚固又节省材料。
我国北京火车站大厅房顶就是采用这种薄壳结构,屋顶那么薄,跨度那么大,整个大厅显得格外宽敞明亮,舒适美观。
举世闻名的悉尼歌剧院也是一座典型而新颖的薄壳建筑。
薄壳结构壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型奇特新颖且能适应各种平面的建筑,但较为费工和费模板。
1.筒壳(柱面薄壳):是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。
横隔间的距离为壳体的跨度l↓1,侧边构件间距离为壳体的波长l↓2。
当l↓1/l↓2≥1时为长壳,l↓1/l↓22<1为短壳。
2.圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600,跨度可以很大。
支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。
3.双曲扁壳(微弯平板):一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高f 与底面短边边长之比不应超过1/5。
双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。
适用于覆盖跨度为20~50米的方形或矩形平面(其长短边之比不宜超过2)的建筑物。
4.双曲抛物面壳:一竖向抛物线(母线)沿另一凸向与之相反的抛物线(导线)平行移动所形成的曲面。
此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。
工程中常见的各种扭壳也为其中一种类型,因薄壳结构容易制作,稳定性好,容易适应建筑功能和造型需要,所以应用较为广泛。
蛋壳就是利用了薄壳结构原理,由于这种结构的拱形曲面可以抵消外力的作用,结构更加坚固。
建筑结构选型——人工薄壳结构和天然薄壳结构的区别自然界中有十分丰富的天然壳体结构实例,如蛋壳、贝壳、脑壳、植物种子的外壳等,日常生活中也有许多人工壳体结构的实例,比如碗、罐、安全帽,还有许多建筑的外壳也是模仿了这种结构。
他们都是以最少的材料构成特定的使用空间,并具有一定的刚度和强度。
薄壳结构建筑属于仿生建筑,他将自然界中的薄壳结构运用到了建筑中,对建筑的发展起了很大的作用。
人工薄壳结构实例:代代木体育馆薄壳结构建筑有很多,其中日本的代代木体育馆就是其中之一,日本建筑大师丹下健三设计的代代木体育馆是60年代的技术进步的象征,它脱离了传统的结构和造型,被誉为划时代的作品。
代代木体育馆由两个馆组成,第一体育馆为两个相对错位的新月形,像一只巨大的海螺,第二体育馆为螺旋形,像个螺蛳,整体就像海滩边的两个贝壳,外观曲线流畅,轻快,形象动人。
能够建造出这么漂亮的建筑,得益于对薄壳结构的利用,体育馆的整个外表面都是由曲面的薄壳构成,再加上采用了高张力缆索为主体的悬索结构,创造出带有紧张感、力动感的大型内部空间以及外部新颖、流畅的造型。
也正式由于采用了薄壳结构,使得两座建筑里没有一条直线,天花板的斜坡、圆形流畅的看台、呈梯形排列的观众席、窗户所刻划出的动感,与运动员所呈现出的动感融为一体,一切都呈曲线,一切都像在动,使得整个场馆显得朝气蓬勃。
天然薄壳结构实例:贝壳贝壳也是一中天然的薄壳结构,它是软体动物的外壳,是动物本身的一种分泌物形成的钙化物,他本身就是一个薄壳结构,以最少的材料构成了特定的空间,并且有很强的刚度。
贝壳的外形艳丽,漂亮,经过加工可形成饰物等。
现代建筑中的薄壳结构正式模仿贝壳等天然形成的薄壳结构建造而成,不但外形新颖,漂亮,最重要的是他以最少的材料形成了特定的使用空间,并具有很高的强度,而且随着新材料的引入以及建筑工艺的进步,薄壳结构的强度、跨度都在不断增加,在现代建筑中运用越来越广泛。
人工薄壳结构是一中仿生结构,他们有着很多的相似之处,包括外形、受力形式、高强度等,然而,人工薄壳结构和天然薄壳结构还是存在一些差异,他们的区别大致如下:人工薄壳结构一开始的时候并不是所有形状都能做出来,因为它开始的时候主要是用砖来做的穹顶,后来发展到用混凝土做的穹顶,这种由砖或混凝土做的薄壳结构形状是有限制的,不是做成各种形状都可以,后来随着材料以及建造工艺的发展,才能够做出各种各样造型的薄壳结构;如上面提到的,人工薄壳结构的材料是多种多样的,这点和天然薄壳结构也是有区别的,天然薄壳结构多位钙化物或是纤维体等天然材料,而人工薄壳结构多采用一些人工合成的材料进行建造;还有一点就是,天然薄壳结构基本上仅是以壳体本身为整个支撑体系,而人工薄壳结构除了壳体本身外,多辅以一些其他结构来给予支撑,如代代木体育馆,除了薄壳结构,还采用了悬索结构等,并不是单一的薄壳结构。
薄壳结构的受力分析与计算薄壳结构是一种常见的结构形式,广泛应用于建筑、航空航天、汽车等领域。
薄壳结构的设计和施工需要进行受力分析与计算,以确保结构的稳定性和安全性。
本文将介绍薄壳结构的受力分析及相关计算方法。
1. 薄壳结构的定义及分类薄壳结构是指厚度相对较小、形状符合一定几何规律的结构。
根据结构的形状和受力特点,薄壳结构可以分为平面薄壳、旋转薄壳和非旋转薄壳等多种类型。
2. 薄壳结构的受力特点薄壳结构主要受到包括弯曲、剪切和膜力在内的多种力的作用。
在设计和计算过程中,需要分析结构的内力分布、变形情况以及应力状态,以确保结构的强度和刚度满足使用要求。
3. 薄壳结构的受力分析方法薄壳结构的受力分析可以采用经典理论和现代有限元分析方法。
经典理论方法包括薄壳的弯曲理论、剪切变形理论和膜力理论。
这些理论通常基于结构的几何形状和受力特点,通过假设和推导得到结构的内力分布和应力状态。
其中比较典型的理论方法有Kirchhoff理论、Love理论和Reissner-Mindlin理论等。
现代有限元分析方法是一种计算机辅助的数值计算方法,能够更精确地模拟薄壳结构的受力分析。
该方法将结构离散成有限个小单元,在每个单元上建立数学模型,通过计算机计算得到结构的内力分布和应力状态。
有限元分析方法可以对复杂的薄壳结构进行全面的受力分析,但需要考虑材料性质、边界条件和加载方式等因素。
4. 薄壳结构的受力计算薄壳结构的受力计算是在受力分析的基础上,根据结构的几何形状、材料性质和加载情况,确定结构的强度和稳定性。
在进行受力计算时,需要先确定结构的边界条件,包括支撑条件和约束条件。
然后根据受力分析的结果,计算结构的内力和应力。
根据材料的强度和稳定性要求,可以进行强度验证和稳定性分析,以确定结构的合理性和安全性。
5. 受力分析与计算的案例以一个球面薄壳为例,对其进行受力分析与计算。
首先,根据球面薄壳的几何形状和受力特点,采用适当的受力分析方法,比如Reissner-Mindlin理论。
薄壳结构班级学号:1101404-25姓名:刘益宁指导老师:彭懿日期:2013.11.20调研建筑:星海音乐厅·悉尼歌剧院·国家大剧院1薄壳结构的定义:壳,是一种曲面构建,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
2薄壳结构的特点:壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理.想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
双曲抛物面案例星海音乐厅星海音乐厅位于广州二沙岛,造型奇特的外观,富于现代感,犹如江边欲飞的一只天鹅,与蓝天碧水浑然一体,形成一道瑰丽的风景线。