5 机械波(3)
- 格式:pdf
- 大小:424.04 KB
- 文档页数:26
习题五一、选择题1.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 [ ](A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 π / b ; (D )波的周期为2π / a 。
答案:D解:由22cos()cos()2/2/y A at bx A t x a b ππππ=-=-,可知周期2T aπ=。
波长为b π2。
2.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则 [ ](A )O 点的振动方程为 cos ()ly A t u ω=-;(B )波的表达式为 cos ()l xy A t u u ω=--;(C )波的表达式为 cos ()l xy A t u uω=+-;(D )C 点的振动方程为 3cos ()ly A t uω=-。
答案:C解:波向右传播,原O 的振动相位要超前P 点luω,所以原点O 的振动方程为cos ()ly A t uω=+,因而波方程为cos ()x l y A t u u ω=-+,可得答案为C 。
3.一平面简谐波以速度u 沿x 轴正方向传播,在t t '=时波形曲线如图所示.则坐标原点O 的振动方程为[ ](A )]2)(cos[π+'-=t t b u a y ; (B )]2)(2cos[π-'-π=t t b u a y ;(C )]2)(cos[π+'+π=t t b u a y ;(D )]2)(cos[π-'-π=t t b u a y 。
答案:D解:令波的表达式为 cos[2()]xy a t νϕλ=-+πxO u 2l lyC P当t t '=, cos[2()]xy a t νϕλ'=-+π由图知,此时0x =处的初相 22t νϕ'+=-ππ, 所以 22t ϕν'=--ππ,由图得 b 2=λ, buu2==λν故0x =处 cos[2]cos[()]2u y a t a t t b νϕ'=+=--πππ4.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?[ ](A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同; (C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等;(D )媒质质元在其平衡位置处弹性势能最大。
大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。
高中物理选修3-4知识点总结1.波的特征量及其关系(1)波长:波动过程中,对平衡位置的位移总相等的两相邻质点的距离叫波长;(2)频率:波的频率由波源的振动频率决定,在任何介质中,频率保持不变;(3)机械振动在介质中的传播的距离和所用时间的比值叫波速,波速由介质本身的性质所决定(若光还和光的频率有关),在不同介质中波速是不同的。
(v =λ/T )2.介质中质点运动的特征:(1)每个质点都在自己平衡位置附近作振动,并不随波迁移;(2)后振动的质点振动情况总是落后于相邻的先振动的质点的振动3.波动图象(1)规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质...点.偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象(2)用“同侧法”判断波动图像中质点的速度方向,用作切线判断振动图像中质点的速度方向(3)在一个周期内质点沿y轴振动通过路程4A,1/4个周期不一定是A;波沿x轴匀速传播λ,1/4个周期一定是λ/44、波长、波速和频率(周期)的关系:v =△x/△t=λf=λ/ T。
5、波绕过障碍物的现象叫做波的衍射,能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波..长小..,或者跟波长相差不多。
d≤λ(超声波(它是机械波非电磁波)定位原理:频率大,波长小不易衍射,直线传播性好)6、产生干涉的必要条件是:两列波源的频率必须相同,干涉区域内某点是振动最强点还是振动最弱点的充要条件:(1)最强:该点到两个波源的路程之差是波长的整数倍,即δ=nλ;(2)最弱:该点到两个波源的路程之差是半波长的奇数倍δ= ;,即。
根据以上分析,在稳定的干涉区域内,振动加强点始终加强....。
(振动加强的点还是做简谐运动,某....;振动减弱点始终减弱时刻位移可能为零)7、声波是纵波,能在空气、液体、固体中传播.声波在固体中波速大于液体大于气体.现象叫多普勒效应。
当波源与观察者相互靠近....。
- 101 -第五章 机械波教学时数:7学时 本章教学目标了解机械波产生的条件,知道横波和纵波的区别,掌握描述波动的几个物理量(波速,波动周期和频率波长λ)之间的关系;理解波动方程的物理意义,能够应用波动方程求解相关问题;了解波的能量和能量密度、波的能流和能流密度、惠更斯原理的物理意义;掌握波的叠加原理;了解波的干涉的特点、驻波的特点;理解多普勒效应的物理意义。
教学方法:讲授法、讨论法等教学重点:理解波动方程的物理意义,能够应用波动方程求解相关问题§5.1 机械波的形成和传播一、机械波产生的条件机械波的产生必须具备两个条件:①有作机械振动的物体,谓之波源;②有连续的介质(从宏观来看,气体、液体、固体均可视作连续体。
如果波动中使介质各部分振动的回复力是弹性力,则称为弹性波.例如,声波即为弹性波.机械波不一定都是弹性波,如水面波就不是弹性波.水面波中的回复力是水质元所受的重力和表面张力,它们都不是弹性力.下面我们只讨论弹性波. 二、横波和纵波按振动方向与波传播方向之间的关系可分为横波与纵波.振动方向与传播方向垂直的波叫做横波,平行的称为纵波图是横波在一根弦线上传播的示意图将弦线分成许许多多可视为质点的小段,质点之间以弹性力相联系.设t=0时,质点都在各自的平衡位置,此时质点l 在外界作用下由平衡位置向上运动.由于弹性力的作用,质点1即带动质点2向上运动.继而质点2又带动质点3…,于是各质点就先后上、下振动起来.图中画出了不同时刻各质点的振动状态.设波源的振动周期为T .- 102 -由图可知.t=T/4时,质点1的初始振动状态传到了质点4,t=T/2时,质点1的初始振动状态传到了质点7……,t=T时,质点l完成了自己的一次全振动,其初始振动状态传到了质点13.此时,质点l至质点13之间各点偏离各自平衡位置的矢端曲线就构成了一个完整的波形.在以后的过程中,每经过一个周期,就向右传出一个完整波形.可见沿着波的传播方向向前看去,前面各质点的振动位相都依次落后于波源的振动位相.横波的振动方向与传播方向垂直.说明当横波在介质中传播时,介质中层与层之间将发生相对位错,即产生切变.只有固体能承受切变,因此横波只能在固体中传播.下图是纵波在一根弹簧中传播的示意图.在纵波中,质点的振动方向与波的传播方向平行,因此在介质中就形成稠密和稀疏的区域,故又称为疏密波.纵波可引- 103 -起介质产生容变固、液、气体都能承受容变,因此纵波能在所有物质中传播.纵波传播的其他规律与横波相同.在液面上因有表面张力,故能承受切变.所以液面波是纵波与横波的合成波此时,组成液体的微元在自己的平衡位置附近作椭圆运动.综上所述,机械波向外传播的是波源(及各质点)的振动状态和能量。
练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.练习2 质点动力学(一)参考答案1.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。
解:(1)mM m )(m 00+=+===μμ联立方程得:g m M N NT T g (2)(1)(2)BA NBA f A PCA NA PBgMm m m M T gMm m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到利用)()(0''0'0)1(μ6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d v v =- ∴ ⎰⎰=-=-vv v vvvd d ,d d 0tt m K t m K ∴ mKt /0e -=v v(2) 求最大深度 解法一: txd d =vt x mKt d ed /0-=vt x m Kt tx d e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:xm t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =练习3 刚体力学(一)参考答案1. B2. C挂重物时, mg -T = ma =mR β, TR =J β,P =mg由此解出 JmR mgR+=2β而用拉力时, mg R = J β' JmgR=/β 故有 β'>β3. ma 2 ,21 ma 2 , 21ma 2 . 4. 4.0rad/s5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。