高中物理奥赛辅导第3讲 动力学一般问题与特殊问题
- 格式:doc
- 大小:860.00 KB
- 文档页数:23
第3讲动力学一般问题与特殊问题一、知识点击1.惯性系与牛顿运动定律⑴惯性系:牛顿运动定律成立的参考系称为惯性参考系.地球参考系可以很好地近似视为惯性参考系一切相对地面静止或匀速直线运动的参考系均可视为惯性参考系.⑵牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.牛顿第一定律也称为惯性定律.牛顿第二定律:物体的加速度与其所受外力的合力成正比,与物体的质量成反比,其方.常作正交分解成:向与合外力的方向相同.即F maF x=ma x F y=ma y F z=ma z牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.2.联结体所谓“联结体”就是一个系统内有若干个物体,它们的运动情况和受力情况都一种关系联系起来.若联结体内(即系统内)各物体只有相同的加速度时应先把这联结体当成一个整体(看成一个质点).分析这类问题的一般方法是:(l)将系统中的每个物体隔离开来分别进行受力分析;(2)对每个物体用牛顿第二、三定律列方程,有的物体可以列互为正交方向上的两个方程;(3)根据具体情况确定各物体的运动特征量般(如速度、加速度)之间的关系.在解决联结体问题时确定齐物体加速度之间的关系是}分币要的.3.非惯性系牛顿第一、二定律只适用十某一类参考系、这类参考系叫惯性系.比如地面就是一个相当好的惯性系,太阳是一个非常好的惯性系,一般我们认为,相对地面没有加速度的参考系,都可视为惯性系,相对地而有加速度的参考系,都可视为非惯性系.在非惯性系中,为了使牛顿第一、二定律在形式上仍然成立,我们可以给每个物体加上一个惯性力F 0.F 0的大小为ma 0(m 为研究的物体,a 0为所选参考系相对地而的加速度), F 0的方向和a 0的方向相反.如果取一个转动的参考系,则要加上惯性离心力F 0=m ω2 R 。
惯性力是一个假想的力,完全是为了使牛顿第一、二定律在非惯性系中也能成立而人为地想象出来的,实际上并不存在.惯性力不存在施力物体,也没有反作用力.惯性力从其性质上来说,也是一个保守力,所以在有些场合也会讨论惯性力的势能.3.质心运动问题质心是物体质量中心,由几个质点组成的质点系,若这几个质点所在的位置分别是(x 1,y 1,z 1)、(x 2,y 2,z 2)……则系统的质心位置为i i i i m xx m =∑∑ i i i i m y y m =∑∑ i i i i m z z m =∑∑二、方法演练类型一、牛顿第二定律是动力学的核心,特别是质点系的牛顿第二定律解题时应用起来特别灵活多变,是解决复杂的动力学问题的主要手段。
高三物理复 习 第三章 动力学的两类问题人教实验版【本讲教育信息】一. 教学内容:复习 第三章 动力学的两类问题二. 重点、难点解析:(一)用牛顿定律解决两类基本问题1. 在牛顿定律解决的两类问题中,无论是已知受力求运动情况,还是已知运动情况求未知力,加速度都是连接力和运动的纽带.因此对物体进行正确的受力分析和运动过程的分析是解决问题的关键.在对物体进行受力分析时,常用的方法是“整体”法和“隔离”法.隔离法:使用隔离法时,可对构成连接体的不同物体隔离,也可以将同一物体隔离成若干个部分.取隔离体的实质在于把系统的内力转化为其中某一隔离体的外力,以便应用牛顿定律解题.整体法:所求量与系统内物体无关时,把物体系(连接体)看成整体,可大大简化求解过程.2. 应用牛顿第二定律解题的基本方法(1)选取研究对象:根据题意,研究对象可以是单一物体,也可以是几个物体组成的系统.(2)分析物体的受力情况.(3)建立坐标①若物体所受外力在一条直线上,可建立直线坐标.②若物体所受外力不在一条直线上,应建立直角坐标系,通常以加速度的方向为一坐标轴,然后向两轴方向正交分解外力.(4)列出牛顿第二定律方程x x yy F ma F ma =⎧⎨=⎩ (5)解方程,得出结果.在求解的过程中,注意解题的过程和最后结果的检验,必要时对结果进行讨论.3. 如果物体在运动过程中仅仅受到两个共点力的作用,通常采用平行四边形定则求出这两个力的合力,此合力方向与物体运动的加速度方向相同.如果物体同时受到三个以上共点力作用,应建立平面直角坐标系,采用正交分解法,应用牛顿第二定律分量形式来求解.即x x F ma =∑,y y F ma =∑.为了减少矢量分解给解题带来的麻烦,在建立直角坐标系时,要求分解的矢量(如力、加速度等)越少越好,常用的两种方法是:①分解力而不分解加速度(此时可规定加速度方向为正方向);②分解加速度而不分解力(此种方法一般是在以某个力为z 轴正方向时,其他力都落在两个坐标轴上而不需要再分解).【例l 】如图所示,传送带与地面倾角θ=37°,从A →B 长度为16 m ,传送带以10 m /s 的速率逆时针转动.在传送带上端A 处无初速度地放一个质量为0.5 kg 的物体,它与传送带之间的动摩擦因数为0.5。
第三讲 动力学的特别问题和方法一、 质点系的牛顿第二定律∑F =m 1a 1+m 2a 2+…+m n a n (∑F 表示质点系所受到的合外力,a 1、a 2、… a n 分别表示各质点的加速度)用这种方法要注意:(1)分析系统受到的外力,而系统内各质点间的相互作用力不需要分析;(2)分析系统内各质点的加速度大小和方向。
各质点加速度方向不相同时可采用其正交表达式为:∑Fx =m 1a 1x +m 2a 2x +…+m n a nx∑Fy =m 1a 1y +m 2a 2y +…+m n a ny例1.如图所示,倾角为θ的斜面体置于粗糙的水平面上,已知斜面体的质量为M ,一质量为m 的木块正沿斜面体以加速度a 下滑,且下滑过程中斜面体保持静止,则下滑过程中,地面对斜面体的支持力多大?斜面体受到地面的摩擦力多大? N=(M+m )g –masin θ f =ma x =macos θ例2.一只质量为m 小猫,跳起来抓住悬在天花板上质量为M 的竖直木杆,当小猫抓住木杆的瞬间,悬挂木杆的绳子断了,设木杆足够长,由于小猫不断地向上爬,可使小猫离地高度保持不变,则木杆下落的加速度为多大?a=()Mg M m +例3如图所示,A 、B 滑块质量分别是mA 和mB ,斜面倾角为α,当A 沿斜面体D 下滑、B 上升时,地板突出部分E 对斜面体D 的水平压力F 为多大(绳子质量及一切摩擦不计)?例4如图所示,跨过定滑轮的一根绳子,一端系着 m=50 kg 的重物,一端握在质量M=60 kg 的人手中.如果人不把绳握死,而是相对地面以g /18的加速度下降,设绳子和滑轮的质量、滑轮轴承处的摩擦均可不计,绳子长度不变,试求重物的加速度 asin c o s A BA A Bm m m g m m F αα-⋅⋅=+得215g=二.加速度相关关系绳、杆约束物系或接触物系各部分加速度往往有相关联系,确定它们的大小关系的一般方法是:设想物系各部分从静止开始匀加速运动同一时间,则由可知,加速度与位移大小成正比,确定了相关物体在同一时间内的位移比,便确定了两者加速度大小关系。
河北省沧州市第二中学物理竞赛培训教材第三讲动力学的特别问题和方法质点系的牛顿第二定律工F=m 1 a 1+ma 2+…+m n J(E F表示质点系所受到的合外力,a 1、4、…a0分别表示各质点的加速度)用这种方法要注意:(1)分析系统受到的外力,而系统内各质点间的相互作用力不需要分析;(2)分析系统内各质点的加速度大小和方向。
各质点加速度方向不相同时可采用其正交表达式为:E FX=m 1«1x+m 2« 2x+…+m n anxE Fy =m 1a1y+m 2a2y+ …+m n a ny例1.如图所示,倾角为0的斜面体置于粗糙的水平面上,已知斜面体的质量为M, 一质量为m的木块正沿斜面体以加速度a下滑,且下滑过程中斜面体保持静止,则下滑过程中,地面对斜面体的支持力多大?斜面体受到地面的摩擦力多大?N= (M+m)g - masin0f=ma x=macos0例2.一只质量为m小猫,跳起来抓住悬在天花板上质量为M的竖直木杆,当小猫抓住木杆的瞬间,悬挂木杆的绳子断了,设木杆足够长,由于小猫不断地向上爬,可使小猫离地高度保持不变,则木杆下落的加速度为多大?例3如图所示,A、B滑块质量分别是mA和mB,斜面倾角为a,当A沿斜面体D下滑、B上升时,地板突出部分E对斜面体D的水平压力F为多大(绳子质量及一切摩擦不计)例4如图所示,跨过定滑轮的一根绳子,一端系着m=50 kg的重物,一端握在质量M=60 kg的人手中.如果人不把绳握死,而是相对地面以g/18的加速度下降,设绳子和滑轮的质量、滑轮轴承处的摩擦均可不计,绳子长度不变,试求重物的加速度 a = 2g15河北省沧州市第二中学物理竞赛培训教材二.加速度相关关系绳、杆约束物系或接触物系各部分加速度往往有相关联系,确定它们的大小关系的一般方法是:设想物系各部分从静止开始匀加速运动同一时间,则由可知,加速度与位移大小成正比,确定了相关物体在同一时间内的位移比,便确定了两者加速度大小例5.如图所示,质量为m的物体静止在倾角为6的斜面体上,斜面体的质量为M,斜面体与水平地面间的动摩擦因数为〃.现用水平拉力F向右拉斜面体,要使物体与斜面体间无相互作用力,水平拉力F至少要达到多大?F >(N + cot0 )Mg例6如图所示,A为固定斜面体,其倾角a =30°, B为固定在斜面下端与斜面垂直的木板,P为动滑轮,Q为定滑轮,两物体的质量分别为m 1=0.4 kg和m2=0.2 kg, m 1与斜面间无摩擦,斜面上的绳子与斜面平行,绳不可伸长,绳、滑轮的质量及摩擦不计,求m2的加速度及各段绳上的张力.2 m g sin a - m ga = 1 24 m i + m 2三.力的加速度效果分配法则如果引起整体加速度的外力大小为F ,则引起各部分同一加速度的力大小与各部分质量 成正比,F 这个力的加速度效果将依质量正比例地分配.m F = FMmT M + m 例7.如图所示,质量为M 、m 、m 的木块以线a 、b 相连,质量为A m 小木块置于中间木块上,施水平力 F 拉M 而使系统一起沿水平面运动;若将小木块从中间木块移至质量为M 的木块之上,两细绳上的张力 Ta 、Tb 如何变化?(Tb 不变 Ta 减小)例8如图所示,在光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不 可伸长的轻绳相连,木块间的最大静摩擦力是/J mg .现有用水平拉力F 拉其中一个质量为2m 的木块,使四个 木块以同一加速度运动,则轻绳对m 的最大拉力是多少?例9如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m , B 的质量2m .现施水平力F 拉B , A 、B 刚好不发生相对滑动而一起沿水平面运动;若改用水平力F ,拉A ,要使A 、B 不发生相对滑动,求F , 的最大值.三、牛顿第二定律的瞬时性①加速度与力是瞬时对应的②刚性杆和绳子的力可以突变③弹簧的弹力在两端都固结时不能突变例10.如图所示,一质量为m 的物体系于长度分别为11、12的两根细绳上,11与竖直成Q 角,12水平拉直, 物体处于平衡状态.现将12剪断,求剪断瞬时11细绳上的拉力及物体的加速度.Q = g sin 0T 3=H mg 4例11.如图所示,质量分别为mA 、mB 的两个物体A 和B ,用弹簧连在一起,放在粗糙的水平面上,在水 平拉力网已知)作用下,两物体做加速度为。
动力学一、复习基础知识点一、 考点内容1.牛顿第一定律,惯性。
2.牛顿第二定律,质量。
3.牛顿第三定律,牛顿运动定律的应用。
4.超重和失重。
二、 知识结构三、复习思路 牛顿运动定律是力学的核心,也是研究电磁学的重要武器。
在新高考中,涉及本单元的题目每年必出,考查重点为牛顿第二定律,而牛顿第一定律、第三定律在第二定律的应用中得到完美体现。
在复习中,应注重对概念的全方位理解、对规律建立过程的分析,通过适当定量计算,掌握利用牛顿运动定律解题的技巧规律,强化联系实际和跨学科综合题目的训练,培养提取物理模型,迁移物理规律的解题能力。
基础习题回顾1.一个人站在医用体重计的测盘上,在人下蹲的全过程中,指针示数变化应是:A 、先减小,后还原B 、先增加,后还原C 、始终不变D 、先减小,后增加,再还原2.如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆, a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为零),用t 1、t 2、t 3依次表示滑环到达d 所用的时间,则:A 、t 1 < t 2 < t 3B 、t 1 > t 2 > t 3C 、t 3 > t 1 > t 2D 、t 1 = t 2 =t 33.有一箱装得很满的土豆(如图),以一定的初速度在动摩擦因数为μ的水平面上向左做匀⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⇔⇔⎩⎨⎧===⎪⎩⎪⎨⎧;同时性;同性质牛顿第三定律:相互性运动情况;超重和失重受力情况本问题:应用:动力学的两类基或表达式牛顿第二定律量度性,质量是惯性大小的惯性是物体的固有属物体运动状态的原因,的原因,而不是维持力是改变物体运动状态牛顿第一定律牛顿运动定律合a m a F m a F m a F y y xx ac减速运动(不计其它外力和空气阻力),其中有一质量为m 的土豆,则其它土豆对它的总作用力大小是:A 、mgB 、mg μC 、21μ+mgD 、21μ-mg4.在一次火灾事故中,因情况特殊别无选择,某人只能利用一根绳子从高处逃生,他估计这根绳子所能承受的最大拉力小于他的重量,于是,他将绳子的一端固定,然后沿着这根绳子从高处竖直下滑。
高中物理《竞赛辅导》力学部分目录第一讲:力学中的三种力第二讲:共点力作用下物体的平衡第三讲:力矩、定轴转动物体的平衡条件、重心第四讲:一般物体的平衡、稳度第五讲:运动的基本概念、运动的合成与分解第六讲:相对运动与相关速度第七讲:匀变速直线运动第八讲:抛物的运动第九讲:牛顿运动定律(动力学)第十讲:力和直线运动第十一讲:质点的圆周运动、刚体的定轴转动第十二讲:力和曲线运动第十三讲:功和功率第十四讲:动能定理第十五讲:机械能、功能关系第十六讲:动量和冲量第十七讲:动量守恒《动量守恒》练习题第十八讲:碰撞《碰撞》专题练习题第十九讲:动量和能量《动量与能量》专题练习题第二十讲:机械振动《机械振动》专题练习第二十一:讲机械波第二十二讲:驻波和多普勒效应第一讲: 力学中的三种力【知识要点】(一)重力重力大小G=mg ,方向竖直向下。
一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。
(二)弹力1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定.3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x 为弹簧的拉伸或压缩量)来计算 .在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k 1,k 2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:nk k k 1...111+=,即弹簧变软;反之.若以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为0L 的弹簧的劲度系数为k ,则剪去一半后,剩余2L 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。
第3讲 动力学 一般问题与特殊问题一、知识点击1.惯性系与牛顿运动定律⑴惯性系:牛顿运动定律成立的参考系称为惯性参考系.地球参考系可以很好地近似视为惯性参考系一切相对地面静止或匀速直线运动的参考系均可视为惯性参考系.⑵牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.牛顿第一定律也称为惯性定律.牛顿第二定律:物体的加速度与其所受外力的合力成正比,与物体的质量成反比,其方向与合外力的方向相同.即F ma .常作正交分解成:F x =ma x F y =ma y F z =ma z牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.2.联结体所谓“联结体”就是一个系统内有若干个物体,它们的运动情况和受力情况都一种关系联系起来.若联结体内(即系统内)各物体只有相同的加速度时应先把这联结体当成一个整体(看成一个质点).分析这类问题的一般方法是:(l )将系统中的每个物体隔离开来分别进行受力分析;(2)对每个物体用牛顿第二、三定律列方程,有的物体可以列互为正交方向上的两个方程;(3)根据具体情况确定各物体的运动特征量般(如速度、加速度)之间的关系. 在解决联结体问题时确定齐物体加速度之间的关系是}分币要的.3.非惯性系牛顿第一、二定律只适用十某一类参考系、这类参考系叫惯性系.比如地面就是一个相当好的惯性系,太阳是一个非常好的惯性系,一般我们认为,相对地面没有加速度的参考系,都可视为惯性系,相对地而有加速度的参考系,都可视为非惯性系.在非惯性系中,为了使牛顿第一、二定律在形式上仍然成立,我们可以给每个物体加上一个惯性力F 0.F 0的大小为ma 0(m 为研究的物体,a 0为所选参考系相对地而的加速度), F 0的方向和a 0的方向相反.如果取一个转动的参考系,则要加上惯性离心力F 0=m ω2 R 。
惯性力是一个假想的力,完全是为了使牛顿第一、二定律在非惯性系中也能成立而人为地想象出来的,实际上并不存在.惯性力不存在施力物体,也没有反作用力.惯性力从其性质上来说,也是一个保守力,所以在有些场合也会讨论惯性力的势能.3.质心运动问题质心是物体质量中心,由几个质点组成的质点系,若这几个质点所在的位置分别是(x 1,y 1,z 1)、(x 2,y 2,z 2)……则系统的质心位置为i i i i m xx m =∑∑ i i i i m y y m =∑∑ i i i i m z z m =∑∑二、方法演练类型一、牛顿第二定律是动力学的核心,特别是质点系的牛顿第二定律解题时应用起来特别灵活多变,是解决复杂的动力学问题的主要手段。
第3讲动力学一般问题与特殊问题一、知识点击1.惯性系与牛顿运动定律⑴惯性系:牛顿运动定律成立的参考系称为惯性参考系.地球参考系可以很好地近似视为惯性参考系一切相对地面静止或匀速直线运动的参考系均可视为惯性参考系.⑵牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.牛顿第一定律也称为惯性定律.牛顿第二定律:物体的加速度与其所受外力的合力成正比,与物体的质量成反比,其方.常作正交分解成:向与合外力的方向相同.即F maF x=ma x F y=ma y F z=ma z牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.2.联结体所谓“联结体”就是一个系统内有若干个物体,它们的运动情况和受力情况都一种关系联系起来.若联结体内(即系统内)各物体只有相同的加速度时应先把这联结体当成一个整体(看成一个质点).分析这类问题的一般方法是:(l)将系统中的每个物体隔离开来分别进行受力分析;(2)对每个物体用牛顿第二、三定律列方程,有的物体可以列互为正交方向上的两个方程;(3)根据具体情况确定各物体的运动特征量般(如速度、加速度)之间的关系.在解决联结体问题时确定齐物体加速度之间的关系是}分币要的.3.非惯性系牛顿第一、二定律只适用十某一类参考系、这类参考系叫惯性系.比如地面就是一个相当好的惯性系,太阳是一个非常好的惯性系,一般我们认为,相对地面没有加速度的参考系,都可视为惯性系,相对地而有加速度的参考系,都可视为非惯性系.在非惯性系中,为了使牛顿第一、二定律在形式上仍然成立,我们可以给每个物体加上一个惯性力F 0.F 0的大小为ma 0(m 为研究的物体,a 0为所选参考系相对地而的加速度), F 0的方向和a 0的方向相反.如果取一个转动的参考系,则要加上惯性离心力F 0=m ω2 R 。
惯性力是一个假想的力,完全是为了使牛顿第一、二定律在非惯性系中也能成立而人为地想象出来的,实际上并不存在.惯性力不存在施力物体,也没有反作用力.惯性力从其性质上来说,也是一个保守力,所以在有些场合也会讨论惯性力的势能.3.质心运动问题质心是物体质量中心,由几个质点组成的质点系,若这几个质点所在的位置分别是(x 1,y 1,z 1)、(x 2,y 2,z 2)……则系统的质心位置为i i i i m xx m =∑∑ i i i i m y y m =∑∑ i i i i m z z m =∑∑二、方法演练类型一、牛顿第二定律是动力学的核心,特别是质点系的牛顿第二定律解题时应用起来特别灵活多变,是解决复杂的动力学问题的主要手段。
例1.如图3—1所示,车厢B 底面放一个物体A ,已知它们的质量m A =20 kg ,m B =30 kg ,在水平力F =120 N 作用下,B 由静止开始运动,2s 内移动5 m ,不计地面摩擦,求A 在B 内移动的距离.分析和解:本题中由于不计地面摩擦,系统的和外力就 为F ,而在和外力作用下,系统内A 、B 都要产生加速度,故须应用质点系的牛顿第二定律求解。
对整体(质点系)利用牛顿第二定律有F=m A a A +m B a B ,即 120=20a A +30a B 又212B S a t =,5/2B a m s =,9/4A a m s = 21 4.52A A S a t m == 即5 4.50.5AB S m m m =-=例2.一绳跨过装在天花板上的滑轮,绳的一端吊一质量为M 的物体,另一端挂一载人梯子,人的质量为m ,系统处于平衡状态,不计摩擦及滑轮与绳的质量,如图3—2所示,要使天花板受力为零,试求人应该如何运动.分析和解:本题中要天花板受力为零,意味着质点系(整体)质心的加 速度为g ,竖直向下,处于完全失重状态.因运动前系统处于平衡状态,所以梯子的质量为M-m 。
由题意知,M 向下的加速度为g ,而梯子与人的质心向下的加速度也应为g ,才能使天花板受力为零.利用质点系的牛顿第二定律有1c i i i Ma m a ==∑()Mg M m g ma =--+(取向下为正)(21)M a g m=-(方向向下) 类型二、联结体的动力学问题是一类常见的问题,解题时除应考虑用整体法和隔离法外,还要特别注意是杆系、绳系速度、加速度的关联的类别以及物系内各物体之间是否存在相对速度和相对加速度.例3.绳EF 一端系于轻杆AB 中间,如图3—3所示,一端固定在天花板上,轻杆两端各有一质量为m 的小球,并通过AC 、BC 两绳系住一质量为M 的小球C ,不计绳的质量及绳的体积且AC=BC=AB ,求剪断BC 绳的瞬间,EF 绳的张力T 。
分析和解:本题首先是一个联结体的问题,物体系通过杆、绳连结,受力比较复杂,但同时还是一个力的瞬时性问题,连结的杆绳一发生状态或连结情况的变化,所受力立即发生变化,物系的加速度也将发生瞬时性变化。
设正三角形ABC 边长为l ,剪断BC 绳瞬间AC 绳张力为T 。
如图3—4, A 球的加速度可分解为水平方向x a 及竖直方向y a .注意到剪断BC 瞬间T EF 方向竖直向上。
2cos x ma T θ=22()sin 22l l m T αθ⋅=⋅ 2y l a α=⋅ 由以上三式得:cos 2x T a m θ=,sin 2y T a mθ= 对于C ,设其沿绳方向加速度为0a ,则有0sin Ma Mg T θ=-,0sin T a g Mθ=- 又 剪断BC 后,AC 绳仍绷紧,且A 、C 无相对转动,所以A 、C 在沿绳方向加速度相等,即0cos sin x y a a a θθ=+将0a 、x a 、y a ,值代人上式,解得2sin 2mM T g m Mθ=+ 对于T EF ,考虑AB 杆,注意到其在EF 绳限制下质心无竖直方向加速度.(87)2sin 2(2)EF m m M T mg T g m M θ+=+=+ 例4.如图3—5所示,装有滑轮的桌子,质量m 1=15kg 。
桌子可以无摩擦地沿水平面上滑动,桌子上放质量m 2=10 kg 的重物A ,重物A 与桌面间的摩擦因数μ=0.6,当绕过滑轮的绳受到F=78.4 N 的水平拉力时,求:(1)桌的加速度;(2)当拉力沿竖直方向时,桌的加速度.分析和解:本题为联结体问题,但本题的关键是重物与桌面间是否发生相对运动,解题时要先通过计算作出判断,才能最后确定列式解题的依据。
(1)当拉力为水平方向时,桌子在水平方向受到三个力作用:上滑轮的绳子拉力F ',水平向左;下滑轮绳子的拉力F ,水平向右;重物对桌的摩擦力f ,水平向右.由牛顿第二定律,得11F f F m a '+-=式中1a 为桌子加速度.重物A 水平方向受到的力有:绳的拉力F ,摩擦力f 。
当m a x 2f f m g μ==时,重物开始沿桌面运动,这时,对重物A ,有max 21F f m a ->;由桌子受力情况,可求出max 11f a m =,于是得max max 21f F f m m >+ 进一步求出221(1)m F m g m μ>+。
代人有关数字,得F>98N而实际作用绳上的力仅为78.4 N 。
因此,重物并未沿桌面滑动,重物随桌子一起以同一加速度运动.21278.4 3.14/1510F a m s m m ==≈++ (2)当拉力沿竖直向上方向时,只有在重物沿桌面滑动情况下,桌子才可能沿水平地面运动(当重物静止时,在水平方向它所受的上滑轮绳子拉力与静摩擦力大小相等、方向相反.这样一来,也使桌子所受绳子拉力与静摩擦力恰好平衡).为此,作用于绳的拉力不得小于重物与桌面间的最大静摩擦力.在所讨论的情况下满足这一条件.桌子水平方向受两个力作用:上滑轮绳子拉力,方向向左;重物对桌面的摩擦力,方向向右.因为max F f >,所以桌子将向左作加速运动.2max 2111.31/F f F m g a m s m m μ--==≈ 类型三、非惯性系的问题在正常的高中物理学习中是不牵涉到的内容,但在解题时利用了参考系的变换,在选择的参考系为非惯性参考系时注意引如惯性力可以是问题得到最大程度的简化。
例5.如图3—6所示,质点A 沿半圆弧槽B 由静止开始下滑,已知B 的质量为M ,质点的质量为m ,槽的半径为R 且光滑,而槽与地面的接触面也是光滑的,试求质点A 下滑到任意位置θ角时B 对A 的作用力.分析和解:由于槽与地面的接触面是光滑的,质点A 沿半圆弧槽B 下滑时槽B 必然后退,如果要求的是状态量,可以考虑动量和能量的观点来解题,但如果要求的是瞬时量,则常规的解题方法会有很大的困难,利用了参考系的变换,在以B 为参考系时注意引入惯性力.是解决这类问题的基本方法。
设M 的加速度向左,大小为a ,有cos F Ma θ= ①对m 以B 为参考系,其相对B 的速度为u ,且必定与圆弧相切.2cos sin u F ma mg m Rθθ+-= ② 根据动量与能量守恒,并设M 的速度为υ,同时注意m 的速度u 应转换为对地速度.(s i n M mu υθυ=- ③(水平方向动量守恒) 22211sin (2sin )22mgR M m u u θυυυθ=++- ④ 由以上①②③④式可解得222sin (32cos )(cos )Mmg M m m F M m θθθ++=+ 例6.半径为r=9.81 cm 的空心球形器皿,内部有一个不大的物体,围绕穿过对称中心的竖直轴旋转.在角速度ω1=5 rad/s 时,物体在平衡状态对器壁的压力为N 1=10-2N.在平衡状态,物体在什么角速度ω2下对器壁的压力N 2=4×10-2N?物体和器壁内表面的摩擦可忽略不计.重力加速度为g=9.81 m/s 2.分析和解:此处的平衡状态是对旋转参考系(非惯性系)而言的.图3—7上示出了钵和位于A 点的物体.0点表示球面的中心,所研讨的钵就是这个球的一部分.转动轴是用过0点的竖直断续直线表示的,研究平衡状态,较为方便的是利用半径OA 和竖直方向的夹角α.显然,02πα≤≤ 。
在旋转的非惯性系中,这个不大的物体处于平衡状态,作用在该物体上的重力(mg )和惯性离心力(2sin m r ωα)的合力,必须和钵的表面垂直,或者说必须沿半径OA 的方向作用.假若我们用ω表示钵与物体的共同角速度,则在平衡状态,从图3一7可知 22sin sin tan r r r m r r mg gωαωαα== 由上式得21sin ()0cos r r r gωαα-= 式中r α为平衡状态角α的值.从此式可知有两种情况:1)sin 0r α=,即0r α=.这个解是始终存在的.物体那时停止钵底上.它对钵壁的压力N=mg .2)2cos r grαω=,即2arccos r g r αω= 这个解只有在21g r ω≤,或者说gr ωω≥=ωgr 的数值可以算出,为10 rad/s.题中给出的ω1<ωgr .这意味着物体开始停在钵底.因此它的重量(力)为N 1,质量为1N m g=。