二次函数的图像和性质表格
- 格式:docx
- 大小:64.89 KB
- 文档页数:1
二次函数y=ax2(a≠0)的图象与性质【学习目标】1.经历探索二次函数y=ax2和y=ax2+c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.2.会作出y=ax2和y=ax2+c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响.3.能说出y=ax2+c与y=ax2图象的开口方向、对称轴和顶点坐标.4.体会二次函数是某些实际问题的数学模型.5.掌握二次函数y=ax2(a≠0)与y=ax2+c (a≠0)的图象之间的关系.【要点梳理】要点一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=ax2(a≠0)的图象二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.2.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x 的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来.要点进阶:(1)用描点法画二次函数y=ax2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值.(2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3.二次函数y=ax 2(a ≠0)的图象的性质二次函数y=ax 2(a≠0)的图象的性质,见下表: 函数 图象 开口方向 顶点坐标 对称轴 函数变化 最大(小)值y=ax 2a >0向上 (0,0) y 轴 x >0时,y 随x 增大而增大; x <0时,y 随x 增大而减小.当x=0时,y 最小=0y=ax 2a <0向下 (0,0) y 轴 x >0时,y 随x 增大而减小; x <0时,y 随x 增大而增大.当x=0时,y 最大=0要点进阶:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴. 要点二、二次函数y=ax 2+c(a ≠0)的图象与性质 1.二次函数y=ax 2+c(a ≠0)的图象 (1)0a >j xOy()20y ax c c =+>cjyxOc()20y ax c c =+<(2)0a <2.二次函数y=ax 2+c(a ≠0)的图象的性质关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>> 2(0,0)y ax c a c =+<>图象开口方向 向上 向下 顶点坐标 (0,c) (0,c) 对称轴y 轴y 轴函数变化当0x >时,y 随x 的增大而增大;当0x <时,y 随x 的增大而减小.当0x >时,y 随x 的增大而减小;当0x <时,y 随x 的增大而增大.最大(小)值当0x =时,y c =最小值当0x =时,y c =最大值3.二次函数()20y axa =≠与()20y ax c a =+≠之间的关系j yxOc()20y ax c c =+>j y xOc()20y ax c c =+<()20y ax a =≠的图象向上(c >0)【或向下(c <0)】平移│c │个单位得到()20y ax c a =+≠的图象. 要点进阶:抛物线2(0)y ax c a =+≠的对称轴是y 轴,顶点坐标是(0,c),与抛物线2(0)y ax a =≠的形状相同.函数2(0)y ax c a =+≠的图象是由函数2(0)y ax a =≠的图象向上(或向下)平移||c 个单位得到的,顶点坐标为(0,c).抛物线y =ax 2(a ≠0)的对称轴、最值与顶点密不可分,其对称轴即为过顶点且与x 轴垂直的一条直线,其顶点横坐标x =0,抛物线平移不改变抛物线的形状,即a 的值不变,只是位置发生变化而已.【典型例题】类型一、二次函数y=ax 2(a ≠0)的图象与性质例1.已知a≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .举一反三:【变式】在同一平面直角坐标系中,一次函数y ax c =+与二次函数2y ax c =+的图象大致为( ).例2.根据下列条件求a 的取值范围:(1)函数y =(a-2)x 2,当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大; (2)函数y =(3a-2)x 2有最大值; (3)抛物线y =(a+2)x 2与抛物线212y x =-的形状相同; (4)函数2a ay ax +=的图象是开口向上的抛物线.举一反三:【变式】二次函数y =mx 22-m 有最高点,则m =___________.例3. 二次函数223y x =的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A 2013在y 轴的正半轴上,点B 1,B 2,B 3,…,B 2013在二次函数223y x =位于第一象限的图象上,若△A 0B 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2012B 2013A 2013都为等边三角形,求△A 2012B 2013A 2013的边长.类型二、二次函数y=ax 2+c(a ≠0)的图象与性质例4.关于二次函数y=2x 2+3,下列说法中正确的是( )A. 它的开口方向是向下;B. 当x <﹣1时,y 随x 的增大而减小;C. 它的对称轴是x=2;D. 当x=0时,y 有最大值是3.举一反三:【变式】如图所示,抛物线2(0)y ax c a =+<交x 轴于G 、F ,交y 轴于点D ,在x 轴上方的抛物线上有两点B 、E ,它们关于y 轴对称,点G 、B 在y 轴左侧,BA ⊥OG 于点A ,BC ⊥OD 于点C .四边形OABC 与四边形ODEF 的面积分别为6和10,则△ABG 与△BCD 的面积之和为________.例5.有一个抛物线形的拱形隧道,隧道的最大高度为6m ,跨度为8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P (如图)安装一盏照明灯,灯离地面高4.5m .求灯与点B 的距离.【巩固练习】一、选择题1.若抛物线210(2)m y m x-=+的开口向下,则m 的值为( ).A .3B .-3C .23D .23-2.抛物线24y x =--的顶点坐标,对称轴分别是( ). A .(2,0),直线x =-4 B .(-2,0),直线x =4 C .(1,3),直线x =0 D .(0,-4),直线x =03.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值4.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同5.在同一直角坐标系中,函数y=kx 2﹣k 和y=kx+k (k ≠0)的图象大致是( ).A. B. C. D.6.图中是一个横断面为抛物线形状的拱桥,当水面在l 处时,拱顶(拱桥洞的最高点)离水面2 m , 水面宽4 m .如图所示建立平面直角坐标系,则抛物线的解析式是( ).A .22y x =- B .22y x = C .212y x =-D .212y x =二、填空题7.抛物线23y x =-的开口 ,对称轴是 ,顶点坐标是 .8.将抛物线2y x =-向上平移5个单位后,得到的抛物线的解析式是____ ____.9.已知(x 1,y 1),(x 2,y 2)是抛物线2y ax =(a ≠0)上的两点.当210x x <<时,21y y <,则a 的取值范围是________.10. 对于二次函数y=ax 2,已知当x 由1增加到2时,函数值减少4,则常数a 的值是 .11.抛物线2y ax c =+与23y x =的形状相同,其顶点坐标为(0,1),则其解析式为 .12.如图,⊙O 的半径为2,1C 是函数212y x =的图象,2C 是函数212y x =-的图象,则阴影部分的面积是 .三、解答题13.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为多少米?14.已知直线1y x =+与x 轴交于点A ,抛物线22y x =-的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;(2)若点B(1x ,1y ),C(2x ,2y )在抛物线C 上,且1212x x -<<,试比较1y ,2y 的大小.15. 已知正方形周长为Ccm ,面积为S cm 2. (1)求S 和C 之间的函数关系式,并画出图象; (2)根据图象,求出S=1 cm 2时,正方形的周长; (3)根据图象,求出C 取何值时,S ≥4 cm 2.。