《化工原理》第13章 热质同时传递的过程
- 格式:pdf
- 大小:2.19 MB
- 文档页数:33
《化工原理》重要概念第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同。
主要操作费溶剂再生费用,溶剂损失费用。
解吸方法升温、减压、吹气。
选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小。
相平衡常数及影响因素m 、 E 、 H 均随温度上升而增大, E 、 H 与总压无关, m 反比于总压。
漂流因子P/P Bm 表示了主体流动对传质的贡献。
( 气、液 ) 扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关。
传质机理分子扩散、对流传质。
气液相际物质传递步骤气相对流,相界面溶解,液相对流。
有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结果为k ∝ D ,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k ∝ D 0.5 。
传质速率方程式传质速率为浓度差推动力与传质系数的乘积。
因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应。
传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力。
当 mky<<kx 时,为气相阻力控制;当 mky>>kx 时,为液相阻力控制。
低浓度气体吸收特点① G 、 L 为常量,② 等温过程,③ 传质系数沿塔高不变。
建立操作线方程的依据塔段的物料衡算。
返混少量流体自身由下游返回至上游的现象。
最小液气比完成指定分离任务所需塔高为无穷大时的液气比。
NOG 的计算方法对数平均推动力法,吸收因数法,数值积分法。
第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据 ( 原理 ) 是液体中各组分挥发度的不同。
主要操作费用塔釜的加热和塔顶的冷却。
双组份汽液平衡自由度自由度为 2(P 一定, t ~ x 或 y ; t 一定, P ~ x 或 y) ; P 一定后,自由度为 1 。
泡点泡点指液相混合物加热至出现第一个汽泡时的温度。
第13章热、质同时传递的过程13.1 概述化工生产过程中,许多过程热质传递同时进行。
如干燥、吸附、热气直接水冷和热水的直接空气冷却。
在这些过程中热质传递相互影响。
例1 热气的直接水冷例2 热水的直接空气冷却13.2 气液直接接触时的传质和传热1 过程的分析⑴过程方向的判据从上一节例子讨论可看到:温差决定传热方向,即热量总从高温传向低温;压差决定传质,即物质总从高分压相传向低分压相,且气体中的水气分压最大值为同温下水的饱和蒸汽压p s。
当p水汽=p s时,传质达到极限,此时的空气称为饱和湿空气.⑵传递方向逆转的原因在上节图中可看到,当t=θ时;即传热达到瞬时平衡时,未饱和气体中p水汽<p s,此时必发生传质,水由液相到气相传质,即水汽化,这使θ下降,t>θ,传热由气相到液相,传递方向就发生逆转。
同理,p水汽=p s即传质瞬时达到平衡时,不饱和气体t>θ,传热由气相到液相,θ上升,p s也增大,p水汽<p s,这时传质由液相到气相,即汽化,也发生传递方向逆转.由此可见,一过程的继续进行必打破另一过程的瞬时平衡,从而使传递方向逆转。
2过程的速率⑴传热速率假设:①气液相界面温度θi高于气相温度t②由于水气直接接触时液相侧给热系数α远大于气相,所以气液相界面温度与液相主体温度相等,即θ=θi。
传热速率: q=α(θ-t) kw/m2 13-1⑵传质速率以水汽分压差为推动力表示当液相平衡分压p s高于气相中水汽分压p水汽时 ,传质速率:N A=k g(p s-p水汽) kmol/(s·m2) 13-2k g气相传质系数 kmol/(m2·s·kPa)②以气体湿度差为推动力表示a:湿度H的定义:单位质量干气中带有的水汽量 kg水汽/kg干气b:H与p水汽的关系为: H= 13-3p为气相总压kPaM水,M气为水与气体的摩尔质量对水与空气系统 H=0.622 13-4饱和湿度 H s=0.622 13-5c:传质速率:N A=k H(H s-H) 13-6k H以湿度表示的气相传质系数 kg/(s·m2)3 、过程的极限热质同时传递时,过程的极限与单一传递过程不同,可区分为两种情况:⑴大量气体与少量液体接触过程的极限液相状态固定不变,气相状态变化。
13.2 课后习题详解(一)习题过程的方向和极限13-1 温度为30℃、水汽分压为2kPa的湿空气吹过如表13-1所示三种状态的水的表面时,试用箭头表示传热和传质的方向。
表13-1解:已知:t=30℃,P=2kPa,与三种状态水接触。
求:传热、传质方向(用箭头表示)查水的饱和蒸汽压以Δt为传热条件,为传质条件,得:表13-213-2 在常压下一无限高的填料塔中,空气与水逆流接触。
入塔空气的温度为25℃、湿球温度为20℃。
水的入塔温度为40℃。
试求:气、液相下列情况时被加工的极限。
(1)大量空气,少量水在塔底被加工的极限温度;(2)大量水,少量空气在塔顶被加工的极限温度和湿度。
解:已知:P=101.3kPa,,逆流接触。
求:(1)大量空气,少量水,(2)大量水,少量空气,(1)大量空气处理少量水的极限温度为空气的湿球温度(2)大量水处理少量空气的极限温度为水的温度且湿度为查40℃下,过程的计算13-3 总压力为320kPa的含水湿氢气干球温度t=30℃,湿球温度为t w=24℃。
求湿氢气的湿度H(kg水/kg干氢气)。
已知氢-水系统的α/k H≈17.4kJ/(kg·℃)。
解:已知:P=320kPa,t=30℃,氢水-水系统,求:H(kg水/kg干氢气)查得24℃下,13-4 常压下气温30℃、湿球温度28℃的湿空气在淋水室中与大量冷水充分接触后,被冷却成10℃的饱和空气,试求:(1)每千克干气中的水分减少了多少?(2)若将离开淋水室的气体再加热至30℃,此时空气的湿球温度是多少?图13-1解:已知:P=101.3 kPa,求:(1)析出的水分W(kg水/kg干气)(1)查水的饱和蒸汽压(2)设查得与所设基本相符,13-5 在t1=60℃,H1=0.02kg/kg的常压空气中喷水增湿,每千克的干空气的喷水量为0.006kg,这些水在气流中全部汽化。
若不计喷入的水本身所具有的热焓,求增湿后的气体状态(温度t2和湿度H2)。
实验5 精馏塔的操作和塔效率的测定⑴ 在求理论板数时,本实验为何用图解法,而不用逐板计算法?答:相对挥发度未知,而两相的平衡组成已知。
⑵ 求解q 线方程时,C p ,m ,γm 需用何温度? 答:需用定性温度求解,即:2)(b F t t t +=⑶ 在实验过程中,发生瀑沸的原因是什么?如何防止溶液瀑沸?如何处理?答;① 初始加热速度过快,出现过冷液体和过热液体交汇,釜内料液受热不均匀② 在开始阶段要缓慢加热,直到料液沸腾,再缓慢加大加热电压。
③ 出现瀑沸后,先关闭加热电压,让料液回到釜内,续满所需料液,在重新开始加热。
⑷ 取样分析时,应注意什么?答:取样时,塔顶、塔底同步进行。
分析时,要先分析塔顶,后分析塔底,避免塔顶乙醇大量挥发,带来偶然误差。
⑸ 写出本实验开始时的操作步骤。
答:①预热开始后,要及时开启塔顶冷凝器的冷却水,冷却水量要足够大。
②记下室温值,接上电源,按下装置上总电压开关,开始加热。
③缓慢加热,开始升温电压约为40~50伏,加热至釜内料液沸腾,此后每隔5~10min 升电压5V 左右,待每块塔板上均建立液层后,转入正常操作。
当塔身出现壁流或塔顶冷凝器出现第一滴液滴时,开启塔身保温电压,开至150 V ,整个实验过程保持保温电压不变。
④等各块塔板上鼓泡均匀,保持加热电压不变,在全回流情况下稳定操作20min 左右,用注射器在塔顶,塔底同时取样,分别取两到三次样,分析结果。
⑹ 实验过程中,如何判断操作已经稳定,可以取样分析?答:判断操作稳定的条件是:塔顶温度恒定。
温度恒定,则塔顶组成恒定。
⑺ 分析样品时,进料、塔顶、塔底的折光率由高到底如何排列?答:折光率由高到底的顺序是:塔底,进料,塔顶。
⑻ 在操作过程中,如果塔釜分析时取不到样品,是何原因?答:可能的原因是:釜内料液高度不够,没有对取样口形成液封。
⑼ 若分析塔顶馏出液时,折光率持续下降,试分析原因?答:可能的原因是:塔顶没有产品馏出,造成全回流操作。
化工原理第二章流体输送机械问题1. 什么是液体输送机械的压头或扬程?答1.流体输送机械向单位重量流体所提供的能量(J/N)。
问题2. 离心泵的压头受哪些因素影响?答2.离心泵的压头与流量,转速,叶片形状及直径大小有关。
问题3. 后弯叶片有什么优点? 有什么缺点?答3.后弯叶片的叶轮使流体势能提高大于动能提高,动能在蜗壳中转换成势能时损失小,泵的效率高。
这是它的优点。
它的缺点是产生同样理论压头所需泵体体积比前弯叶片的大。
问题4. 何谓"气缚"现象? 产生此现象的原因是什么? 如何防止"气缚"?答4.因泵内流体密度小而产生的压差小,无法吸上液体的现象。
原因是离心泵产生的压差与密度成正比,密度小,压差小,吸不上液体。
灌泵、排气。
问题5. 影响离心泵特性曲线的主要因素有哪些?答5.离心泵的特性曲线指He~qV,η~qV,Pa~qV。
影响这些曲线的主要因素有液体密度,粘度,转速,叶轮形状及直径大小。
问题6. 离心泵的工作点是由如何确定的? 有哪些调节流量的方法?答6.离心泵的工作点是由管路特性方程和泵的特性方程共同决定的。
调节出口阀,改变泵的转速。
问题7. 一离心泵将江水送至敞口高位槽, 若管路条件不变, 随着江面的上升,泵的压头He, 管路总阻力损失H f, 泵入口处真空表读数、泵出口处压力表读数将分别作何变化?答7.随着江面的上升,管路特性曲线下移,工作点右移,流量变大,泵的压头下降,阻力损失增加;随着江面的上升,管路压力均上升,所以真空表读数减小,压力表读数增加。
问题8. 某输水管路, 用一台IS50-32-200的离心泵将低位敞口槽的水送往高出3m的敞口槽, 阀门开足后, 流量仅为3m3/h左右。
现拟采用增加一台同型号的泵使输水量有较大提高, 应采用并联还是串联? 为什么?答8.从型谱图上看,管路特性曲线应该通过H=3m、qV =0点和H=13m、qV=3m3/h点,显然,管路特性曲线很陡,属于高阻管路,应当采用串联方式。
蒸馏复习题一、填空题1. 精馏和蒸馏的区别在于____________________。
2. 在溶液的t-x(y)相图上,存在着_____区,精馏过程应处于_________区。
3. 理想溶液的t-x(y)相图上有两条曲线,下面一条为________线,上面一条为______线。
4. 相对挥发度 =___________________ 。
5. 相对挥发度的大小,反映溶液蒸馏分离的________程度,相对挥发度越大,表明该溶液越______分离。
6. 在某塔板上,离开该板的蒸汽组成与离开该板的液体组成呈平衡状态,则称该板为___________板。
7. 精馏操作中,进料热状况有___种。
8. 气、液两相在设备内呈连续接触的是_________塔,呈逐级接触的是___________塔。
9. 维持精馏塔连续、稳定操作的必要条件是塔顶要有_____________回流,塔底要有汽相回流。
10. 用最小回流比设计精馏塔斯社,所须之塔板数为_______________。
11. 精馏塔在全回流操作时,精馏段操作线、提馏段操作线与_____________重合,回流比R=____________,相应的理论板数为________________。
12. 在____________进料状况下,提馏段上升蒸汽流量等于精馏段上升蒸汽流量。
13. 已知汽液混合进料中,汽相与液相的摩尔数之比为3:2,易挥发组分有摩尔分数为0.3,则q=______。
14. 精馏塔分离某二元物系,当操作压强降低,系统有相对挥发度 _________,溶液的泡点____________,塔顶蒸汽冷凝温度______________。
15. 一精馏塔冷液进料。
由于前段工序的原因,使进料量F增加,但xF、q、R、不变,则L__________ 、V__________、 __________、D __________、W__________ 、xD __________、xW__________。