热质交换原理与设备 第2章
- 格式:ppt
- 大小:755.50 KB
- 文档页数:35
第二章 传质的理论基础3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273PPa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=52115233 1.5410/1.013210(25.6)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯错误!未找到引用源。
m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===第3章传热传质问题的分析和计算5、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mLL D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯6、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P=于是 325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=第四章 空气的热湿处理1、(1)大气是由干空气和一定量的水蒸汽混合而成的。
<热质交换原理与设备>第一章绪论1.分子传递的三定律3个传递系数、公式、结构上的类似性。
2.紊流传递,分子传递的基本概念基于流态划分的传递现象的两种基本形式。
3.设备的分类以及它们各自的传热机理第二章热质交换过程1.传质定义:分子扩散和对流扩散的概念基于质交换的构因划分的质交换的基本方式对流传质量概念2.5种扩散通量的定义之间的关系扩散通量质扩散通量、摩尔扩散通量、扩散通量向量、绝对扩散通量、相对扩散通量3.斐克定律的其它表示形式质量平均速度与扩散速度4.斯蒂芬定律应用情况;积分形式、微分形式,转化条件(转化为斐克定律)5.扩散系数定义,o D的定义(公式不记),随压强和温度的变化情况6.对流传质的基本公式7.边界层的概念?意义?对流传质简化模型的中心思想。
8.薄膜渗透理论的基本论点、结论(公式、推导不计)9.各准则数的物理意义普朗特,施密特,刘伊斯10.类似律的本质:阐述三传之间的类似关系(建立了…和之间的关系)11.同一表面上传质对传热的影响,对壁面热传导和总传热量影响相反由(2-90)和图2-16来分析影响12.刘伊斯关系式的表达式和意义第三章相变热量交换原理1.什么是沸腾放热的临界热流密度?有何意义?2.汽化核心分析3.影响沸腾换热的因素4.影响凝结现象的因素第四章空气热质处理方法1.麦凯尔方程的意义,热质交换设备的图解方法。
2.空气与水直接接触时热湿交换的原理,显热,潜热推动力,空气状态变化过程,实际过程3.吸收吸附法较之表冷器除湿的优点。
4.干燥循环的3个环节5.吸附剂传质速度的影响因素。
6.吸附原理:表面自由焓7.动态吸附除湿的再生方式8.吸附除湿空调系统9.吸收原理:气液平衡关系第五章 其它形式的热质交换1.空气射流的种类、特点等温自由射流的速度衰减。
非等温射流温度边界层,速度边界层,浓度边界层的特性。
起始段,主体段2.回风口空气衰减规律3.送风温差第六章 热质交换设备1.表冷器的热工计算(1)传热系数与哪些因素有关 迎面风速,析湿系数,水流速(2) 效能—传热单元法 主要原则,几个参量的意义2.喷淋室的热工计算(1)影响喷淋室热交换效果的因素。
名词解释热舒适性(人体对周围空气环境的舒适热感觉)、绝热饱和温度(绝热增湿过程中空气降温的极限)、传质通量(单位时间通过垂直与传质方向上单位面积的物质的量)、扩散系数(沿扩散方向在单位时间每单位浓度降的条件下,垂直通过单位面积所扩散某物质的质量或摩尔数、)空气调节(利用冷却或者加热设备等装置,对空气的温度和湿度进行处理,使之达到人体舒适度的要求)、新风(从室外引进的新鲜空气,经过热质交换设备处理后送入室内的环境中)、回风(从室内引出的空气,经过热质交换设备的处理再送回室内的环境中)、露点温度(指空气在水汽含量和气压都不改变的条件下冷却到饱和时的温度)、机器露点(空气在机器上结露产生凝结水的温度值)、分子传质(由于分子的无规则热运动而形成的物质传递现象)(扩散传质)、对流传质(:是流体流动条件下的质量传输过程)、质量浓度(单位体积混合物中某组分的质量)、浓度边界层(质量传递的全部阻力集中于固体表面上一层具有浓度梯度的流层中,该流层即为浓度边界层)、速度边界层(质量传递的全部阻力集中于固体表面上一层具有浓度梯度的流层中,该流层即为浓度边界层)、热边界层流体流动过程中.在固体壁面附近流体温度发生剧烈变化的薄层、雷诺类比(对流传热和摩擦阻力间的联系)、宣乌特准则数(流体传质系数hm和定型尺寸的乘积与物体的互扩散系数(Di)的比值)、施密特准则数(流体的运动黏度(v)与物体的扩散系数(D)的比值)、普朗特准则数(流体的运动黏度(v)与物体的导温系数a的比值)简要回答问题1、什么叫冰蓄冷空调?其系统种类有哪些?冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量2、根据冷却介质和冷却方式的不同,冷凝器可分为哪几类?试说明他们各自的特点?水冷和风冷冷凝器水冷,空冷,水—空气冷却以及靠制冷剂蒸发或其他工艺介质进行冷却的冷凝器。
采用水冷式冷凝器可以得到比较低的温度,这对制冷系的制冷能力和运行经济性均比较有利。
第一章 第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c G J J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m hh Le e φ-=⋅5:答:斯密特准则c i v S D =表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c v S D a Le v D a ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰9、解:200C 时的空气的物性:353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯ 由热质交换类比律可得231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=33224400 1.0132980.22100.2510/1.0132273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭02220209.48/3.140.0253600 1.195360044u m s d πρ===⨯⨯⨯⨯⨯0e 9.480.025R 15488u d υ⨯===⨯-615.2951040.25100.61c D S υ-⨯⨯===-615.29510用式(2--153)计算0.830.440.830.440.0230.023154880.6155.66,m e c sh R S ==⨯⨯=4255.660.2410 5.56610/0.025m m sh D h m sd --⨯⨯===⨯设传质速率为A G ,则 20()()()4A m A s A A dG d dx h d u d ππρρρ⋅=-=21004A A lAm A s A du d dx h ρρρρρ⋅=-⎰⎰1204exp()A s A A A s m h du ρρρρ⋅⋅-=-020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=11AAdρρρ=-1330.003 1.1953.5710/110.003A d kg m d ρρ-⋅⨯∴===⨯++∴ 代入上面的式子得:230.01193/A kg m ρ=112.23/A Ad g kgρρρ==-12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mL L D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m AA S A n h ρρ⋅∞=- 300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时 ()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H Oh T T h n ∞-=其中fgh 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808SP =于是325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当20S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H OS S s P M kgRT ρ⨯===⨯2454.3/r kJ kg =1V d d ρρρ∞⋅==+当026t C ∞=,时定性温度为023,2st t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭()1S s m h d T T d rh ρρ∞⋅=--+ 41.19326200.0172712454700905910d d-⨯-=-+⨯⨯ d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol m RT ===+22N CO C C =222220.5N N CO N CO C x x C C ===+322544101.776/8314298CO iCO M P kg m RT ρ⨯⨯===⨯32252810 1.13/8314298N i N M P kg mRT ρ⨯⨯===⨯22220.611COCO CO Na ρρρ==+20.389N a =16、解:(a )已知A M ,B M ,A x ,B xA A A A AA AB A A B B A A B B M n M x M a M M n M n M x M x M ===+++ B B B B BB A B A A B B A A B B M n M x M a M M n M n M x M x M ===+++ 已知B a ,A a ,A M ,B MA A AAAA AB A B A B A B A Bm a n M M x m m a a n n M M M M ===+++B B BBBB AB A B A B A B A B m a n M M x m m a a n n M M M M ===+++(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++20.2692N a =20.4231CO a =若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++20.3982N x =20.2534CO x =17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
第二章1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅= 223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m sP T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lAm A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023me c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===2-7、错解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯由热质交换类比律可得231Pr m p c h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭✧ 1)(第3版P25)用水吸收氨的过程,气相中的NH3(组分A )通过不扩散的空气(组分B ),扩散至气液相界面,然后溶于水中,所以D 为NH3在空气中的扩散。
热质交换原理与设备考点第二章:热质交换过程2.1 对于三传现象的解析:陈金峰2.2 质交换的基本方式:按机理分:分子扩散、对流扩散。
按推动力分:浓度扩散、热扩散、压力扩散。
同时存在分子扩散和对流扩散时称之为对流质交换。
2.3 关于扩散传质:2.3.1 斐克定律:在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A 和B 将发生相互扩散。
表达式:J 规则热运动引起的扩散过程)A= -DABdCA (只适用于分子无dzDp 2.3.2 斯蒂芬定律:m A =RT D zp´(pA1- pA2)(其中:pBM= p B2 - p B1pD z 为距BM ln B2pB1离,其中A 为扩散的组分,通常为水。
B 通常为空气)应用举例:P32 例2-42.3.3 扩散系数:实验测得,气体>液体>固体。
表示其扩散能力。
非标准状况下的扩散系数计算:D = D0p T 3 0 ( ) 2 p T2.4 对流传质与模型:2.4.1 对流传质系数:NA = hm(CAs-CA¥)hm为对流传质系数,CAs和CA¥分别为壁面处和主流的浓度2.4.2 相际间对流传质模型:刘易斯关系式 h = c ´ r ´ Le ,Le 等于 1 2.4.2.1 薄膜理论:当流体靠近物体表面流过时,存在一层附壁薄膜,在薄膜的流体侧与具有浓度均匀的主流连续接触,并假设膜内流体与主流不相混合和扰动。
在此条件下, 整个过传质程中相当于此薄膜上的扩散作用,而且认为在薄膜上垂直于壁面方向上呈线性浓D 度分布,膜内的扩散传质过程具有稳态的特性。
由薄膜理论,传质系数 h m = d .2.4.2.2 渗透理论:当流体流过表面时,有流体质点不断穿过流体的附壁薄层想表面迁移并与之接触,流体质点在与表面接触之际则进行质量的转移过程,此后质点又回到主流 核心中去。
流体质点在很短的接触时间内,接受表面传递的组分过程表现为不稳态特征。