黑体辐射普朗克假说
- 格式:ppt
- 大小:663.50 KB
- 文档页数:35
黑体辐射公式(普朗克公式):推导普朗克黑体辐射公式设黑体腔内是稳定的驻波场,是具有不同频率、不同传播方向的驻波系统.在腔壁上电场形成波节,磁场形成波腹.每一驻波代表一种振动模式. 以长方形腔为例.腔内某一驻波的波矢为:产生驻波的条件为: 其中因此,谐振腔中可以存在的波矢为:因此有一组 对应一种模式.不同的频率应有不同的模式,相同的频率,因k 方向不同,也会有不同的模式. 一组 对应一个波矢,对应波矢三维空间中的一个点.波矢三维空间中的一任意点,其坐标为 注意:驻波波矢有限制.不同的 形成三维空间点阵, 8个格点形成一个长方体元, 每个格点又属于8个长方体元因此,每一格点对应一个长方体元, 有n 个格点, 对应n 个长方体元, 就有n 个振动模式.频率从 0~ν 范围内, 有多少个振动模式? 由 可知,允许存在的波矢数等于在波矢空间内半径为2πν/c 的球体内可以存在的体元数。
因m 1、m 2、m 3为正整数,故对应1/8球体内的体元数: 3221(,).1h kTh r T ce νπνν=⋅-2222,x y z k k k k =++2cos ,x k παλ=2cos ,y k πβλ=2cos ,zk πγλ=123,,0,1,2,m m m =112cos ,L m αλ=222cos ,L m βλ=332cos .L m γλ=11,x k m L π=22,y k m L π=33.z k m L π=222,/k c c πππνλν===22222312123()()()m m m k L L L π⎡⎤=++⎢⎥⎣⎦222312123()()().22m mm c c k L L L νπ==++1,2,3m m m 1,2,3m m m 123123(,,)m m m L L L πππ1,2,3m m m 222222()x y z k k k k cπν==++43331424(),833V c cπνπνπ=⋅=⋅球体元的体积:其中,V =L 1L 2L 3为谐振腔的体积 体元数:考虑到两个偏振态:将上式两边除以V 并对ν 微分,得单位体积频率在ν~ d ν 范围内的本征模数. 普朗克认为,黑体腔器壁是不同频率的线性谐振子,由能量子假说,这些谐振子取分立的值,按照玻耳兹曼定理,具有能量 的振动几率有如下关系所以,平均能量为壁上振子分布应与驻波分布相同,因此单位体积内频率范围在 ν ~ d ν 内的能量密度为黑体单色辐出度为二 证明关系式热辐射以光速c 向各个方向辐射,因此,在任意一方向上的立体角d Ω内,频率为ν的辐出度为在小孔外2π立体角空间内总辐射能量为 3123.V L L L Vππππ=⋅⋅=元334,3V V V c πν=⋅球元338.3N V cνπν=⋅238,dn d cπνν=0,h εν=0,m εε=0000,,2,3εεε230001:::kTkTkTeeeενενεν---0000000.11m kTm kT m h kTkTm m eh ee eεεενεενε--∞=∞====--∑∑3381().1h kTh d ceνπνρνν=⋅-30221(,)(,).41h kTc h r T T c eνπννρν==⋅-22001(,)(,)cos sin (,)44cr T c T d d T ππνρνθθθφρνπ==⎰⎰0(,)(,).4cr T T νρν=0(,)(,)cos ,4cdr T T d νρνθπ=Ω。
普朗克黑体辐射公式的详细推导普朗克假设黑体辐射是由一系列离散的微观振动体产生的,这些振动体能够吸收和释放以能量量子(hf)为单位的能量。
当这些振动体处于平衡状态时,设振动体的能量分布函数为Ψ(ε),其中ε表示振动体的能量。
考虑单位体积和单位能量范围内的振动体数目,记为N(ε)dε,其中N表示单位体积内振动体的总数。
根据统计力学的理论,N(ε)dε可表达为波尔兹曼分布,即:N(ε)dε = g(ε)exp(-ε/kBT)dε其中,g(ε)表示在特定能量范围内的能量态的数目,exp(-ε/kBT)是由玻尔兹曼因子得到,k是玻尔兹曼常数,T是温度。
由于辐射的能量不连续,因此,可以将单位体积和单位频率范围内的振动体数目表示为N(v)dv,其中v表示频率,dv表示频率范围。
考虑到能量和频率之间的关系,有ε = hv,其中h是普朗克常数。
根据可加性和幂次原理,能量态的数目g(ε)应满足:g(ε)dε=4π(2m/h^2)^(3/2)ε^(1/2)dε其中,m是振动体的质量。
将ε和dε用v和dv表示,并对能量态的数目函数进行简化得到:g(v)dv = (8πv^2/c^3)dv其中,c是光速。
由于单位体积和单位能量范围内的振动体数目与单位体积和单位频率范围内的振动体数目之间有关系:N(ε)dε = N(v)dv将上述得出的g(ε)和g(v)带入上式,并整理可得:N(v) = (8πv^2/c^3)exp(-hv/kBT)dv可以将上式转化为单位面积、单位时间、单位频率范围内的能量密度u(v):u(v) = N(v)hv代入上式并进行整理,得到:u(v) = (8πhv^3/c^3)exp(-hv/kBT)dv利用频率和波长的关系,即v=c/λ,可以将上式转化为以波长表示的能量密度:u(λ) = (8πhc/λ^5)exp(-hc/λkBT)dλ这就是普朗克黑体辐射公式的最终形式。
通过对普朗克黑体辐射公式的推导,我们可以看出,普朗克假设了黑体辐射的能量是以能量量子为单位的离散量,这个假设是量子力学发展的重要先导。
黑体辐射的量子假说
黑体辐射的量子假说是指根据普朗克的量子理论,黑体辐射的能量不是连续分布的,而是以离散的能量量子形式存在的。
普朗克在1900年提出了辐射的量子假说,他认为辐射的能量
只能以离散的形式传播,且每个能量量子的大小与频率呈正比。
这个能量量子被称为普朗克常数,记作h。
根据量子假说,辐
射能量E与频率ν之间的关系为E = hν,其中h约等于
6.62607015 × 10^-34 J·s。
量子假说的提出解决了经典物理学中的紫外灾变问题,即根据经典电动力学理论,黑体辐射的能量应该是无限大的。
量子假说进一步奠定了量子力学的基础,推动了对微观世界的探索,对现代物理学的发展产生了巨大的影响。
普朗克黑体辐射公式的详细推导辐射是物体由于内部热运动而产生的电磁波。
普朗克假设黑体辐射是由许多振动的谐振子(即电磁振子)组成的,每个谐振子只能具有离散能量值。
普朗克假设这些能量是量子化的,即能量E只能取整数倍的基本能量hν,其中ν为辐射频率。
设一个振子的能量为E,频率为ν,则E=hν。
普朗克认为振子的能量只能取整数倍的基本能量hν,因此振子的能量只能是离散的。
假设在单位时间内,频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为n(E,ν)。
则单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为:n(E,ν)dEdν为了求解n(E,ν),我们需要引入玻尔兹曼分布和玻尔兹曼常数k。
在热平衡状态下,系统中具有能量E的状况数(即相同的谐振子数)为:W(E)=n(E,ν)*e^(-E/kT)其中,T为系统的温度,n(E,ν)为单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数。
根据统计物理学的理论,系统的熵S与状况数W的关系为:dS = k * ln W(E)将W(E)代入上式并对E求微分,我们可以得到:dS = k * [ d(n(E,ν)) - (E/kT) * dn(E,ν) ]根据熵的最大化原理,熵是关于能量的单调递增函数,即dS>=0,即有:d(n(E,ν)) - (E/kT) * dn(E,ν) >= 0 (式1)我们将式1两边对E积分,可得:∫(d(n(E,ν)) - (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν) (式2)其中,积分区间为0到E。
对式2进行变换,得到:n(E,ν) - (∫0到E (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν)整理后,我们可以得到:n(E,ν)=[∫0到E(1/e^(E/kT))]*n(E,ν)令x=E/(kT),则式子变为:n(E,ν)=[∫0到x(1/e^x)]*n(E,ν)通过计算可知,上式的积分结果为:∫0到x(1/e^x)=1-(1+x)e^(-x)将该结果代入n(E,ν)的表达式中,我们可以得到:n(E,ν)=(1-(1+x)e^(-x))*n(E,ν)(式3)进一步简化,我们可以得到:n(E,ν)=(1-(1+E/(kT))e^(-E/(kT)))*n(E,ν)(式4)根据统计物理学的经验公式,单位体积频率为ν到ν+dν范围内,能量为E到E+dE范围内的谐振子数n(E,ν)与能量E的关系为:n(E,ν)=C*E^3*1/(e^(E/(kT))-1)(式5)其中,C为常数。
量⼦⼒学:普朗克关于⿊体辐射的研究从⿊体辐射到现在,我们好像刚刚来过!——灵遁者我们不能⼀下⼦解决所有问题,很多问题需要时间,这是⼀个客观的现象。
由研究对象本⾝或时代背景限制所造成。
⽐如要研究⽉⾷,⽇⾷的规律,超新星的爆发,太阳风等现象。
这些现象本⾝不常发⽣,超新星爆发⼀般是⼏⼗年⼀次,那么你如何快速搞清楚呢?⼀个⼈的⼀⽣,也许只能见⼀次吧。
所以书籍和知识传递就变的异常重要。
⼀个⼈的⽣命是有限的,但很多后代的⽣命连续起来,也还是可观的。
我收到了读者的反馈,建议我增加关于⿊体辐射的内容。
其实这些内容,在本书中的章节中,有提到了。
但我还是觉得读者反馈的意见是不错的。
⽐较⿊体辐射是量⼦⼒学的开端事件,所以就有了本章的内容。
我们知道任何物体都具有不断辐射、吸收、发射电磁波的本领。
⿊体辐射能量按波长的分布仅与温度有关。
辐射出去的电磁波在各个波段是不同的,也就是具有⼀定的谱分布。
这种谱分布与物体本⾝的特性及其温度有关,因⽽被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了⼀种理想物体——⿊体(blackbody),以此作为热辐射研究的标准物体。
⿊体的定义就是:在任何条件下,对任何波长的外来辐射完全吸收⽽⽆任何反射的物体,即吸收⽐为1的物体。
在⿊体辐射中,随着温度不同,光的颜⾊各不相同,⿊体呈现由红——橙红——黄——黄⽩——⽩——蓝⽩的渐变过程。
某个光源所发射的光的颜⾊,看起来与⿊体在某⼀个温度下所发射的光颜⾊相同时,⿊体的这个温度称为该光源的⾊温。
“⿊体”的温度越⾼,光谱中蓝⾊的成份则越多,⽽红⾊的成份则越少。
例如,⽩炽灯的光⾊是暖⽩⾊,其⾊温表⽰为4700K,⽽⽇光⾊荧光灯的⾊温表⽰则是6000K。
正是对于⿊体的研究,使⾃然现象中的量⼦效应被发现。
⽽在现实中⿊体辐射是不存在的,只有⾮常近似的⿊体(好⽐在⼀颗恒星或⼀个只有单⼀开⼝的空腔之中)。
理想的⿊体可以吸收所有照射到它表⾯的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该⿊体的温度有关,与⿊体的材质⽆关。
普朗克黑体辐射量子理论普朗克的假设在热力学中,黑体(Black body),是一个理想化的物体,它能够吸收外来的全部电磁辐射,并且不会有任何的反射和透射。
随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。
“紫外灾难”:在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机。
)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
爱因斯坦的光电子假设截止电压,最大动能,极限频率,几乎瞬时发射,偏振方向经典理论无法完美解释以上现象1905年,爱因斯坦发表论文《关于光的产生和转化的一个试探性观点》,对于光电效应给出另外一种解释。
普朗克黑体辐射公式推导普朗克黑体辐射公式是描述黑体辐射谱的一个重要公式,由德国物理学家马克斯·普朗克于公元1900年推导得出。
这个公式在量子力学的起源和发展中起到了重要的作用,被称为“普朗克的奇迹”。
下面我们将对普朗克黑体辐射公式进行推导。
首先,我们需要了解什么是黑体辐射。
黑体是指一个能将所有传入它的辐射吸收完全,并能以最大限度地辐射出来的理想物体。
黑体辐射谱指的是黑体在不同波长上辐射的强度分布特性。
普朗克的推导基于两个假设。
第一,电磁辐射是由许多具有不同能量的微观振动子组成的。
第二,这些微观振动子的能量是量子化的,即只能取离散的特定值。
根据热力学理论,一个谐振子在频率ω上分布的能量是由玻尔兹曼分布给出的:n(ω) = (1 / (exp(ħω / kT) - 1)其中n(ω)是单位体积中在频率ω上的振动子数,ħ是普朗克常量除以2π,k是玻尔兹曼常量,T是温度。
一个谐振子的能量为ħω,所以单位体积中在频率ω上的能量分布就是n(ω)乘以该能量:E(ω)=ħω*n(ω)现在我们将微观振动子的能量与频率进行积分,得到所有振动子的能量。
积分的范围从零到无穷大,对于每一个能量级别ΔE,能量能取的频率范围是(ΔE-ΔE+δΔE),其中δΔE是能量级别间的间隔。
我们有:E(ΔE)=∫(ΔE-ΔE+δΔE)E(ω)dω代入E(ω)的表达式:E(ΔE)=∫(ΔE-ΔE+δΔE)ħω*n(ω)dω然后将n(ω)的表达式代入:E(ΔE) = ∫(ΔE-ΔE+δΔE) ħω * (1 / (exp(ħω / kT) - 1)) dω接下来,我们通过变换积分变量,将积分变为更简洁的形式。
令x=ħω/(kT),代入上式:E(ΔE) = (kT)^4 / (ħ^3 c^2) ∫(ΔE-ΔE+δΔE) x^3 / (exp(x) - 1) dx右边的积分是一个标准的积分,可以通过数值计算或查表得到。
下面我们将这个积分表示为一个函数f(x)。