多波束安装步骤
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
EM2040多波束操作手册一、设备介绍EM2040多波束系统是一款高性能的声纳设备,广泛应用于海洋探测、水下考古、海底地形测绘等领域。
该设备采用先进的波束形成技术,可以实现大范围、高精度的水下探测。
EM2040多波束系统由发射器、接收器、信号处理单元、显示器等部分组成,具有模块化设计,可以根据实际需求进行配置和升级。
二、安装与连接在安装EM2040多波束系统之前,请确保已阅读并理解所有安装指南和安全注意事项。
设备应安装在稳定的工作平台上,确保电源和信号传输线的稳定性。
按照安装手册的步骤进行设备的上架、电缆连接和初始配置。
在完成安装后,务必进行全面的测试以确保设备的正常运行。
三、系统配置在开始使用EM2040多波束系统之前,需要进行一系列的系统配置。
这包括设置系统参数、配置信号处理算法、选择合适的波束模式等。
根据不同的应用需求,用户可以通过用户界面或命令行接口进行系统配置。
建议在熟悉设备性能和操作的前提下进行系统配置,以确保数据的准确性和可靠性。
四、波束调整波束调整是多波束系统中的重要环节,它涉及到波束的方向、宽度和增益等方面的调整。
通过合理的波束调整,可以提高探测精度和覆盖范围。
在进行波束调整时,建议使用标定信号或已知的目标进行测试,以确保调整效果的准确性。
同时,定期进行波束调整可以保持设备的最佳性能状态。
五、数据采集与处理EM2040多波束系统能够实时采集和处理大量水下数据。
数据采集可以通过系统自带的显示器或外部记录设备进行。
数据处理包括信号处理、波束形成、目标检测与跟踪等环节。
通过合理的数据采集与处理,可以得到准确的目标位置、速度和航行参数等信息。
同时,用户可以根据实际需求对数据进行进一步的分析和处理,以提高探测精度和应用效果。
六、故障排除在遇到问题时,首先应查阅用户手册或在线文档以获取解决方案。
如果问题无法解决,建议联系设备制造商的技术支持团队或专业服务提供商以获得帮助和支持。
同时,记录故障现象和解决方案对于今后的故障排除工作也是非常有帮助的。
多波束测量流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!多波束测量是一种先进的测量技术,通过同时使用多个传感器波束,可以实现更准确、更高效的测量流程。
多波束测深系统在海洋工程测量中的应用研究在时代和科学快速发展的情况下,大部分海洋航道测试都使用了具有创新性和实际性的测量技术,在这种情况下多波束系统得到了非常广泛的应用,并且取得了非常好的效果。
基于此,本文首先对多波束系统进行介绍,之后对多波束系统的实际应用和应用实例进行深入研究,希望可以通过这种方式确保海洋航道测试的准确性。
标签:多波束系统;海洋工程;相关研究多波束系统中主要利用了条带类型的测量方法,这个系统可以对海底的实际情况进行测量,而且还能精准得出海底地貌数据。
若是可以有效对这种系统进行应用,那么就能加快地形测量技术发展的速度,而且还能提升海底测量的精准程度。
1 多波束系统概述多波束与传统的单波束相比具有一定的优势,特别是在海底构造测量的准确性和实际性方面,整体提升了海底测量的实际效果,而且也节省了工程开展的时间。
2 多波束测深系统的在海洋工程测量中的应用2.1在油田调查中的应用在一般情况下进行海上油田调查时,使用的测量设备都是单波测量设备,实际的测量过程中会受到遮挡物的影响,所以整体降低了GPS的精度,而且有时也无法进行定位。
除此之外,使用这种设备很难对桩柱附近的水深进行测量,所以在进行施工时不具有安全性。
但是在进行测量的过程中使用多波束测量系统,不光具有非常高的清晰度,而且也能在一定的距离内对油井的实际情况进行了解,准确得出实际的作业情况。
目前国内大部分油田工程采用EM3000系统,这种系统能够准确测出地图实际的阴影情况,而且还能非常清楚地看出安装后的地形状态,若是在进行施工的过程中使用单波束系统根本无法达到这种效果。
采油平台阴影地形图实际情况如图1所示。
图1 采油平台阴影地形图2.2 在锚地测量中的应用锚地测量的实际内容是,利用对海底测量得出此部分施工是否可以使用锚地操作进行。
在一般情况下,锚地施工都是依靠单波束系统进行,通过这种方式得出测量区域的深度、地貌以及地质情况,但是这种方法工作量大、耗能高以及施工时间长。
一、多波束、劈裂天线3.1.应用场景3.1.1.密集城区场景密集城区优化问题一直是网络优化难点之一,密集城区建站难,深度覆盖不足,个人用户私装放大器,导致网络上行底噪不断抬升,通话质量不断下降。
密集城区场景主要存在以下特点:➢高话务压力:密集城区存在大量移动用户,话务量高,导致基站配置不断增加,网络干扰剧增➢深度覆盖不足:密集城区楼房建设密集,对无线信号的传播影响很大➢基站建设困难成本高:密集城区居民对移动基站比较敏感,建站选址困难。
密集城区楼房建设密集,信号传播损耗大,依靠宏站和分布系统覆盖成本高➢干扰严重:载频多,无线环境复杂,内部干扰严重,而且容易对周边基站造成影响➢针对不同场景问题应用多波束天线可以有效解决以上问题,以下将结合实际案例介绍多波束天线的应用。
通过多波束天线优秀的覆盖特性。
在覆盖上做到精细控制,减少过覆盖、多重信号重叠造成的各种优化困难。
在容量上,以需求为导向,提升网络容量,解决接入困难的问题。
从而提高GSM1800信号在城中村深度覆盖能力,从而实现双频网话务均衡的目标,降低城中村私装直放站对GSM900网络造成的影响,提升用户感知。
3.1.2.高话务场景高话务场景是指在某个网络中,用户比较集中、话务水平高于其他区域的场景,例如校园、车站、机场、广场等。
在这些场景中,由于用户数量庞大,周围的基站建设也比较集中。
无线网络呈现强信号、强干扰、高负荷、高需求的特点。
因为用户多而且相对集中,在很小的范围内需要较多的基站覆盖以保证容量,而过多的基站信号重叠会带来了干扰、频繁切换等问题,同时,控制覆盖的困难导致难以投入更多的载波资源,从而限制了网络容量,造成拥塞、接通问题。
高话务场景的优化一直是大中城市网络优化的难点,处于场景中的客户多数是网络敏感客户,对网络的轻微变化感知明显,容易造成网络投诉,这就要求高话务场景的优化要十分谨慎。
另外,对高话务场景的优化要考虑到频率、小区容量、基站选址等问题,实施扩容看似简单的手段,在这种场景下受到种种限制而难以实施,或实施后产生很大的负作用。
5G 基于单/多波束的统一接入流程在NR中,统一初始接入流程需考虑单波束和多波束操作。
接入方案的设计应涵盖不同的场景以及TRP和UE的不同假设能力。
在NR的低频网络中,TRP/UE的下行覆盖区域或上行覆盖距离可以由单个波束覆盖,这被称为基于单波束的方法。
然而,在更高频率的情况下,由于较大的路径损耗,信道/信号传输严重依赖于高度定向链路。
在这种情况下,需要多个定向波束来覆盖下行覆盖区域并执行初始接入,这称为基于多波束的方法。
无论如何,从UE的角度来看,对于基于单波束或多波束的方法,初始接入过程应尽可能统一。
此外,TRP的不同波束赋形能力和UE的波束赋形能力也将影响基于波束的接入设计。
例如,取决于TRP的波束赋形能力,它可能能够在一个方向、多个方向或实际上在所有可能的方向上同时发送同步信号。
无论如何,对于TRP/UE的不同波束赋形能力,初始接入过程也应该尽可能统一。
对于高频情况下基于多波束的接入操作,小区所需的波束数量可能非常大。
具有不同波束的初始接入信道/信号通常是具有相同传送信息的多次重复。
与基于单波束的方法相比,这些信道/信号的开销随着小区中所需波束数的增加而增加。
因此,基于波束接入的第一个问题是开销。
此外,由于UE的移动性,接收初始接入信道/信号的UE的服务波束可能需要改变。
UE处频繁的波束切换将在可靠性方面带来新的挑战。
所以,对于基于波束的初始接入信道/信号,NR系统设计中应考虑以下问题:●基于多波束方法的开销问题●基于波束传输的可靠性问题初始接入流程取决于网络部署场景。
考虑到单波束只是多波束的一个特例,多波束的设计也可以应用于单波束。
以下设计适用于两种方法。
非独立场景中的初始接入当NR在低频率(例如sub-6 GHz)和较高频率下工作时,NR较低频率的TRP可协助较高频率的TRP完成接入过程。
此部署称为多连接操作。
在这种情况下,假设UE已经实现到LF-TRP的粗略同步,并且已经连接到低频网络。
R2Sonic 20XX 多波束操作流程一、参照如下配置清单:1多波束水下地形测量系统SONIC 2024,包括收/发射换能器、15米数据电缆、声呐接口单元(SIM )2 Octans-IV 光纤罗经和姿态传感器3 AML Minos X 声速剖面仪4 Micro 表面声速探头,包括15米数据电缆5 GPS 信标接收机 Hemisphere R330 6QINSy 实时数据采集处理和显示软件 7Caris Hips & Sips 数据后处理软件二、连接示意图如下:1OCTANS 罗经和运动传感器接线盒网线GGA声速剖面仪GPSQinsy1PPS+ ZDA数据采集计算机表面声速探头2024 换能器三、操作流程1.前期准备了解测区概况,包括测区的水文、潮汐和地质情况,测区中央子午线、投影及坐标转换参数等内容。
2. 设备安装如上图所示,将多波束和表面声速探头安装到导流罩上,并通过安装杆固定到船上,要保证船在航行的过程中,多波束安装杆不能抖动,否则无法保证数据的准确性。
3. 系统接线安装GPS及光纤罗经Octans,按照连接示意图,完成多波束及辅助设备的连接。
4. 系统供电PC开机,GPS、Octans和SIM(多波束声纳接口单元)通电。
5. 声速剖面测量测量船开到测区,停船。
参照说明书《MinosX用户使用手册》,测量声速剖面。
6. 运行R2Sonic.exe多波束控制软件,参照说明书《Sonic 2024 使用指南》。
如果SIM盒上没有外接表面声速探头,则在Settings->Ocean settings…,勾选Sound velocity,输入探头所在深度的声速值,SVP的指示灯显示为黄色。
如果SIM盒上没有外接姿态数据(TSS1格式,100hz),且Settings->Sensor settings…,Motion的Interface选择Off,那么,MRU显示为灰色。
一定要保证GPS、PPS的指示灯为绿色,时间显示为格林威治时间,否则,表明时间没有同步,不能进行下一步操作。
一、系统配置
1、多波束声纳传感器
2、电源线、网线(用于多波束与电脑之间数据传输)、电缆线(连接GPS与RPH至电脑)、USB转串口线2根
3、RPH传感器
4、GPS及天线
5、高配置电脑(100M以上网卡、双核或四核以上、WinXP系统、处理器2.8GHz以上)
6、导航船与安装支架
7、直流电源24V (I max=2A)
二、具体要求
1、连接电源线与网线到多波束装置,用24V直流电源,将网线插到多波束网口里,另一端连至笔记本;
2、将USB转换器插到电脑上获取串口号;
3、将USB转换器与RPH传感器和GPS连在一起;
4、连接RPH电源与GPS电源;
5、第一次运行软件时需配置笔记本的系统配置;
5.1、安装USB转串口驱动
5.2、禁用杀毒软件及无线网络
5.3、禁用省电模式
5.4、配置本地IP:192.168.1.188,子网掩码:255.255.255.0
5.5、配置网络适配器速度为“自动侦测”
(设备管理器--网络适配器--属性--高级--连接速度和双工模式--自动侦测)
5.6、使用“msconfig”程序时禁启后台所有任务
(Microsoft System Configuration,系统配置实用程序,“开始”--“运行”--键入“msconfig”--选择要禁用的程序)
5.7、安装好多波束测量软件
6、安装要求
6.1、GPS、RPH、多波束装置竖直方向在一条杆上,三者的三维坐标方向一致,GPS
坐标(Xg,Yg,Zg),换能器坐标(Xt,Yt,Zt),船坐标(X,Y,Z),O为船重心坐标原点;
6.2、Xt=Xg为GPS所在杆与船重心的X向垂直距离;Yt=Yg=0为GPS所在杆与船重心的Y向垂直距离;Zt>0为换能器入水深;Zg<0为GPS到换能器Z向垂直距离;Zc<0表示船重心在水面以上;
7、校准
7.1、对RPH的角误差进行校准
用Patch Test获取或预设一估值;
7.2、对GPS位置进行校准
GPS天线位置相对于换能器位置的偏离值;GPS延时是GPS记录的延时;。