晶体管基础知识
- 格式:ppt
- 大小:4.90 MB
- 文档页数:132
三极管基础知识及测量方法三极管基础知识及测量方法一、晶体管基础双极结型三极管相当于两个背靠背的二极管PN 结。
正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。
在共发射极晶体管电路中 ,发射结在基极电路中正向偏置 , 其电压降很小。
绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。
由于 VBE 很小,所以基极电流约为IB= 5V/50 k Ω = 0.1mA 。
如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC=β*IB=10mA。
在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。
金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。
当栅 G 电压 VG 增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。
当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。
当VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。
使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。
当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压VGS 对源漏电流 IDS 的控制。
二、晶体管的命名方法晶体管:最常用的有三极管和二极管两种。
三极管以符号BG(旧)或(T)表示,二极管以D表示。
按制作材料分,晶体管可分为锗管和硅管两种。
按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。
场效应管的基础学问英文名称:MOSFET (简写:MOS )中文名称:功率场效应晶体管(简称:场效应管)场效应晶体管简称场效应管,它是由半导体材料构成的。
与一般双极型相比,场效应管具有许多特点。
场效应管是一种单极型半导体(内部只有一种载流子一多子)分四类:N沟通增加型;P沟通增加型;N沟通耗尽型;P沟通耗尽型。
增加型MOS管的特性曲线场效应管有四个电极,栅极G、漏极D、源极S和衬底B ,通常字内部将衬底B与源极S相连。
这样,场效应管在外型上是一个三端电路元件场效管是一种压控电流源器件,即流入的漏极电流ID栅源电压UGS掌握。
1、转移特性曲线:应留意:①转移特性曲线反映掌握电压VGS与电流ID之间的关系。
②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V0③无论是在VGS2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。
可分三个区域。
①夹断区:VGS②可变电阻区:VGS>VTN且VDS值较小。
VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。
③恒流区:VGS>VTN且VDS值较大。
这时ID只取于VGS ,而与VDS无关。
3、MOS管开关条件和特点:管型状态,N-MOS , P-MOS特点截止VTN , RDS特别大,相当与开关断开导通VGS2VTN , VGS<VTN , RON很小,相当于开关闭合4、MOS场效应管的主要参数①直流参数a、开启电压VTN ,当VGS>UTN时,增加型NMOS管通道。
b、输入电阻RGS , 一般RGS值为109〜1012。
高值②极限参数最大漏极电流IDSM击穿电压V(RB)GS , V(RB)DS最大允许耗散功率PDSM5、场效应的电极判别用RxlK挡,将黑表笔接管子的一个电极,用红表笔分别接此外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),此外两极为源(S)、漏(D)极,而且是N型沟场效应管。
晶体管数字电路-概述说明以及解释1.引言1.1 概述概述晶体管数字电路是现代电子技术中的重要组成部分,它是实现数字系统功能的基本单元。
晶体管的发明和应用在电子领域带来了革命性的变化,极大地推动了计算机和通信技术的发展。
晶体管是一种半导体器件,它基于半导体材料的电导特性来控制电流的流动。
晶体管由三个主要组成部分构成,即基极、发射极和收集极。
通过调节基极电流的大小,可以实现对晶体管的控制,从而改变电路中的电流和电压。
晶体管的工作原理基于PN结的电导特性。
当PN结正向偏置时,电流可以流动,晶体管处于导通状态;当PN结反向偏置时,电流无法流动,晶体管处于截止状态。
这样,通过控制基极电流和电压,可以实现晶体管的开关控制。
晶体管数字电路的设计与应用是基于开关特性实现的。
通过将多个晶体管连接在一起,可以构建出各种复杂的数字电路,如逻辑门、触发器和计数器等。
这些数字电路在计算机、通信和控制系统中起着重要的作用,实现了数字信号的处理和转换。
晶体管数字电路的重要性不仅体现在其在计算机领域的广泛应用,还在于其在推动技术进步和社会发展方面的影响。
晶体管的小巧、高可靠性和低功耗等特点,使得数字电路可以更加紧凑和高效。
晶体管数字电路的快速发展也催生了计算机和通信技术的迅猛发展,为人类社会的进步做出了巨大贡献。
展望未来,晶体管数字电路仍然具有广阔的发展空间。
随着科技的不断进步,晶体管的尺寸会越来越小,集成度会越来越高,功耗会越来越低。
同时,晶体管数字电路的应用领域也将不断扩展,涵盖更多的领域和行业,如物联网、人工智能和新能源等。
总之,晶体管数字电路作为现代电子技术的基础,具有重要的应用价值和发展前景。
通过深入研究晶体管基础知识和工作原理,不断探索和创新晶体管数字电路的设计与应用,我们可以为推动技术进步和社会发展做出更大的贡献。
文章结构部分的内容可参考以下写法:1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分,我们将概述晶体管数字电路的重要性及其应用领域,并阐述本文的目的。
模拟CMOS基础知识一、什么是CMOS1.1 CMOS的定义和作用CMOS(Complementary Metal-Oxide-Semiconductor,互补金属-氧化物-半导体)是一种集成电路的制造工艺,也是一种特定类型的晶体管。
CMOS技术被广泛应用于逻辑电路、模拟电路和数模混合电路中。
CMOS在数字电路方面具有优异的性能,相比于传统的TTL(Transistor-Transistor Logic)和ECL(Emitter-Coupled Logic),CMOS电路功耗低、可靠性高。
它还具有良好的抗噪声特性和工作频率范围广的特点。
1.2 CMOS的组成结构CMOS电路由nMOS(n型金属-氧化物-半导体)和pMOS(p型金属-氧化物-半导体)两种晶体管组成。
nMOS晶体管的工作原理是通过控制门电压,使得通道导电或截止,实现电流的控制。
pMOS晶体管则与nMOS相反,通过控制门电压控制通道的导电或截止。
这两种晶体管可以根据不同的逻辑功能进行灵活组合,从而实现复杂的电路功能。
二、CMOS工作原理2.1 nMOS的工作原理•当门端施加了高电压(高于阈值电压),nMOS的沟道导通,形成通路,电流通过;•当门端施加了低电压(低于阈值电压),nMOS的沟道截止,电流停止。
2.2 pMOS的工作原理•当门端施加了低电压(低于阈值电压),pMOS的沟道导通,形成通路,电流通过;•当门端施加了高电压(高于阈值电压),pMOS的沟道截止,电流停止。
2.3 CMOS的工作原理CMOS电路由nMOS和pMOS组成,其工作原理有以下几个重要特点:1.CMOS电路在静态时消耗的功率几乎为零,只有在切换过程中才会有瞬态功率消耗;2.CMOS电路的输出具有较大的幅度和较小的延迟,能够同时输出高电平和低电平信号;3.CMOS电路的噪声干扰较小,具有良好的抗噪声特性;4.CMOS电路的工作速度较快,能够适应高频率的工作要求。
晶体管知识点总结晶体管是一种半导体器件,广泛应用于电子设备中,是现代电子技术的基础。
晶体管的发明和应用,极大地推动了电子技术的发展,使得现代电子设备变得更加小型化、高效、稳定和便携。
下面我们将对晶体管的基本原理、结构、工作原理和应用进行详细介绍。
一、晶体管的基本原理1. 电子运动的基本原理电子是原子的一个组成部分,带有负电荷。
在半导体晶体中,有大量的自由电子,在外加电压的作用下,这些自由电子会受到电场的驱动,从而在晶格中运动。
同时,半导体中还有空穴,即电子从原子轨道中跃迁出去后留下来的空位,空穴带有正电荷,也会在外加电压下发生移动。
2. PN结和二极管的基本原理PN结是由n型半导体和p型半导体组成的结构,它具有正向导通和反向截止的特性。
当PN结处于正向偏置时,n区的自由电子会向p区移动,p区的空穴会向n区移动,导致电子和空穴的复合,形成导电通道,电流得以通过。
而当PN结处于反向偏置时,n区和p区的电荷云层会被电场的作用扩散,形成空间电荷区,此时电流不能通过。
3. 晶体管的基本原理晶体管是由两个PN结构组成的器件,即P型区和N型区交替排列,整体上形成三个电极分别为集电极、发射极和基极。
当在基极和发射极之间加上正向偏置电压时,n区的自由电子会向p区移动,电子和空穴会在P区与N区的交界处结合而产生电流放大的效应。
这样,就实现了晶体管的放大功能,使得电子信号得以放大,并通过集电极输出。
二、晶体管的结构1. 晶体管的主要构成晶体管主要由P型半导体、N型半导体和金属电极组成。
P型半导体富含空穴,电子的迁移率较低;N型半导体富含自由电子,电子的迁移率较高;金属电极则起到了连接内部半导体材料的作用。
2. 晶体管的结构类型晶体管有多种不同的结构类型,包括双极型晶体管、场效应晶体管、异质结晶体管等。
不同结构的晶体管在性能和应用方面都有所不同,需根据具体的应用场景进行选择。
三、晶体管的工作原理1. 晶体管的工作状态晶体管主要有截止状态和放大状态两种工作状态。
场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。
它属于电压控制型半导体器件,具有输入电阻高(108W~109W)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
一、场效应管的分类场效应管分结型、绝缘栅型两大类。
结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。
目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS 场效应管、VMOS功率模块等。
按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。
若按导电方式来划分,场效应管又可分成耗尽型与增强型。
结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。
而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。
见下图。
二、场效应晶体管的型号命名方法现行场效应管有两种命名方法。
第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。
第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。
例如,3DJ6D 是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。
第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。
例如CS14A、CS45G等。
三、场效应管的参数1、IDSS —饱和漏源电流。
晶体管饱和导通的ibs晶体管饱和导通的IBS(Inverted Base Structure)是一种特殊的导通方式,常用于高频功率放大器和开关电路中。
本文将详细介绍晶体管饱和导通的IBS原理以及其应用。
一、晶体管基础知识在开始讨论晶体管饱和导通的IBS之前,首先需要了解晶体管的基本原理和结构。
晶体管是一种将小信号控制大信号的电子器件。
它由三个区域组成:发射极(Emitter)、基极(Base)和集电极(Collector)。
基极和发射极之间存在pn结,而基极和集电极之间存在pn结。
晶体管通过控制基极电流(IB),而能够调节集电极电流(IC)。
我们知道,晶体管在工作时可以处于截止状态、放大状态和饱和状态。
在饱和状态下,晶体管的饱和电流(IC(SAT))已经达到极限且无法进一步增加。
二、晶体管饱和导通晶体管饱和导通指的是当晶体管的极限电流已经达到且无法再进一步增加时,它的导通状态就称为饱和导通。
在饱和导通状态下,晶体管的VCE (Collector-to-Emitter Voltage)达到最低值,且是非常低的。
这是因为在饱和导通状态下,集电极和发射极之间的两个pn结都在导通状态。
三、晶体管饱和导通的IBS技术在晶体管饱和导通的IBS技术中,基极和集电极之间的两个pn结被反转,即nP极与P基反向。
这种结构可以有效地降低截止到饱和之间的转换时间,并实现更高的开关速度。
IBS技术对于高频功率放大器和开关电路非常有用。
四、晶体管饱和导通的优势和应用晶体管饱和导通的IBS技术相较于传统的结构有很多优势。
首先,它可以实现更高的开关速度和更小的截止到饱和之间的转换时间。
其次,它可以减小功率损耗,提高能源利用率。
此外,IBS技术还可以提供更大的集电极电流,增加晶体管的电流放大倍数。
由于其优异的性能,晶体管饱和导通的IBS技术在许多领域得到了广泛应用。
在高频功率放大器中,IBS技术可以提供更高的放大倍数和更低的失真。