2013年10月全国自考概率论与数理统计真题
- 格式:doc
- 大小:259.95 KB
- 文档页数:4
全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题及答案课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e 4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( ) A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2013年10月高等教育自学考试04183LSA .B 是枉》两个f®机班件,则FCAU S )为&设随机变fi X »从参数为4的泊松分布/!1下列姑论中正《的是 A T FCX> = O.S.£>(X) =0. 5 B.蓟X) =0.5.D<X)=0. 2& CE<X)=2<DCX) = 1D.£(X)^1*DCX)=4人设a 机变* X 与 Y 相互趣立>R X-B<36,y 5.则 OCX — Y+12C.9D,10、单项选择题(本大题共 10小题,每小题2分,共20分)d 玖A) +rtB>-F<AB)PCA>+PCBJ-PUa)G, PGA)十- HMB)D. FCA)+ P<B)乱已気随机?^件仏B 満足PtA) -C.3t P(B) =0.5T HA/m. 15*则B. PUMQ M HJOn. P 3|A S> = FWK. P(3|AB>=P(J3>3.做下函®中能成为挟髓机变■分布函数的是(Z T X O I 扎F (云)=■{5 X < 0-0, J < 0.C. F (工)fl - if"",D» FCr) =40,工vm氐设^ELS«tX~NWJhXW#ft 函数为况£ .则PCI X\>2y 的值対B. sets —1C. 2—血(打D. 1 一 2e(2)£ •设二维®机变的分布律与边绦分布律为E 设隧机变盘X 的Ed) = 80001 Pi7&00 < X<fi3OO}的值为 A. 0. 04 a. 0, £0 UA )=1OT,利用切KS 夫不零式tt 计 C. 0. S6 D. 1. 00则扎 ^=0.1SC. <:™ 0.叽 M=a 14久设CX|.Xj,-^.XJ是来自总休X~N33》的一亍样本.X足样木均値•那么C.10. S信度(1 一C表达了暨信邕冏的A.播册性圧箭确度 C.显善性 D.可黨®二、填空题(本大题共15小题,每小题2分,共30分)It «肘手射击的命中舉为a 6■在4次射击扌有且仪有3狀命审的柢率広设人与5是闊个郴互观立随机車件・P<A) =0.2 . PCB)-Q. 7S'J尸(A — B)=口・设A T H是网个剧机爭件’若卩〔人)=0•趴卩(A-B) -a氣则p(a|4)三M.SffiW变ffiX W分布律抑尸CX=k)二畀口4 = 1*2・3) *則a卩严心0,15.谊X的概華密度几为IE参® 0 *vo .^P{X < 11=^0. SPljPtX < 2}=lb设Wft变*X的分布律为IX-2 -1 0 10U 0.2 0.4 0. 1忆设/<Xry>为二维陆机变* CCY)的««函数.则匸匸和jCtyldzdy le.二堆随机变》(x,y》的分布律为则P{-Z<X< 1}=则rfxY =2}=19已知®机證*兀的分布律为X—21CP1 2 1 -4 4 4已a E (;O = l 侧常載C=巴知 E(X)=-l,t)(X)-3,KiJ EQW —2)= 2L —亍二项分布的re 机变ft ”其載学期龟与方蟹之比为W 阳刑该分布的参®22,设总体XJK 从iE 态分布N 〔宀屮〉・X, 刿圧样本・则參数^1^的笔估计值23■设制造某种炉件产品所需工时(璋位訂卜时》服从正蕊分布,为了估计M 造这沖产品所需的单件平均工时.现制造4件,记录每件所帚工时如下* L0.54ML,2若确定置蓿度为0+曹5•则平均工时的淹信国间为C fi,«C5) =2* 3534* (1011(3)工 3. 1624) 24.设总从正毎分布"3, m …“皿 为K 样本.卞輕%已知,丘倉样乘均1S-SW 于服设检腔冋膻H 才尸二丹,Hp 严护H.应薜用的统计®悬 麵已知一元性回归方程为yi +恳上・耳亍=氛y=9・WR L三、计算题(本大题共2小题,每小题8分,共16分)2札对同一目标进行三ft 独立射击,第一欢、第二》:•第三次射击的命中畢分别为0"、 ①5.0.7,衆在这三RBt 击中•恰好有一次击中目标的ft 耶.2匚设髓亂变竄X 在】.2▼氛4四个誥ft 中第可能的取ffi,另一随机变■ Y 在 g X 中 爭可ft 的耽值,试求x-y 的分布律,四、综合题(本大题共2小题,每小题12分,共24分)K<0* 0< j< 1,J m*起、2.试求dD 系数片I(2>X 的《率《度(⑶ p{xXMy .2缶设连aSK 机变* X 的分布函»为尸5)-彳0, AxS A J C羽•设甲・乙两射手.他们的射击技术分别如ffi 貂佔)表.題2900表所示•其中% , Y 分别 «示甲”乙肘手射击耳数的分茹悄况1X8 9 10 Y89 】0 P0.40.20*4P :0. 10.S5 1题295〉表fiS 29(b)表现耍从中选拔一名射手去奮加比奏,试讨邈选派哪位肘手鑫赛比敦合理?五、应用题(10分)30.某《居民日tt 入®从正®幷布,现ffi 机鞠査该K 姑位居民'得知他们的平均收人 i«66. 4元*标准差$ = 15元卜试问I<1: a = 0. 05下*是否可W 认为该镇居毘日平均收人为70 3c? (23ff a = 0,OSTi 是否耶氏认为该镇居民日收入的方签为16’?^fl.MsC24) = Z, 064 ,&耐(24)* 1, 7109*%咄* = 1* 96 * 划,=】* 65 述剛住4〉=39. 4,£M24〉=36. 4述刖二24〉= 12.4,x5.ii<24)=13, 84S金国201:?年・1月高竽教存口学莆试 概率论与数理统计(经管类)试题一、《念选摄题C 本尢H 其山小騒.毎小題2分,冀加分) 在毎小《列出的四个备a 项中只有一个堆符合Hl 目豪求的r 谓将其选出并郸“菩a 壤*的相应代码涤«・»途・茅涤或未滾均无分.L 耶,乙两人向剧一a 标射击* /董示-甲脂中a 極".fl 我示“乙饰中0标”,C* 示-ft 中a 标二wc-A. JB. BC. AB2*设为fifi 机■fb 尺舟・射,2)・0乳则尺4R)-A. 0JB. 02C. OJD ・0.43. ttffi 机$*rfn 分布瞒数为尺Q. W?i(i<rcfr)=A* 恥一0) — 卜'(—0)B, F9-0)-F(G C,尸O)-FGa-O)D.柯)-尸何血设二罐融杭变》CV ■门的分布律为X0 1 2 0 00J *2 10L 403B, 0-1G 0.2W^(v-o>A. 0绝空★考试结東前全国2013年4月高等教育口学考试概率论与数理统计(经管类)试题课程代码:»41«3a 考生按规定用«将所冇试a 的答«涂■写在笞a 維上。
2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2013年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
解:本题考查的是和事件的概率公式,答案为C.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂===故选B.解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
解:{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 故选A 。
解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040d =--= 故选D 。
解:若~()X P λ,则()()E X D X λ==,故 D 。
解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+=选A 。
解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= 选C 。
全国2021年10月高等教育自学考试《概率论与数理统计》(经管类)真题及答案详解课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)1.已知事件A ,B ,B A 的概率分别为5.0,4.0,6.0,则=)(B A P ( B ) A .1.0B .2.0C .3.0D .5.0A .0)(=-∞F ,0)(=+∞FB .1)(=-∞F ,0)(=+∞FC .0)(=-∞F ,1)(=+∞FD .1)(=-∞F ,1)(=+∞F3.设),(Y X 服从区域1:22≤+y x D 上的均匀分布,则),(Y X 的概率密度为( D ) A .1),(=y x fB .⎩⎨⎧∈=其他,0),(,1),(Dy x y x fC .π1),(=y x fD .⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x y x f π4.设随机变量X 服从参数为2的指数分布,则=-)12(X E ( A ) A .0B .1C .3D .45.设二维随机变量),(Y X 的分布律为则=)3(X D ( B ) A .92 B .2 C .4 D .621n 11=⎭⎬⎫⎩⎨⎧≤∑=→∞0lim 1n i i n X P ( C ) A .0B .25.0C .5.0D .17.设n x x x ,,,21 为来自总体),(σμN 的样本,,σμ是未知参数,则下列样本函数为统计量的是( D ) A .μ-∑=ni i x 1B .∑=ni i x 121σC .∑=-ni i x n 12)(1μD .∑=n i i x n 121A .置信度越大,置信区间越长B .置信度越大,置信区间越短C .置信度越小,置信区间越长D .置信度大小与置信区间长度无关01A .1H 成立,拒绝0H B .0H 成立,拒绝H 0 C .1H 成立,拒绝1HD .0H 成立,拒绝1H10.设一元线性回归模型:i i i x y εββ++=10,i ε~),0(σN (n i ,,2,1 =),且各i ε相互独立.依据样本),(i i y x (n i ,,2,1 =),得到一元线性回归方程x y 10ˆˆˆββ+=,由此得i x 对应的回归值为i y ˆ,i y 的平均值∑==ni i y n y 11(0≠y ),则回归平方和回S 为( C )A .∑=-ni i y y 12)(B .∑=-ni i i yy 12)ˆ( C .∑=-ni i y y12)ˆ( D .∑=ni i y12ˆ21ˆnii y=∑二、填空题(本大题共15小题,每小题2分,共30分)11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为8.0,5.0,则甲、乙两人同时击中目标的概率为___________.12.设A ,B 为两事件,且)()(==B P A P ,)|(=B A P ,则=)|(B A P ___________.14.设随机变量X 的分布律为则=a ___________.15.设随机变量X ~)2,1(N ,则=≤≤-}31{X P ___________.(附:8413.0)1(=Φ)16.设随机变量X 服从区间],2[θ上的均匀分布,且概率密度⎪⎩⎪⎨⎧≤≤=其他,02,41)(θx x f 则17.设二维随机变量),(Y X 的分布律为则==}{Y X P ___________.X20.设二维随机变量),(Y X 的分布律为则=+)(22Y X E ___________.有=⎭⎬⎫⎩⎨⎧<-→∞εp n m P n lim ___________.n 21x xn 21α分位数,则μ的置信度为96.0的置信区间长度是___________.25.设总体X ~),(σμN ,σ未知,n xx x ,,,21 为来自总体的样本,x 和s 分别是样本均值和样本方差,则检验假设00:μμ=H ;01:μμ≠H 采用的统计量表达式为___________.26.一批零件由两台车床同时加工,第一台车床加工的零件数比第二台多一倍.第一台车床出现不合格品的概率是03.0,第二台出现不合格品的概率是06.0. (1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设=A {取出第一台车床加工的零件},=B {取出合格品},则所求概率分别为: (1)96.0252494.03197.032)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P ; (2)3264.01442796.094.031)()|()()|(≈=⨯==B P A B P A P B A P .27.已知二维随机变量),(Y X 的分布律为求:(1)X 和Y 的分布律;(2)),cov(Y X 解:(1)X 和Y 的分布律分别为(2)4.04.016.00)(=⨯+⨯=X E ,3.01.015.004.0)1()(-=⨯+⨯+⨯-=Y E ,1.00113.0011.0)1(11.0102.0003.0)1(0)(-=⨯⨯+⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯=XY E , 02.0)3.0(4.01.0)()()(),cov(=-⨯--=-=Y E X E XY E Y X .四、综合题(本大题共2小题,每小题12分,共24分)28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布),75(2σN ,已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率. 解:用X 表示考生的数学成绩,由题意可得05.0}85{=>X P ,近似地有05.075851=⎪⎭⎫ ⎝⎛-Φ-σ,05.0101=⎪⎭⎫ ⎝⎛Φ-σ,95.010=⎪⎭⎫ ⎝⎛Φσ,所求概率为⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ≈≤≤σσσσ101075657585}8565{X P9.0195.021102=-⨯=-⎪⎭⎫⎝⎛Φ=σ.29.设随机变量X 服从区间]1,0[上的均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立.求:(1)X 及Y 的概率密度;(2)),(Y X 的概率密度;(3)}{Y X P >.解:(1)X 的概率密度为⎩⎨⎧≤≤=其他,010,1)(x x f X ,Y 的概率密度为⎩⎨⎧≤>=-0,00,)(y y e y f y Y ;(2)因为X 与Y 相互独立,所以),(Y X 的概率密度为=),(y x f )(x f X ⎪⎩⎪⎨⎧>≤≤=-其他,00,10,)(y x e y f yY ;(3)⎰⎰⎰⎰⎰⎰--->-=-=⎪⎪⎭⎫ ⎝⎛==>10100100)1()(),(}{dx e dx e dx dy e dxdy y x f Y X P x x yx y y x11)(--=+=e e x x .五、应用题(10分)30.某种产品用自动包装机包装,每袋重量X ~)2,500(2N (单位:g ),生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值g x 502=.问:当方差不变时,这天包装机工作是否正常(05.0=α)?(附:96.1025.0=u ) 解:0H :500=μ,1H :500≠μ.已知5000=μ,20=σ,9=n ,502=x ,05.0=α,96.1025.02/==u u α,算得2/0096.139/2500502/||ασμu n x u =>=-=-=,拒绝0H ,这天包装机工作不正常.。
年10⽉全国⾃考概率论与数理统计真题全国2012年10⽉⾼等教育⾃学考试《概率论与数理统计》(经管类)真题课程代码:04183请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考⽣务必将⾃⼰的考试课程名称、姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
不能答在试题卷上。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其选出并将“答题纸”的相应代码涂⿊。
错涂、多涂或未涂均⽆分。
1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A )= A.0.1 B.0.2 C.0.3 D.0.52.设F(x)为随机变量X 的分布函数,则有 A.F (-∞)=0,F (+∞)=0 B.F (-∞)=1,F (+∞)=0 C.F (-∞)=0,F (+∞)=1 D.F (-∞)=1,F (+∞)=13.设⼆维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为 A.f(x ,y)=1B. 1(,)0,x y D f x y ∈?=?,(,),其他C.f(x ,y)=1πD. 1(,)0,x y D f x y π?∈?=,(,),其他4.设随机变量X 服从参数为2的指数分布,则E (2X -1)=A.0B.1C.3D.4 5.设⼆维随机变量(X ,Y )的分布律则D (3X )= A.29B.2C.46.设X 1,X 2,…,X n …为相互独⽴同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=??≤=∑A.0B.0.25C.0.5D.17.设x 1,x 2,…,x n 为来⾃总体N (µ,σ2)的样本,µ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x µ=-∑B.211nii x σ=∑C. 211()ni i x n µ=-∑D. 211n i i x n =∑8.对总体参数进⾏区间估计,则下列结论正确的是 A.置信度越⼤,置信区间越长 B.置信度越⼤,置信区间越短 C.置信度越⼩,置信区间越长 D.置信度⼤⼩与置信区间长度⽆关 9.在假设检验中,H 0为原假设,H 1为备择假设,则第⼀类错误是 A. H 1成⽴,拒绝H 0 B.H 0成⽴,拒绝H 0 C.H 1成⽴,拒绝H 1 D.H 0成⽴,拒绝H 110.设⼀元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各相互独⽴.依据样本(,)(1,2,,)i i x y i n =…得到⼀元线性回归⽅程01y x ββ=+,由此得对应的回归值为,的平均值11(0)ni i y y y n ==≠∑,则回归平⽅和为A .21(-)ii y y =∑ B .21?(-)niii y y=∑C .21(-)nii yy =∑ D .21nii y=∑⾮选择题部分注意事项:⽤⿊⾊字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
绝密 ★ 考试结束前全国2013年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.ABD.AB2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )B.1-Φ(x )C.Φx μσ-⎛⎫ ⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσD.222(,)N μσ4.设二维随机变量(X ,Y )的分布律为0 a 0.2 1 0.2 b且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5D. a =0.5, b =0.15.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1n i i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}D. P {接受H 0|H 0成立}10.设总体2~(,)X N μσ,其中2σ未知,12,,,n x x x 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平α下检验假设0010:,:H H μμμμ=≠.令x t =A. 2||(1)a t t n <-B.2||()a t t n <C. 2||(1)a t t n >-D.2||()a t t n >非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
全国2013年4月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.甲,乙两人向同一目标射击,A表示“甲命中目标”,B表示“乙命中目标”,C表示“命中目标”,则C=()A.AB.BC.ABD.A∪B2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.43.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)4.设二维随机变量(X,Y)的分布律为0 120 1 00.1 0.2 0.4 0.3 0则()A.0B.0.1C.0.2D.0.35.设二维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.16.设随机变量X的分布律为X﹣2 02P 0.4 0.3 0.3则E(X)=()A.﹣0.8B.﹣0.2C.0D.0.47.设随机变量X的分布函数为,则E(X)=()A. B. C. D.8.设总体X服从区间[,]上的均匀分布(),x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估计是()A. B. C. D.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是()A.,B.,C.,D.二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B是随机事件,P (A)=0.4,P (B)=0.2,P (A∪B)=0.5,则P (AB)= _____.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________.13.设随机事件A与B相互独立,且,则________.14.设随机变量服从参数为1的泊松分布,则________.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.16.设二维随机变量(X,Y)服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.17.设C为常数,则C的方差D (C)=_________.18.设随机变量X服从参数为1的指数分布,则E (e-2x)= ________.19.设随机变量X~B (100,0.5),则由切比雪夫不等式估计概率________.20.设总体X~N (0,4),且x1,x2,x3为来自总体X的样本,若~,则常数C=________.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估计________.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估计时,记…,x n)为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.25.在一元线性回归模型中,其中~,1,2,…,n,且,,…,相互独立.令,则________.三、计算题(本大题共2小题,每小题8分,共16分)26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求(1)甲取到黑球的概率;(2)乙取到的都是黑球的概率.27.某种零件直径X~(单位:mm),未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?()(附:)四、综合题(本大题共2小题,每小题12分,共24分)28.设二维随机变量(X,Y)的概率密度为(1)求(X,Y)关于X,Y的边缘概率密度;(2)记Z=2X+1,求Z的概率密度.29.设随机变量X与Y相互独立,X~N(0,3),Y~N(1,4).记Z=2X+Y,求(1)E(Z),D(Z);(2)E(XZ);(3)P XZ.五、应用题(10分)30.某次考试成绩X服从正态分布(单位:分),(1)求此次考试的及格率和优秀率;(2)考试分数至少高于多少分能排名前50%?(附:)全国2013年4月高等教育自学考试概率论与数理统计(经管类)答案选择题1、【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,所以可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A 与B 的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;②若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2、【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3、【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】.【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常用事件的概率:①;②,其中a<b;③.4、【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5、【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区域D内取值的概率为.2.二重积分的计算:本题的二重积分的被积函数为常数,根据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分区域面积0.5.6、【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提示】1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7、【答案】C【解析】根据连续型一维随机变量分布函数与概率密度的关系得,所以,=,故选择C.【提示】1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8、【答案】C【解析】,,而均匀分布的期望为,故选择C.【提示】1.常用的六种分布(1)常用离散型随机变量的分布(三种):X0 1概率q pA.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq.B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③方差: D(X)=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=(2)常用连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④方差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独立”、“同分布”.9、【答案】A【解析】易知,,故选择A.【提示】点估计的评价标准:(1)相合性(一致性):设为未知参数,是的一个估计量,是样本容量,若对于任意,有,则称为的相合(一致性)估计.(2)无偏性:设是的一个估计,若对任意,有则称为的无偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个无偏估计量,若对任意有样本方差,则称为比有效的估计量.若的一切无偏估计量中,的方差最小,则称为的有效估计量.10、【答案】A【解析】查表得答案.【提示】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5行,前3行是“单正态总体”,后2行是“双正态总体”;②对均值的估计,分“方差已知”和“方差未知”两种情况,对方差的估计“均值未知”;③统计量顺序:, t, x2, t, F.填空题:11、【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12、【答案】【解析】设第三次取到0的概率为,则故填写.【提示】古典概型:(1)特点:①样本空间是有限的;②基本事件发生是等可能的;(2)计算公式.13、【答案】0.8【解析】因为随机事件A与B相互独立,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提示】二随机事件的关系(1)包含关系:如果事件A发生必然导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P (AB)=0;(4)对立事件:称事件“A不发生”为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.(5)二事件的相互独立性:若, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:若A, B相互独立,且P (A)>0, 则.14、【答案】【解析】参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15、【答案】【解析】因为,则~,所以,故填写.【提示】注意审题,准确判定概率分布的类型.16、【答案】【解析】因为二维随机变量(X,Y)服从圆域D:上的均匀分布,则,所以故填写.【提示】课本介绍了两种重要的二维连续型随机变量的分布:(1)均匀分布:设D为平面上的有界区域,其面积为S且S>0,如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布,记为(X,Y)~.(2)正态分布:若二维随机变量(X,Y)的概率密度为(,),其中,,,,都是常数,且,,,则称(X,Y)服从二维正态分布,记为(X,Y)~.17、【答案】0【解析】根据方差的性质,常数的方差为0.【提示】1.方差的性质①D (c)=0,c为常数;②D (aX)=a2D (X),a为常数;③D (X+b)=D (X),b为常数;④D (aX+b)= a2D (X),a,b为常数.2.方差的计算公式:D (X)=E (X2)-E2(X).18、【答案】【解析】因为随机变量X服从参数1的指数分布,则,则故填写.【提示】连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19、【答案】【解析】由已知得,,所以.【提示】切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20、【答案】1【解析】根据x2定义得C=1,故填写1.【提示】1.应用于“小样本”的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2(n).②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m与n的F-分布,记为F~F(m,n),其中称m为分子自由度,n为分母自由度.③t-分布:设X~N (0,1),Y~x2(n),且X,Y相互独立,则服从自由度为n的t-分布,记为t~t (n).2.对于“大样本”,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,(1)若总体分布为,则的精确分布为;(2)若总体X的分布未知或非正态分布,但,,则的渐近分布为.21、【答案】【解析】课本P153,例7-14给出结论:,而,所以,故填写.【说明】本题是根据例7-14改编.因为的证明过程比较复杂,在2006年课本改版时将证明过程删掉,即本次串讲所用课本(也是学员朋友们使用的课本)中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本《高等数学(二)第二分册概率统计》P164,例5.8.22、【答案】【解析】由矩估计方法,根据:在参数为的泊松分布中,,且的无偏估计为样本均值,所以填写.【提示】点估计的两种方法(1)矩法(数字特征法)估计:A.基本思想:①用样本矩作为总体矩的估计值;②用样本矩的函数作为总体矩的函数的估计值.B.估计方法:同A.(2)极大似然估计法A.基本思想:把一次试验所出现的结果视为所有可能结果中概率最大的结果,用它来求出参数的最大值作为估计值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;若某统计量满足,则称为的极大似然估计.C.估计方法①利用偏导数求极大值i)对似然函数求对数ii)对求偏导数并令其等于零,得似然方程或方程组iii)解方程或方程组得即为的极大似然估计.②对于似然方程(组)无解时,利用定义:见教材p150例7-10;(3)间接估计:①理论根据:若是的极大似然估计,则即为的极大似然估计;②方法:用矩法或极大似然估计方法得到的估计,从而求出的估计值.23、【答案】【解析】已知总体服从参数为的指数分布,所以,从而…,=,故填写.24、【答案】25、【答案】【解析】由一元线性回归模型中,其中~,1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题【提示】(3)得,故填写.计算题26、【分析】本题考察“古典概型”的概率.【解析】(1)设甲取到黑球的概率为p,则.(2)设乙取到的都是黑球的概率为p,则.27、【分析】本题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验”类型.【解析】设欲检验假设H0:,H1:,选择检验统计量,根据显著水平=0.05及n=16,查t分布表,得临界值t0.025(15)=2.1315,从而得到拒绝域,根据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.【提示】1.假设检验的基本步骤:(1)提出统计假设:根据理论或经验对所要检验的量作出原假设(零假设)H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为下列三种情况之一::,其中i)为双侧检验,ii),iii)为单侧检验.(2)选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量”有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.(3)求拒绝域:按问题的要求,根据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.(4)求统计量的样本值观察值并决策:根据样本值计算统计量的值,若该值落入拒绝域W 内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估计对照分类记忆.28、【分析】本题考察二维连续型随机变量及随机变量函数的概率密度.【解析】(1)由已知条件及边缘密度的定义得=,()所以;同理可得.(2)使用“直接变换法”求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx(x)、Fz(Z),则,由分布函数Fz(Z)与概率密度的关系有由(1)知,所以=.【提示】求随机变量函数的概率密度的“直接变换法”基本步骤:问题:已知随机变量X的概率密度为,求Y=g(X)的概率密度解题步骤:1.;2..29、【分析】本题考察随机变量的数字特征.【解析】(1)因为X~N(0,3),Y~N(1,4),Z=2X+Y,所以E(Z)=E(2X+Y)=2E(X)+E(Y)=1D(Z)=D(2X+Y)=4D(X)+D(Y)=16(2)而随机变量与相互独立,所以 E(XZ)=6.(3)因为,所以.30、【分析】本题考察正态分布的概率问题.【解析】已知X~N(75,152),设Z~N(0,1),为其分布函数,(1)==即本次考试的及格率为84.13%,优秀率为15.87%.(2)设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.全国2013年10月高等教育自学考试 概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
高等教育自学考试概率论与数理统计经管类真题2013年10月(总分:100.00,做题时间:150分钟)一、课程代码:04183 (总题数:10,分数:20.00)(分数:2.00)A.B.C.D. √解析:(分数:2.00)A.B.C.D. √解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B.C. √D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B.C. √D.解析:二、非选择题部分 (总题数:15,分数:30.00)(分数:2.00)填空项1:__________________ (正确答案:0.4)解析:(分数:2.00)填空项1:__________________ (正确答案:0.56)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________ (正确答案:6)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:0.5)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:三、计算题(本大题共2小题,每小题8分,共16分)(总题数:2,分数:16.00)(分数:8.00)__________________________________________________________________________________________正确答案: )解析:(分数:8.00)__________________________________________________________________________________________正确答案:()解析:四、综合题(本大题共2小题,每小题12分,共24分)(总题数:2,分数:24.00)(分数:12.00)__________________________________________________________________________________________正确答案:)解析:(分数:12.00)__________________________________________________________________________________________正确答案:)解析:五、应用题(10分)(总题数:1,分数:10.00)(分数:10.00)__________________________________________________________________________________________正确答案:)解析:。
绝密 ★ 考试结束前
全国2013年10月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项:
1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A B U
D.A B U
2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )
B.1-Φ(x )
C.Φx μσ-⎛⎫ ⎪⎝⎭
D.1-Φx μσ-⎛⎫ ⎪⎝⎭
3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσ
D.222(,)N μσ
4.设二维随机变量(X ,Y )的分布律为
Y
0 1
且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5
D. a =0.5, b =0.1
5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3
D. n =24, p =0.1
6.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1
()E X Y μ
λ
+= B.22
1
()D X Y σλ+=+
C.1
(),()E X E Y μλ
==
D.22
1
(),()D X D Y σλ
==
7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x L 为来自X 的样本,则下列随机变量中是统计量的为 A. 1
1n
i i x n =∑
B. 11n
i i x n θ=-∑
C. 1
1()n
i i x E X n =-∑
D. 2
11
1()n i x D X n =-∑
8.设12,,,n x x x L 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1n
i i x n μ=--∑2 B. 11()n
i i x n μ=-∑2
C. 1
1()1n
i i x x n =--∑ 2 D.1
1()n
i i x x n =-∑ 2
9.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}
D. P {接受H 0|H 0成立}
10.设总体2~(,)X N μσ,其中2σ未知,12,,,n x x x L 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平
α下检验假设0010:,:H H μμμμ=≠.令0/x t s n
=
A. 2
||(1)a t t n <-
B.2
||()a t t n <
C. 2
||(1)a t t n >-
D.2
||()a t t n >
X
0 a 0.2 1 0.2 b
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共15小题,每小题2分,共30分)
11.设随机事件A 与B 相互独立,且()0,(|)0.6P B P A B >=,则()P A =______.
12.甲、乙两个气象台独立地进行天气预报,它们预报准确的概率分别是0.8和0.7,则在一次预报中两个气象台都预报准确的概率是________.
13.设随机变量X 服从参数为1的指数分布,则{1}P X >=__________. 14.设随机变量~(1,1),1X N Y X =-,则Y 的概率密度()Y f y =________. 15.设二维随机变量(X ,Y )的分布函数为(,)F x y ,则(,)F +∞+∞=_________.
16.设随机变量X 与Y 相互独立,且都服从参数为1的泊松分布,则{1,2}P X Y ===_______. 17.设随机变量X 服从区间[0,2]上的均匀分布,则()E X =_______. 18.设随机变量X 与Y 的协方差Cov()=1X,Y -,则Cov(2,3)Y X -=________.
19.设随机变量12,,,n X X X L 相互独立,2
()(1,2,,)i D X i n σ==L ,则1
()n
i i D X =∑=________.
20.设X 为随机变量,()1,()0.5E X D X ==,则由切比雪夫不等式可得{|1|1}P X -≥≤______. 21.设总体~(0,1)X N ,123,,x x x 为来自X 的样本,则222123~x x x ++_________. 22.设随机变量~()t t n ,且{()}P t t n αα>=,则{()}P t t n α≤-=_________.
23.设总体12~(,1),,X N x x μ是来自X 的样本.1122122111
ˆˆ,3322
x x x x μμ
=+=+都是μ的估计量,则其中较有效的是_______.
24.设总体20~(,)X N μσ,其中20σ已知,12,,,n x x x L 为来自X 的样本,x 为样本均值,则对假设0010:,:H H μμμμ=≠应采用的检验统计量的表达式为_______.
25.依据样本(,)(1,2,,)i i x y i n =L 得到一元线性回归方程01ˆˆˆ,y x ββ=+,x y 为样本均值,令1()n
xx
i i L x x ==-∑2,1
()()n
xy i i i L x x y y ==--∑,则回归常数0
ˆβ=________. 三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(,)X Y 的概率密度为
1
,03,02,
(,)6
0,x y f x y ⎧<<<<⎪=⎨⎪⎩
其他. 求:(1)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ;(2){2}P X Y +≤.
27.假设某校数学测验成绩服从正态分布,从中抽出20名学生的分数,算得样本标准差s =4分,求正态分布方差2σ的置信度为98%的置信区间.20.01((19)36.191χ=,20.99(19)7.633)χ= 四、综合题(本大题共2小题,每小题12分,共24分)
28.设某人群中患某种疾病的比例为20%.对该人群进行一种测试,若患病则测试结果一定为阳性;而未患病者中也有5%的测试结果呈阳性.
求:(1)测试结果呈阳性的概率;(2)在测试结果呈阳性时,真正患病的概率. 29.设随机变量X 的概率密度为
,04,
()0,.cx x f x <<⎧=⎨⎩
其他
求:(1)常数c ;(2)X 的分布函数()F x ;(3){||2}P X ≤. 五、应用题(10分)
30.某保险公司有一险种,每个保单收取保险费600元,理赔额10000元,在有效期内只理赔一次.设保险公司共卖
出这种保单800个,每个保单理赔概率为0.04.
求:(1)理赔保单数的分布律;(2)保险公司在该险种上获得的期望利润.。