(完整版)一次函数知识点总结及练习题(可编辑修改word版)
- 格式:docx
- 大小:194.13 KB
- 文档页数:10
一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 P116 1 P87 23、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A.y B .yC .yD .y 函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.例题:P117 56、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一次函数知识点一次函数知识网络图考点一:变量、常量及函数定义1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。
※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应典型例题:1、下列函数关系式中不是函数关系式的是( )A. B. C. D. 21y x =+21y x =+1y x x=+22y x =2、下列各图中表示y 是x 的函数图像的是 ( )考点二、自变量取值范围:一般的,一个函数的自变量允许取值的范围。
确定函数自变量取值范围的方法: (1)必须使关系式成立。
①当关系式为整式时,自变量取值范围为全体实数;②当关系式含有分式时,自变量取值范围要使分式的分母的值不等于零;ABDo③关系式含有二次根式时,自变量取值范围必须使被开方的式子不小于零;④当关系式中含有指数为零或负数的式子时,自变量取值范围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值范围还要符合实际情况,使之有意义。
(3)当函数关系表示一个图形的变化关系时,自变量的取值范围必须使图形存在。
典型例题:1、函数的自变量x 的取值范围是 31-=x y 2、函数的自变量x 的取值范围是3-=x y 3、函数的自变量x 的取值范围是()220xy x -=++4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值范围.考点三、函数的图像与解析式的关系1、函数的表示方法(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
一次函数的图像和性质练习题一、填空题1.正比例函数y=kx(k≠0)一定经过点,经过(1,),一次函数y=kx+b(k≠0)经过(0,)点,( ,0) 点.2.直线y =-2x + 6 与x 轴的交点坐标是,与 y 轴的交点坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数y =mx - (4m - 4) 的图象过原点,则m 的值为.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为.5.一次函数y =-x + 3 的图象经过点(,5)和(2,)6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x 与y=2x+6 的图象的位置关系是.8.若直线y=2x+6 与直线y=mx+5 平行,则m= .9.在同一坐标系内函数y=a x+b与y=3x+2平行,则a,b的取值范围是.10.将直线 y= -2x 向上平移 3 个单位得到的直线解析式是,将直线 y= -2x 向下移 3 个单得到的直线解析式是.将直线 y= -2x+3 向下移 2 个单得到的直线解析式是.11.直线y =kx +b 经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数y = (k - 2)x + 4 -k 的图象经过一、三、四象限,则k 的取值范围是.13.如果直线y = 3x +b 与y 轴交点的纵坐标为-2 ,那么这条直线一定不经过第象限.14.已知点A(-4,a),B(-2,b)都在一次函数y=1 x+k(k为常数)的图像上,则a与b的大小关2系是a b(填”<””=”或”>”)15.一次函数 y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=;当x=时,y=0.(2)k= ,b= .(3)当x=5 时,y= ;当y=30 时,x= .二、选择题1.已知函数y = (m + 3)x - 2 ,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是()A.m ≥-3 B.m >-3 C.m ≤-3 D.m <-322. 已知直线 y = kx + b ,经过点 A (x 1,y 1 ) 和点 B (x 2,y 2 ) ,若k < 0 ,且 x 1 < x 2 ,则 y 1 与 y 2 的大小关系是()A. y 1 > y 2B. y 1 < y 2 C. y 1 = y 2D.不能确定3. 若直线 y = mx - 2m - 3 经过第二、三、四象限,则m 的取值范围是()A. m < 32B. - 3< m < 02 C. m > 32 D. m > 04. 一次函数 y = 3x -1 的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限5.如果点 P (a ,b )关于 x 轴的对称点 p ,在第三象限,那么直线 y =a x +b 的图像不经过 ( ) A.第一象限B.第二象限C.第三象限D.第四象限6.若一次函数 y =k x +b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限B.第二象限C.第三象限D.第四象限7. 下列图象中不可能是一次函数 y = mx - (m - 3) 的图象的是()A.B .C.D.8. 两个一次函数 y 1 =ax + b 与 y 2 = bx + a ,它们在同一直角坐标系中的图象可能是()1xA.B .三、解答题1x2C.D.1.已知一次函数 y =(3-k )x -2k +18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与 y 轴的交点在 x 轴的上方; (4) k 为何值时,它的图像平行于直线 y =-x ; (5) k 为何值时,y 随 x 的增大而减小.2. 设一次函数 y = kx + b (k ≠ 0) ,当 x = 2 时, y = -3 ,当 x = -1 时, y = 4 。
一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。
(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
说明:满足函数关系式的有序数对,在坐标平面内对应的点一定在函数图象上;反之,函数图象上的点,其坐标一定满足函数关系式。
例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 。
例3:.已知一次函数的图象经过点A(—3,2)、B(1,6).①求此函数的解析式,并画出图象.②求函数图象与坐标轴所围成的三角形面积.例4:某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,•求此函数的关系式.例5:某移动通讯公司开设两种业务:若设某人一个月内市内通话x跳次,两种方式的费用分别为z元和y元.①写出z、y与x之间的函数关系式;②一个月内市内通话多少跳次时,两种方式的费用相同?③某人估计一个月内通话300跳次,应选择哪种方式合算?例6:如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)•之间的函数关系图象.①根据图象,写出该图象的函数关系式; ②某人乘坐2。
5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30。
8元,出租车行驶了多少千米?1.A 市和B 市分别库存某种机器12台和6台,现决定支援给C 市10台和D 市8台.•已知从A 市调运一台机器到C 市和D 市的运费分别为400元和800元;从B 市调运一台机器到C 市和D 市的运费分别为300元和500元.(1)设B 市运往C 市机器x 台,•求总运费W (元)关于x 的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?一. 填空题1. (-3,4)关于x 轴对称的点的坐标为_________,关于y 轴对称的点的坐标为__________,关于原点对称的坐标为__________。
一次函数MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已题型一、点的坐标方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A , 0), B(x B , 0) 的距离为x A -x B ;若AB∥y 轴,则A(0, y A ), B(0, y B ) 的距离为y A -y B ;知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k≠0)1、当k 时,y =(k -3)x2++2x -3 是一次函数;2、当m 时,y =(m - 3)x2m+1+ 4x - 5 是一次函数;3、当m 时,y =(m - 4)x2m+1+ 4x - 5 是一次函数;题型四、函数图像及其性质☆一次函数 y=kx+b(k≠0)中 k、b 的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y 轴交点的,也表示直线在y 轴上的。
一次函数与面积专题一、知识点睛1.思考策略:数形结合和化不规则为规则图形;2.处理面积问题的几种思路:①割补法(分割求和、补形作差);②等积转换(例:同底等高);③面积比转化为线段比(等高不等底)二、精讲精练(1)割补法1.如图,直线53y kx=+经过点A(-2,m),B(1,3).(1)求k,m的值;(2)求△AOB的面积.(有一边在坐标轴上的三角形)2、如图,在平面直角坐标系xOy中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.(四边形面积常转化为可求图形面积之和或差)巩固练习:3.如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB 的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.4.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m ,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;CO ABxy6.如图,直线112y x=+经过点A(1,m),B(4,n),点C的坐标为(2,5),求△ABC的面积.(转化为平行于坐标轴的三角形)(2)等积转换7.已知直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,以A 为直角顶点,线段AB 为腰在第一象限内作等腰Rt △ABC ,P 为直线x=1上的动点,且△ABP 的面积与△ABC 的面积相等. (1)求△ABC 的面积; (2)求点P 的坐标.OAxCB y巩固练习:、8.直线31y x =+与x 轴、y 轴分别交于A 、B ,以线段AB 为直角边在第一象限内作等腰Rt ΔABC ,∠BAC=90° ,如果在第二象限内有一点P (a ,12),且ΔABP 的面积与ΔABC 的面积相等,求a 的值。
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。
一次函数知识点汇总一、一次函数的概念。
1. 定义。
- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。
二、一次函数的图象。
1. 图象的形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。
通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。
2. 图象的性质。
- k的作用。
- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。
例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。
- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。
例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。
- b的作用。
- b是直线y = kx + b与y轴交点的纵坐标。
当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。
- 当b = 0时,直线过原点,此时函数为正比例函数。
例如y = 3x,图象过原点(0,0)。
三、一次函数的解析式的确定。
1. 待定系数法。
- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。
- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。
一次函数知识点总结(共12篇)篇1:一次函数知识点总结一次函数知识点总结一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
一次函数知识点及经典例题培优题型一、点的坐标方法: x 轴上的点纵坐标为 0,y 轴上的点横坐标为 0;若两个点关于 x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于 y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点 A (m,n )在第二象限,则点(|m|,-n )在第 象限;2、若点 P (2a-1,2-3b )是第二象限的点,则 a,b 的范围为 ;3、已知 A (4,b ),B (a,-2),若 A ,B 关于 x 轴对称,则 a= ,b= ;若 A,B关 于 y 轴 对 称 , 则 a= ,b= ;若 若 A , B 关 于 原 点 对 称 , 则a= ,b= ; 4、若点 M (1-x,1-y )在第二象限,那么点 N (1-x,y-1)关于原点的对称点在第 象限。
题型二、关于点的距离的问题方法:点到 x 轴的距离用纵坐标的绝对值表示,点到 y 轴的距离用横坐标的绝对值表示;任意两点 A (x A , y A ), B (x B , y B ) 的距离为;1、当 k 时, y = (k - 3) x 2 + +2x - 3 是一次函数;2、当 m 时, y = (m - 3) x 2m +1 + 4x - 5 是一次函数;3、当 m时, y = (m - 4) x 2m +1 + 4x - 5 是一次函数;4、2y-3 与 3x+1 成正比例,且 x=2,y=12,则函数解析式为 ;题型四、函数图像及其性质方法:若 AB ∥x 轴,则 A (x A , 0), B (x B , 0) 的距离为 x A - x B ; 若 AB ∥y 轴,则 A (0, y A ), B (0, y B ) 的距离为 y A - y B ;点 A (x A , y A )1、点 B (2,-2)到 x 轴的距离是 ;到 y 轴的距离是 ;2、点 C (0,-5)到 x 轴的距离是 ;到 y 轴的距离是 ;到原点的距离是 ;3、点 D (a,b )到 x 轴的距离是 ;到 y 轴的距离是 ;到原点的距离是 ;4、 已 知 点 P ( 3,0), Q(-2,0),则 PQ=,已 知 点 M ⎛ 0, 1 ⎫ , N ⎛0, - 1 ⎫ ,则2 ⎪ 2 ⎪MQ=; ⎝ ⎭ ⎝ ⎭E (2, -1),F (2, -8) ,则EF 两点之间的距离是;已知点G (2,-3)、H (3,4),则 G 、H 两点之间的距离是 ; 5、两点(3,-4)、(5,a )间的距离是 2,则 a 的值为 ; 6、已知点 A (0,2)、B (-3,-2)、C (a,b ),若 C 点在 x 轴上,且∠ACB=90°,则 C 点坐标为.题型三、一次函数与正比例函数的识别方法:若 y=kx+b(k,b 是常数,k ≠0),那么 y 叫做 x 的一次函数,特别的,当 b=0 时,一次函数就成为 y=kx(k 是常数,k ≠0),这时,y 叫做 x 的正比例函数,当 k=0 时, 一次函数就成为若 y=b ,这时,y 叫做常函数。
可编辑修改精选全文完整版一次函数待定系数法1、已知一个一次函数当自变量x =-2时,函数值y =-1,当x =3时,y =-3.能否写出这个一次函数的解析式呢?2、已知一次函数y =kx +b 的图象经过点(3,5)和点(-4,-9),求当x =5时,函数y 的值.3、若直线y =-kx +b 与直线y =-x 平行,且与y 轴交点的纵坐标为-2;求直线的表达式.4、如图,直线1l 、2l 相交于点1A l x ,与轴的交点坐标为B 2(10)l y -,,与轴的交点坐标为C (02)-,,结合图象解答下列问题: (1)求出直线2l 表示的函数的解析式;(2)当x 为何值时,1l 、2l 表示的两个一次函数的函数值都大于0?5、正比例函数y=kx 和一次函数y=ax+b 的图象都经过点A (1,2),且一次函数的图象交x 轴于点B (4,0).求正比例函数和一次函数的表达式.6、已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式;7、点A ,B ,C ,D 的坐标如图,求直线AB 与直线CD 的交点坐标.8.一次函数y kx b =+的图象过点(2-,5),并且与y 轴相交于点P ,直线132y x =-+与y 轴相交于点Q ,点Q 与点P 关于x 轴对称,求这个一次函数的解析式.9、如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.10、如图6,一次函数b kx y +=的图象与反比例函数xm y =的图象交于A 、B 两点。
(1)利用图中条件求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数的值 的x 的取值范围.(图6)11、元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?12、如图, 一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点的坐标.图3。
一次函数的图像与性质知识点总结知识点1 、 一次函数和正比例函数的概念若两个变量x,y 间的关系式可以表示成y=kx+b(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数。
例如:y=2x+3,y=—x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.知识点2、 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3、一次函数的图象由于一次函数y=kx+b(k,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b),直线与x 轴的交点(-kb ,0)。
但也不必一定选取这两个特殊点。
画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可. 知识点4 、 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k |大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5、正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点6、点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7、确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点9、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.。
()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b 第十九章一次函数知识梳理及培优训练人教版2024—2025学年八年级下册 一、知识梳理:1.一次函数的概念:函数(,为常数,)叫做的一次函数。
(1)作为一次函数自变量的最高次数是1,且其系数,这两个条件缺一不可。
(2)函数()中可以为任意常数, 当时,一次函数就成正比例函数(为常数,且) 因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2 一次函数的图象:(重点,请牢记)(1)正比例函数y=kx 的图象是经过(0,0),(1,k )的一条直线; (2)一次函数y=kx+b 的图象是经过(0,b )(—k/b ,0)的一条直线.3、一次函数的性质:(重点,请牢记) b=0 b<0 b>0k>0经过第一、三象限经过第一、三、四象限经过第一、二、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第二、四象限经过第二、三、四象限经过第一、二、四象限图象从左到右下降,y 随x 的增大而减小4.两直线的位置关系设直线11b x k y +=(01≠k )与22b x k y +=(02≠k )则: (1)21k k =且21b b ≠ ⇔两直线 (2)21k k ≠ ⇔两直线(3)21k k =且21b b = ⇔两直线 (4)121-=k k ⇔两直线()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b图1 二、例题讲解【一】函数和一次函数的定义 (1)、下列各图中表示y 是x 的函数图像的是 ( )2.函数y=(k 2-1)x+3是一次函数,则k 的取值范围是( )A.k ≠1B.k ≠-1C.k ≠±1D.k 为任意实数. 3.2(3)9y m x m =-+-是正比例函数,则m= 4.已知关于x 的函数y=(m+3)x |m+2|是正比例函数,求m 值。
第四章一次函数知识点总结4.1.1变量和函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
例如:y=±x,当x=1 时,y 有两个对应值,所以y=±x 不是函数关系。
对于不同的自变量x 的取值,y 的值可以相同,例如,函数:y=|x|,当x=±1 时,y 的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义4.1.2函数的表示法1、三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。
用函数解析式表示函数关系的方法就是公式法。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
4. 2 一次函数及其图像1、一次函数及性质一般地,形如y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0 时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.b注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为 1 ③ b 取任意实数 k(称为斜率)表示直线 y=kx+b (k≠0)的倾斜程度,b 称为截距b 一次函数 y=kx+b 的图象是经过(0,b )和(- ,0)两点的一条直线,我们称它为直k线 y=kx+b,它可以看作由直线 y=kx 平移|b|个单位长度得到. (1)解析式:y=kx+b(k 、b 是常数,k 0)必过点:(0,b )和(- ,0)k(3) 走向: 依据 k 、b 的值分类判断,见下图(4) 增减性: k>0,y 随 x 的增大而增大;k<0,y 随 x 增大而减小. (5) 倾斜度:|k|越大,图象越接近于 y 轴;|k|越小,图象越接近于 x 轴. (6) 图像的平移: 当 b>0 时,将直线 y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线 y=kx 的图象向下平移 b 个单位.b 的正、负决定直线与 y 轴交点的位置;①当 b >0 时,直线与 y 轴交于正半轴上;②当 b <0 时,直线与 y 轴交于负半轴上; ③当 b=0 时,直线经过原点,是正比例函数 2、正比例函数性质:一般地,形如 y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中 k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为 1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k≠0) 必过点:(0,0)、(1,k ) (2) 走向:k>0 时,图像经过一、三象限;k<0 时, 图像经过二、四象限 (3) 增减性:k>0,y 随 x 的增大而增大;k<0,y 随 x 增大而减小 (4) 倾斜度:|k|越大,越接近 y 轴;|k|越小,越接近 x 轴3、一次函数 y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为 0 的点.b>0b<0b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限 经过第二、四象限k<0图象从左到右下降,y 随 x 的增大而减小a 4、正比例函数与一次函数图象之间的关系一次函数 y=kx +b 的图象是一条直线,它可以看作是由直线 y=kx 平移|b|个单位长度而得到(当 b>0 时,向上平移;当 b<0 时,向下平移,).上加下减,左加右减 5、直线 y=k 1x+b 1 与 y=k 2x+b 2 的位置关系 (1)两直线平行:k 1=k 2 且 b 1 ≠ b 2 (2)两直线相交:k 1 ≠ k 2 (3)两直线重合:k 1=k 2 且 b 1=b 2 (4)两直线垂直:即 k1﹒k2=-1 (5) 两直线交于 y 轴上同一点: b 1=b 24.4、用待定系数法确定一次函数解析式1、一般步骤(一设二代三解四还原):(1) 根据已知条件写出含有待定系数的函数关系式; (2) 将 x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3) 解方程得出未知系数的值;(4) 将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.2、一元一次方程与一次函数的关系任何一元一次方程到可以转化为 ax+b=0(a ,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为 0 时,求相应的自变量的值. 从图象上看,相当于已知直线 y=ax+b 确定它与 x 轴的交点的横坐标的值.3、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为 ax+b>0 或 ax+b<0(a ,b 为常数,a ≠0)的形式, 所以解一元一次不等式可以看作:当一次函数值大(小)于 0 时,求自变量的取值范围. 4、一次函数与二元一次方程组(1) 以二元一次方程 ax+by=c 的解为坐标的点组成的图象与一次函数 y= -ab相同.x + cb 的图象⎧a 1 x + b 1 y = c 1 a 1 c 1(2) 二元一次方程组⎨ ⎩ 2 - a 2 x + c 2的图象交点.x + b 2 y = c 2 的解可以看作是两个一次函数 y= - b 1 x + 和 y=b 1 b 2b 25、关于点的距离的问题方法:点到 x 轴的距离用纵坐标的绝对值表示,点到 y 轴的距离用横坐标的绝对值表示;任意两点 A (x A , y A ), B (x B , y B ) 的距离为;若 AB ∥x 轴,则 A (x A , 0), B (x B , 0) 的距离为 x A - x B ; 若 AB ∥y 轴,则 A (0, y A ), B (0, y B ) 的距离为 y A - y B ; 点 A (x A , y A )2一次函数练习题一、填空题1、在匀速运动公式s =vt 中, v 表示速度, t 表示时间, s 表示在时间t 内所走的路程,则变量是,常量是.在圆的周长公式C=2πr 中,变量是,常量是.12、下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-1-3x (5)y=x2-1 中,是一次函x数的有()(A)4 个(B)3 个(C)2 个(D)1 个3、下列函数中,自变量x 的取值范围是x≥2的是()A.B.C.D.4、函数y5、已知函数y =-x 的取值范围是.1x + 2 ,当-1 <x ≤1 时,y 的取值范围是()2A. -52<y ≤32B.3<y <52 2C.3≤y <52 2D.3<y ≤52 26、正比例函数y = (3m + 5)x ,当m时,y 随x 的增大而增大.7、若y =x + 2 - 3b 是正比例函数,则b 的值是()A.0B.C. -23 3D. -328、若关于x 的函数y = (n +1)x m-1是一次函数,则m= ,n .9、当k 时,y =(k - 3)x2++2x -3 是一次函数;10、若函数y = (k +1)x +k 2-1是正比例函数,则k 的值为()11、已知y=(2m-1)x m2-3是正比例函数,且y 随x 的增大而减小,则m 的值为.12、当m=时,函数y = (m + 3)x 2m-1+ 4x - 5 是一次函数.13、2y-3 与3x+1 成正比例,且x=2,y=12,则函数解析式为;14、东方超市鲜鸡蛋每个0.4 元,那么所付款y 元与买鲜鸡蛋个数x(个)之间的函数关系式是.15、平行四边形相邻的两边长为x、y,周长是30,则y 与x 的函数关系式是.16、已知函数y=3x+1,当自变量增加m 时,相应的函数值增加()A.3m+1 B.3m C.m D.3m-117、若m<0, n>0, 则一次函数y=mx+n 的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限18、将直线y=3x 向下平移5 个单位,得到直线;将直线y=-x-5 向上平移5个单位,得到直线.⎩ ⎩19、函数 y =(k -1)x ,y 随 x 增大而减小,则 k 的范围是 ( )A. k < 0B. k > 1C. k ≤ 1D. k < 1 20、若直线 y = -x + a 和直线 y = x + b 的交点坐标为( m ,8 ),则 a + b =.21、对于函数 y =5x+6,y 的值随 x 值的减小而 。
22、对于函数 y = 1 - 2 x , y的值随 x 值的 2 3而增大。
23、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则 m 、n 的范围是。
25、已知直线 y=kx+b 经过第一、二、四象限,那么直线 y=-bx+k 经过第 象限。