半导体制程技术导论Chapter1导论
- 格式:pptx
- 大小:3.55 MB
- 文档页数:23
半导体制造技术导论萧宏台译本摘要:一、半导体制造技术的概述二、半导体制造技术的发展历程三、半导体制造技术的重要性四、半导体制造技术的应用领域五、半导体制造技术的未来发展趋势正文:一、半导体制造技术的概述半导体制造技术是指通过一系列复杂的工艺步骤,将半导体材料制成具有特定功能和性能的集成电路和器件的过程。
半导体制造技术作为现代电子信息技术的基础,广泛应用于计算机、通信、家电等领域,对于推动科技发展和提高人类生活水平具有重要意义。
二、半导体制造技术的发展历程半导体制造技术的发展经历了几个阶段。
早期,人们主要通过手工操作和简单的设备进行半导体材料的加工。
随着科学技术的进步,半导体制造技术逐渐实现了自动化、智能化,制造工艺也日趋精密。
从20 世纪中叶开始,半导体制造技术进入了快速发展阶段,集成电路的集成度不断提高,尺寸不断缩小,性能不断提升。
三、半导体制造技术的重要性半导体制造技术对于现代科技和社会经济发展具有举足轻重的地位。
首先,半导体制造技术是信息技术产业发展的基础。
计算机、通信设备等电子产品的核心部件都是由半导体材料制成的。
其次,半导体制造技术对提高人民生活水平具有重要意义。
半导体技术在医疗、教育、交通等领域的应用,极大地改善了人们的生活质量。
最后,半导体制造技术是国家科技实力的重要体现。
一个国家在半导体制造技术领域的地位,往往能反映出这个国家在国际竞争中的实力。
四、半导体制造技术的应用领域半导体制造技术的应用领域非常广泛,主要包括以下几个方面:1.计算机:计算机处理器、内存等关键部件都是由半导体材料制成的。
2.通信:手机、无线通信基站等通信设备中,半导体器件占有重要地位。
3.家电:半导体技术在家电产品中的应用,如电视机、冰箱、空调等,使得这些产品更加智能化、节能化。
4.工业控制:半导体技术在工业控制领域的应用,提高了生产效率和产品质量。
5.医疗:半导体技术在医疗设备中的应用,如超声波、心电图等,提高了疾病诊断和治疗的水平。
目录序言:写作缘由-----------------------------------------------------------------------------------------致谢---------------------------------------------------------------------------------------------------------第一章:引言-------------------------------------------------------------------------------------------1.1崛起的C M O S工艺制程技术-------------------------------------------------------------------1.1.1双极型工艺制程技术简介-------------------------------------------------------------1.1.2P M O S工艺制程技术简介--------------------------------------------------------------1.1.3N M O S工艺制程技术简介-------------------------------------------------------------1.1.4C M O S工艺制程技术简介--------------------------------------------------------------1.2特殊工艺制程技术--------------------------------------------------------------------------------1.2.1B i C M O S工艺制程技术简介------------------------------------------------------------1.2.2B C D工艺制程技术简介-----------------------------------------------------------------1.2.3H V-C M O S工艺制程技术简介---------------------------------------------------------1.3M O S F E T集成电路的发展历史----------------------------------------------------------------------1.4M O S F E T器件的发展和面临的挑战---------------------------------------------------------------第一章引言1.1崛起的C M O S工艺制程技术1.1.1双极型工艺制程技术简介[1~2]双极型工艺制程技术是最早出现的集成电路工艺制程技术,也是最早应用于实际生产的集成电路工艺制程技术。
图解半导体制程概论(1)第一章半导体导论█半导体的物理特性及电气特性【半导体】具有处于如铜或铁等容易导电的【导体】、与如橡胶或玻璃等不导电的【绝缘体】中间的电阻系数、该电阻比会受到下列的因素而变化。
如:杂质的添加·温度光的照射·原子结合的缺陷█半导体的材料硅(Si)与锗(Ge)为众所周知的半导体材料.这些无素属于元素周期素中的第IV族,其最外壳(最外层的轨道)具有四个电子.半导体除以硅与锗的单一元素构成之处,也广泛使用两种以上之元素的化合物半导体.●硅、锗半导体(Si、Ge Semiconductor)单结晶的硅、其各个原子与所邻接的原子共价电子(共有结合、共有化)且排列得井井有条。
利用如此的单结晶,就可产生微观性的量子力学效果,而构成半导体器件。
●化合物半导体(Compound Semiconductor)除硅(Si)之外,第III族与第V族的元素化合物,或者与第IV族元素组成的化合物也可用于半导体材料。
例如,GaAs(砷化镓)、Gap(磷化砷)、AlGaAs(砷化镓铝)、GaN(氮化镓)SiC(碳化硅)SiGe(锗化硅)等均是由2个以上元素所构成的半导体。
█本征半导体与自由电子及空穴我们将第IV族(最外层轨道有四个电子)的元素(Si、Ge等),以及和第IV族等价的化合物(GaAs、GaN等),且掺杂极少杂质的半导体的结晶,称之为本征半导体(intrinsic semiconductor)。
●本征半导体(intrinsic semiconductor)当温度十分低的时候,在其原子的最外侧的轨道上的电子(束缚电子(bound electrons)用于结合所邻接的原子,因此在本征半导体内几乎没有自由载子,所以本征半导体具有高电阻比。
●自由电子(free electrons)束缚电子若以热或光加以激发时就成为自由电子,其可在结晶内自由移动。
●空穴(hole)在束缚电子成为自由电子后而缺少电子的地方,就有电子从邻接的Si原子移动过来,同时在邻接的Si原子新发生缺少电子的地方,就会有电子从其所邻接的Si原子移动过来。
半导体制造导论..................................... 砖爲w/pr#................................................................................. 第五章早刖1至少列出三种重要的加热制程氧化,退火,沉积是三种重要的加热制程2说明直立式和水平式炉管的基本系统并列出直立式炉管的优点气体输送系统,制程炉管,控制系统,气体排放系统,装载系统。
LPCVD的话再加上真空系统优点:占地面积小,微粒污染较低,能够处理大量的晶圆,均匀性较佳,维修成本较低3?说明氧化制程氧化是最重要的制程之一,它是一种添加制程,把氧气加到硅晶圆上,在晶圆表面形成二氧化硅4?说明氧化前清洗的重要性氧化制程前的硅晶圆表面清洗是十分重要的,因为受到污染的表面会提供成核位置而形成二氧化硅多晶体层5?辨认干式氧化和湿式氧化制程及应用的差异性干式制程:闲置状态下通入净化氮气气体——闲置状态下通入制程氦气气体——在制程氮气流下把晶舟推入反映炉管一一氮气氛围下升温一一氮气分为下达到稳定温度一一关闭氮气,通入氧气和氯化氢——关闭氧气,通入氮气,进行退火——氮气氛围下降温——氦气氛围下拉出晶舟一一进行下一批操作湿式制程:闲置状态下通入净化氮气气体------ 闲置状态下通入制程氦气气体通入氮气气流和大量氧气一一通入氮气气流和大量氧气,推入晶舟一一通入氮气气流和大量氧气,开始升温一一通入氮气气流和大量氧气,达到稳定温度一一注入氧气并关掉氮气一一稳定氧气气流――打开氢氧气流,并点燃一一稳定氢气流一一利用氧气和氢气进行蒸汽氧化反应――关闭氢气,通入氧气一一关闭氧气,通入氮气一一进行下一批操作湿式氧化具有较高的生长速率,干式氧化的生长速率比湿式的低,但干式氧化生长的薄膜品质比湿式的好。
薄的氧化层如屏蔽氧化层,衬垫氧化层,栅极氧化层通常用干式氧化6?说明扩散处理扩散是一种物理现象,是因为分子受到热运动的驱动而使物质由浓度高的地方移向浓度低的地方7?说明为何离子注入可以可以取代扩散来对硅进行掺杂扩散无法单独控制掺杂物的浓度和接面深度,扩散是个等向过程。
图解半导体制程概论(1)第一章半导体导论█半导体的物理特性及电气特性【半导体】具有处于如铜或铁等容易导电的【导体】、与如橡胶或玻璃等不导电的【绝缘体】中间的电阻系数、该电阻比会受到下列的因素而变化。
如:杂质的添加·温度光的照射·原子结合的缺陷█半导体的材料硅(Si)与锗(Ge)为众所周知的半导体材料.这些无素属于元素周期素中的第IV族,其最外壳(最外层的轨道)具有四个电子.半导体除以硅与锗的单一元素构成之处,也广泛使用两种以上之元素的化合物半导体.●硅、锗半导体(Si、Ge Semiconductor)单结晶的硅、其各个原子与所邻接的原子共价电子(共有结合、共有化)且排列得井井有条。
利用如此的单结晶,就可产生微观性的量子力学效果,而构成半导体器件。
●化合物半导体(Compound Semiconductor)除硅(Si)之外,第III族与第V族的元素化合物,或者与第IV族元素组成的化合物也可用于半导体材料。
例如,GaAs(砷化镓)、Gap(磷化砷)、AlGaAs(砷化镓铝)、GaN(氮化镓)SiC(碳化硅)SiGe(锗化硅)等均是由2个以上元素所构成的半导体。
█本征半导体与自由电子及空穴我们将第IV族(最外层轨道有四个电子)的元素(Si、Ge等),以及和第IV族等价的化合物(GaAs、GaN等),且掺杂极少杂质的半导体的结晶,称之为本征半导体(intrinsic semiconductor)。
●本征半导体(intrinsic semiconductor)当温度十分低的时候,在其原子的最外侧的轨道上的电子(束缚电子(bound electrons)用于结合所邻接的原子,因此在本征半导体内几乎没有自由载子,所以本征半导体具有高电阻比。
●自由电子(free electrons)束缚电子若以热或光加以激发时就成为自由电子,其可在结晶内自由移动。
●空穴(hole)在束缚电子成为自由电子后而缺少电子的地方,就有电子从邻接的Si原子移动过来,同时在邻接的Si原子新发生缺少电子的地方,就会有电子从其所邻接的Si原子移动过来。