搅拌釜式反应器上
- 格式:pptx
- 大小:524.45 KB
- 文档页数:27
连续搅拌釜式反应器液相反应的动力学参数测定一、实验目的连续流动搅拌釜式反应器与管式反应器相比较,就生产强度或溶剂效率而论,搅拌釜式反应器不如管式反应器,但搅拌釜式反应器具有其独特性能,在某些场合下,比如对于反应速度较慢的液相反应,选用连续流动的搅拌釜式反应器就更为有利,因此,在工业上,这类反应器有着特殊的效用。
对于液相反应动力学研究来说,间歇操作的搅拌釜式反应器和连续流动的管式反应器都不能直接测得反应速度,而连续操作的搅拌釜式反应器却能直接测得反应速度。
但连续流动搅拌釜式反应器的性能显著地受液体的流动特性的影响。
当连续流动搅拌釜式反应器的流动状况达到全混流时,即为理想流动反应器——全混流反应器,否则为非理想流动反应器。
在全混流反应器中,物料的组成和反应温度不随时间和空间而变化,即浓度和温度达到无梯度,流出液的组成等于釜内液的组成。
对于偏离全混流的非理想流动搅拌釜式反应器,则上述状况不复存在。
因此,用理想的连续搅拌釜式反应器(全混流反应器)可以直接测得本征的反应速度,否则,测得的为表观反应速度。
用连续流动搅拌釜式反应器进行液相反应动力学,通常有三种实验方法:连续输入法、脉冲输入法和阶跃输入法。
本实验采用连续输入的方法,在定常流动下,实验测定乙酸乙酯皂化反应的反应速度和反应常数。
同时,根据实验测得不同温度下的反应速度常数,求取乙酸乙酯皂化反应的活化能,进而建立反应速度常数与温度关系式(Arrhenius formula )的具体表达式。
通过实验练习初步掌握一种液相反应动力学的实验研究方法。
并进而加深对连续流动反应器的流动特性和模型的了解;加深对液相反应动力学和反应器原理的理解。
二、实验原理1.反应速度 连续流动搅拌釜式反应器的摩尔衡算基本方程:dt dn dV r F F A v A A AO =---⎰)(0 (1) 对于定常流动下的全混流反应器,上式可简化为0)(=---V r F F A A AO (2)或可表达为 V F F r AAO A -=-)((3)式中;AO F ——流入反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;A F ——流出反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;)(A r -——以着眼反应物A 的消耗速度来表达的反应速度,13--⋅⋅s m mol ;由全混流模型假设得知反应速度在反应器内一定为定值。
CSTR 反应器:质量平衡表达式CSTR 反应器(连续搅拌釜反应器)是化学或生物化学工业中非常普遍的一类反应器。
反应器有一个入口和一个出口,并被完美地搅拌。
本页重点介绍将一般质量平衡方程应用于CSTR 反应器。
1、CSTR反应器连续搅拌釜反应器配备有反应物入口和反应器内容物出口,它们在反应器操作期间连续进行。
反应器装有搅拌器,假定它可以有效地搅拌反应介质。
一般的质量平衡方程可以用以下方式表示:入口= 出口+ 消耗+ 累积表达式的每个组成部分的单位是材料流量:例如mol/s。
在下面的应用中,我们考虑考虑的CSTR 反应器的情况是:•完美搅拌:反应器反应介质中任何一点的浓度相同•等温线2. CSTR反应器完全搅拌并处于稳定状态:物料平衡让我们假设反应物 A 和 B 被引入反应器。
反应A +B =C +D生成 C 和D。
入口处只有 A 和B,但在出口流中我们可以发现 A 和 B 未反应,而 C 和D。
与在反应发生时浓度始终变化的间歇式和半间歇式反应器相反,CSTR 反应器具有在稳态下运行的特性,这意味着在入口和出口之间找到平衡,可以防止积累(正或负)在反应器中。
稳态意味着:dnA/dt = dnB/dt = dnC/dt = dnD / dt = 0除了反应器处于稳定状态外,反应体积不会随时间变化,这意味着我们可以直接使用材料平衡方程中的体积V。
将反应器完全搅拌的事实也有助于表达反应物和产物的消耗/产生,因为它可以表示为反应速度与体积(r'V) 和浓度的乘积。
完全搅拌意味着:[A]reactor = [A]out[B]reactor = [B]out[C]reactor = [C]out[D]reactor = [D]out每个组分的质量平衡将如下(r'是消耗速度,r是形成速度):反应性AQ输入*[A]输入= Q输出*[A]输出 + r' A .V + 0反应BQ in *[B] in = Q out *[B] out + r' B .V + 0产品C0 = Q输出*[C]输出+ r C .V + 0产品D0 = Q输出*[D]输出+ r D .V + 03. CSTR反应器搅拌完美且处于稳定状态:反应速度反应速度系统可以由上述方程表示如下:r' A = (Q in .[A] in - Q out *[A] out )/Vr' B = (Q in .[B] in - Q out *[B] out )/Vr C =Q输出*[C]输出/Vr D = Q输出*[D]输出/V这些是稳态CSTR 的特征方程。
连续搅拌釜式反应器永通安全操作规定前言为了确保在生产中的安全,保障工人生命财产安全,制定此《连续搅拌釜式反应器永通安全操作规定》,请大家遵守。
一、连续搅拌釜式反应器的安全操作基本要求1.在操作前,应进行预先检查:保证接地系统良好,钢丝绳无破损并无对绳力的征兆,各传感器的电气接触良好,油路应无泄漏现象。
2.开始搅拌前,应检查杠杆的锁扣以及轴承导套与轴之间的卡紧螺母并进行锁紧。
3.操作时,禁止穿戴宽松衣物和披风等,以及戴手表,裸露手臂,并确保操作服穿戴整齐,露出的身体部位应涂有油墨或石墨。
4.操作人员应熟悉仪器、设备性能参数,理解反应过程原理,明确控制要点和操作步骤,正确使用操作面板的各种按钮和旋钮。
5.操作前必须进行必要的安全措施,必须做好消毒、防爆和反应器清洗等工作。
6.连续搅拌釜式反应器在操作过程中禁止闲人或拉帮结派的人员进入操作间;责任人员应当自觉遵守操作规范进行工作。
7.反应器必须安装警报器和推拉式开关,通风口处应安装防护网,防止异物进入。
8.操作过程中应注意烟火,反应器的操作环境及必备器材齐全并置于合适位置,反应器的进出口防护套装必需齐全,以免产生爆炸。
9.如若在操作过程中需要停机,必须彻底清洁反应器内部,并关闭所有相关性能参数。
二、连续搅拌釜式反应器的操作规范1.开启操作开关,设定相关参数,排空反应器内的空气。
2.反应器在操作过程中必须装备液位和温度测量仪器。
当液位偏高或温度不正常时,必须及时进行适当调整。
3.开始操作前,应将气压与流速等内容调至适宜状态,并进行相关调整,以达到预期的目标效果。
4.操作过程中,应遵守反应物料添加规律,保证反应物料加入的正确性和时效性,并注意停止添加的时间点。
5.当设定的反应时间到达后,应立即飞速制止反应,以防止反应失控。
6.操作人员必须保证反应器内部及周围环境的稳定性,对于发生异常的情况,应及时进行警示和处理。
7.反应器操作完毕后,必须断电切断相关电源,待温度与压力稳定时,方可停机装卸。
一概述醋酸乙酯生产工艺的现状和特点醋酸乙酯分子式C4H8O2,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate,简称EA。
醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。
EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。
还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。
在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。
同时醋酸乙酯本身也是制造染料、香料和药物的原料。
在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。
当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。
由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。
醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨配方的甲乙酮和甲基异丁基酮。
醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。
受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。
“八五”期间,产量年均增长率为%;1995-2000年,年均增长率达到%;2000-2002年,年均增长率高达%。
目前我国有醋酸乙酯生产企业30多家,年产能力为万吨。
其中,万吨级以上规模的企业有14家,年产能力为47万吨。
釜式反应器结构和工作原理嗨,亲爱的小伙伴们!今天咱们来聊一聊化工领域里超级有趣的釜式反应器。
釜式反应器呀,从外观上看,就像是一个大大的罐子。
它的结构其实还挺简单又很巧妙的呢。
一般来说,它有个圆圆的筒体,这个筒体就像是它的身体,能容纳各种反应物质。
筒体会有一定的厚度,毕竟有时候里面发生的反应可是很“激烈”的,得保证它足够结实,不会被撑破或者损坏。
在这个筒体的顶部,会有一个进料口。
这个进料口就像是小嘴巴一样,各种原料从这儿欢快地跑进去。
想象一下,就像是一群小伙伴要到这个大罐子里开派对呢。
进料口的设计也很有讲究哦,它得保证原料能顺利地进入,而且有时候还得控制进料的速度,就像控制小伙伴们入场的节奏一样。
筒体的底部呢,有出料口。
这就相当于派对结束后,大家从出口离开的通道。
反应结束后的产物就从这儿出去,去到下一个工序或者被收集起来。
釜式反应器里面还有搅拌器。
这个搅拌器可太重要啦,就像是一个超级活跃的小精灵在里面跳舞。
搅拌器不停地转动,把筒体内的原料搅得晕头转向的。
为啥要这么做呢?这是因为很多化学反应,要是原料们都各自待在一边,就没办法很好地接触,反应就会进行得很慢或者不完全。
搅拌器这么一转,就把原料们都混合均匀了,让它们可以亲密接触,这样反应就能快速又高效地进行啦。
那釜式反应器的工作原理是啥呢?这就像是一场神奇的魔法表演。
当原料们从进料口进入到釜式反应器这个大舞台后,在搅拌器这个魔法棒的作用下,它们开始了奇妙的变化。
比如说,我们要做一个简单的酸碱中和反应。
酸和碱这两种原料从进料口进去,搅拌器开始转动,酸分子和碱分子就被搅在一起。
它们就像两个小冤家,一见面就开始互相作用。
酸分子把自己的氢离子拿出来,碱分子把自己的氢氧根离子拿出来,然后结合成水,而剩下的部分就组成了新的盐。
这个反应就在釜式反应器里热热闹闹地进行着。
再比如说一些复杂的有机合成反应。
各种有机分子原料进去后,在特定的温度、压力条件下,在搅拌器的帮助下,它们的化学键开始断裂、重新组合。
釜式反应器结构及原理
釜式反应器也称槽式、锅式反应器,它是各类反应器中结构较为简单且应用较广的一种反应器。
它可用来进行均相反应,也可用于以液相为主的非均相反应。
如非均相液相、液固相、气液相、气液固相等等。
釜式反应器的结构,主要由壳体、搅拌装置、轴封和换热装置四大部分组成。
1、间歇釜
间歇釜式反应器,或称间歇釜。
操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。
间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。
但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。
2、连续釜
连续釜式反应器,或称连续釜
3、釜式搅拌反应器
釜式搅拌反应器有立式容器中心搅拌、偏心搅拌、倾斜搅拌,卧式容器搅拌等类型。
其中以立式容器中心搅拌反应器是最典型的一种。
性能特点:
釜式反应器具有适用的温度和压力范围宽、适应性强、操作弹性大、连续操作时温度浓度容易控制、产品质量均一等特点。
但用在较高转化率工艺要求时,需要较大容积。
通常在操作条件比较缓和的情况下操作,如常压、温度较低且低于物料沸点时,应用此类反应器最为普遍。
4、多级串联反应釜。
釜式反应器:反应原理与结构组成釜式反应器是一种常见的反应器类型,广泛应用于化工、石油、食品和材料等行业。
下面将介绍釜式反应器的反应原理和结构组成。
一、反应原理釜式反应器的主要作用是在一定的温度、压力和催化剂作用下,将原料和反应物混合在一起进行化学反应。
釜式反应器一般采用间歇式操作,即每次反应结束后,将反应产物从反应器中取出,再进行下一轮反应。
在釜式反应器中,反应物之间通过搅拌、混合和传递热量等过程,实现反应的均匀性和稳定性。
釜式反应器的操作方式可以根据不同的工艺要求进行调整,例如温度、压力、催化剂等参数都可以进行控制和优化。
二、结构组成釜式反应器主要由以下几个部分组成:1.釜体:釜式反应器的主体部分,一般由耐腐蚀、耐高温的材料制成,如不锈钢、钛等。
釜体内部一般分为上下两部分,上部为反应区,下部为加热区。
2.搅拌装置:搅拌装置是釜式反应器中的重要组成部分,它可以将反应物充分混合均匀,并促进反应的进行。
搅拌装置一般由电动机、减速器和搅拌桨组成。
3.传热装置:传热装置的作用是将外部的热量传递给釜体内的反应物,以控制反应温度。
传热装置一般由加热管、散热器等组成。
4.密封装置:密封装置的作用是防止反应物泄漏,保证反应的进行和安全性。
密封装置一般由填料密封、机械密封等组成。
5.控制系统:控制系统是整个釜式反应器的中枢神经,它可以通过调节温度、压力、搅拌速度等参数来控制反应的进行。
控制系统一般由仪表、阀门、传感器等组成。
总之,釜式反应器作为一种常见的反应器类型,具有操作简单、适应性强、可靠性高等优点。
了解釜式反应器的反应原理和结构组成有助于更好地理解其工作原理和应用场景。
反应工程实验实验 1 连续搅拌釜式反应器液体停留时间分布及其流动模型的测定⑴ 何谓返混?答:返混是指不同的停留时间的微团之间的混合。
⑵ 返混的起因是什么?答:器内反应流体的流动状态、混合状态以及器内的传热性能等。
⑶ 限制返混的措施有那些?答:器内反应流体的流动状态和混合状态的复杂性,反应流体在反应器内浓度、温度和速度的分布造成返混。
⑷ 测定停留时间分布的方法有那些?答:脉冲法、阶跃法、周期示踪法和随机输入示踪法⑸ 本实验采用哪种方法?答:脉冲示踪法。
⑹ 何谓示踪剂?答:平推流和理想混合流。
⑺ 对于示踪剂有什么要求?答:反应器出口的反应物料的各质点具有不同的停留时间。
⑻ 本实验采用什么示踪剂?答:饱和KCL溶液。
⑼ 为什么说返混与停留时间分布不是一一对应的?答:器内物料的返混会导致各种不同的停留时间分布而有停留时间分布的反应器,器内未必一定有返混存在。
⑽ 为什么可以通过测定停留时间分布来研究返混?答:在定常态下的连续流动的系统中,相对于某瞬间的流入反应器的流体,在反应器出口流体的质点中在器内停留了⊿t的流体的质点所占的分率。
⑾ 模型参数与实验中反应釜的个数有何不同?答:多级全混流模型。
⑿ 模型参数与实验中反应釜的个数为什么不同?答:不同。
模型参数N的数值可检验理想流动反应器和度量非理想流动反应器的返混程度。
当实验测得模型参数N值与实际反应器的釜数相近时,则该反应器达到了理想的全混流模型。
若实际反应器的流动状况偏离了理想流动模型,则可用多级全混流模型来模拟其返混情况,用其模型参数N值来定量表征返混程度。
⒀ 如何保证各釜有效容积相等?答:要保持水的流量和釜内波面高度稳定。
⒁ 本次实验用什么来测电导率?如何清理?答:铂黑电极。
用丙酮清洗。
⒂ 实验过程中如何保持操作条件的恒定和测定仪器的稳定?答:每次实验前,需检查校正电导率仪指针的零点和满量程;保持电极插头洁净,用最好用丙酮擦拭干净;防止电极上气泡的形成,一旦有气泡必须及时清除(放水控干)。