地铁车站结构设计基本参数
- 格式:doc
- 大小:467.00 KB
- 文档页数:8
地铁车站设计一、地铁车站建模1、整体模型分2层建模,第1层下布置筏板地基梁。
各层层高为6560、5750。
2层都为地下室楼层,注意楼层表中各层底标高的设置。
2、各层模型第1层,横轴线各跨为7250、6600、7250,纵向输入5跨,跨度11000。
楼板厚400,设置了楼板加腋,纵梁截面1000×1000,柱截面700×1100,横向梁高度取值和楼板厚度相同。
两边墙厚700。
1层楼板面荷载恒载19、活载2。
第1层底布置筏板地梁,筏板厚1000mm,设置板加腋。
中间纵向地基梁1400×2200,梁向上错层1200。
筏板上恒载10、活载20。
第2层,楼板厚800,设置了楼板加腋,纵梁截面1400×1600,梁向上错层800。
横向梁高取和楼板厚度相同。
2层楼板面荷载恒载62、活载30。
3、相关信息设置各层板厚、楼面恒活面荷载、混凝土强度等级、钢筋级别的设置如下表。
两层均为地下室。
4、自定义荷载工况对地铁车站的一般恒活荷载,可在建模的荷载菜单输入,有些特殊荷载,特别是需要控制它的不利布置、分项系数和组合系数、地震荷载代表值系数等时,可将它们作为自定义荷载工况输入。
如对地下水压力、室外土压力等,既可通过前处理的地下室参数来自动生成,也可通过自定义荷载工况人工输入。
二、计算前处理把地铁设成地下室,这样的处理的好处是:避免计算风荷载当不考虑侧土约束时需要把M值修改为0。
1、计算参数地下室信息注意地下室信息中的地下水位标高的填写,用来自动生成地下室外墙的水压力和底板向上的水浮力。
如果用户对室外水土压力已经按自定义荷载工况输入,则不应设置地下室信息。
当不考虑侧土约束时,需要把M值修改为0。
如果用户不想考虑民用建筑中以下参数,可以不选(1)薄弱层调整(2)剪重比调整(3)0.2V0调整如下图设置:2、各层楼板均设置为弹性板6为了算出水池顶板、壁墙、底板之间相互作用,应在前处理的板属性菜单中点取“全楼弹性板6”菜单,将全楼的所有楼板设置为弹性板6(即按壳单元计算)。
、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑
净高4.5m,站厅层建筑净高4.8m。
结构构件截面尺寸及主要材料强度如表1所示。
车站典
型横断面如下图所示(图1):
图1车站典型横断面
、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护
结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载一结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。
工程地质
岩土分层及特性
ur111
-- r
J
mu
ii
nim
111
|.h» L* \ [L 严Y| 1a
-
»
it
W 4 -- ■4■L 午■ !—
…丨LI
图2主体结构计算图式
表
岩土层分类及深度
土层物理、力学参数表
表3各岩土层力学、物理参数
表4荷载计算表
荷载及荷载效应组合
表5荷载组合参数表
荷戦种类纽合永久荷找可变荷St水土圧力人肪荷攪地匿荷iX
1 {基本)1135VL^0.7* 1.413500
\_2(甚本)_n12皆1.400
3 <标准) 1.0 1.0 1.000
4〔准永久) 1.0屮qX 1 -0 1.0Q0
5 <人防) 1.20 1.2 1.00
6 {地怎}L20.5x12「12013
注*甲q为准永久值系数匚YL为町变荷裁君虑投计便用年限的调整家敬。
苏州市轨道交通4号线地铁站建设结构设计第二分册车站结构1.概述1.1 工程概述苏州市轨道交通4号线总体呈南北走向,连接了相城区、苏州古城区、吴中区、吴江市松陵镇等重要组团,是苏州市南北方向的骨干线路,与轨道2号线共同支撑城市发展副轴。
主线线路起于相城北部新城区的苏蠡路,经相城区中心城区,沿人民路穿越古城中心,途经苏州火车站、北寺塔、观前商业中心、吴中区中心、吴江规划滨湖新城、吴江汽车站、苏嘉城际铁路松陵站等客流集散点,止于吴江市同津大道。
主线全长41.1km,设车站30座,均为地下站。
苏蠡路车站为全线的第1座车站,车站位于规划苏蠡路与文灵路T型交叉口南侧,沿文灵路布置,周边为厂房及二三层的民居。
站址处地势略有起伏,地面标高约3.0m,车站埋深约16.61m。
1.2工可评审设计审查意见执行情况1)《可研报告》推荐苏蠡路等10座地下车站,采用放坡+SMW工法桩做基坑围护结构,基坑深度约16m左右,而在围护结构设计原则中规定SMW工法仅适用于≦14m深的基坑,故苏蠡路等站均需放坡2m左右,但《可研报告》没有明确放坡段采用什么支护型式以及浅层地下水如何处理等措施,应补充完善。
执行情况:车站主体基坑围护结构形式采用SMW工法桩+放坡,放坡深度四米,坡面采用网喷砼+土钉。
2)应进一步补充分析场地承压水对深基坑工程的影响,给出工程安全性评价以及应对措施。
执行情况:场区内无承压水影响;2设计依据2.1设计依据1)《苏州市轨道交通4号线工程可行性研究报告》(中铁第四勘察设计院集团有限公司 2010.08)2)《苏州市轨道交通4号线工可预评审专家意见》(2010.08)3)《苏州市轨道交通4号线工程初步设计技术要求》(中铁第四勘察设计院集团有限公司2010.08)4)《苏州市轨道交通4号线工程初步设计文件编制统一规定)》(中铁第四勘察设计院集团有限公司2010.08)5)《苏州市轨道交通4号线工程-地下建(构)筑物调查报告》(冶金工业部华东勘察基础工程总公司<苏州> 2010.9 )6)《苏州市轨道交通4号线工程-地下管线调查成果报告》(冶金工业部华东勘察基础工程总公司<苏州> 2010.9 )7)《苏州市轨道交通4号线岩土工程初步勘察报告》(苏州地质工程勘察院2010.9)8)《苏州市轨道交通4号线工程地形图》(江苏省测绘院2010.7)9)《苏州市轨道交通4号线初步设计车站防水通用图》(中铁第四勘察设计院集团有限公司2010.09)苏州轨道交通指挥部、苏州市各区政府、苏州轨道交通有限公司及4号线总体组下发的相关会议纪要、技术联系单。
双林路站主体结构计算书一、工程概况双林路站为12m岛式站台,车站总长168.8m。
为双柱双层三跨现浇钢筋混凝土矩形结构。
车站顶面覆土深度为3.5m~4.0m。
车站围护结构采用Φ1200mm的钻孔灌注桩,内衬墙与钻孔灌注桩之间设置柔性防水层,属于重合墙结构。
二、计算依据1、《成都地铁4号线一期工程详细勘察阶段双林路站岩土工程勘察报告》(送审稿)(中国建筑西南勘察设计研究院有限公司 2010年10月) ;2、《成都地铁4号线一期工程双林路站点管线综合方案设计图(第二版)》(成都市市政工程设计研究院二O一O年九月二日成都)3、主要采用的国家和地方规范:《建筑结构荷载规范》(GB 50009-2001)(2006修订版)《建筑地基基础设计规范》(GB 50007-2002)《地铁设计规范》(GB 50157-2003)《建筑抗震设计规范》(GB 50011-2010)《铁路工程抗震设计规范》(GBJ 111-87)《人民防空工程设计规范》(GB 50225-95)《铁路隧道设计规范》(TB10003-2005)《混凝土结构设计规范》(GB 50010-2010)三、结构计算原则1)结构构件根据承载力极限状态及正常使用极限状态的要求,分别进行承载能力的计算和稳定性,变形及裂缝宽度验算;2)结构的安全等级为一级,构件的(结构)重要性系数取1.1;3)结构构件的裂缝控制等级为三级,即构件允许出现裂缝。
裂缝宽度限值:迎水面不大于0.2mm,其他不大于0.3mm;4)结构按7度地震烈度进行抗震验算,并在结构设计时采用相应的构造措施,以提高结构的整体抗震性能;(构造措施采用三级框架结构抗震构造)5)结构设计按六级人防的抗力标准进行验算,并在规定的设防位置采取相应的构造措施;6)结构抗浮验算按最不利情况采用,当不考虑侧壁摩阻力时,其抗浮安全系数应大于1.05;(考虑侧壁摩阻力时,其抗浮安全系数应大于1.2)7)结构构件的设计应按承载力极限状态和正常使用极限状态分别进行荷载效应组合,并取各自的最不利组合进行设计;8)结构设计应符合结构的实际工作(受力)条件,并反映结构与周围地层的相互作用。
地铁车站压顶梁结构设计摘要:在地铁结构设计时,若车站抗浮不满足要求,会优先考虑设置压顶梁抗浮型式。
该型式利用围护结构参与抗浮、节省工程投资,且施工简便、抗浮性能可靠,在工程中广泛使用。
本文主要探讨压顶梁受力计算及相关设计。
关键词:压顶梁;抗浮;受力分析;计算一、压顶梁设置范围及连接节点压顶梁设置在顶板上,沿车站全长布置,与顶板间200高为混凝土填充,压顶梁与顶板、填充混凝土均采用C35混凝土。
压顶梁尺寸为800mmx800mm。
车站先施工地墙,地墙内预埋钢筋接驳器,随后施工顶板,再施工压顶梁及混凝土填充。
压顶梁与地墙采用钢筋接驳器连接。
图一压顶梁布置剖面图图二压顶梁与地墙连接剖面图图三压顶梁配筋断面图二、压顶梁受力分析本次计算采用某地铁车站断面进行抗浮计算,车站信息如下:车站覆土厚度:2.85m,顶板厚0.8m,顶板梁0.9x2m,中板厚0.4m,中板梁0.9x1m,底板厚0.9m,底板梁1.1x2.2m,柱子0.8x1.2m,柱跨为9m,侧墙宽0.7m,车站总高度13.85m,总宽度20.7m,地墙长度为32.5m。
抗浮计算过程如下:K1=(2.85*20*20.7+25*19.3*(0.8+0.4+0.9)+20*19.3*0.15*2+25*(0.9*(2-0.8)+0.9*(1-0.4)+1.1*(2.2-0.9)+0.8*1.2*(13.85-0.8-0.4-0.9)/9+0.7*13.85*2+0.8*0.8*2)+15*32.5*0.8*2+0.3*0.9/2*6)/(10*20.3*(2.8 5+13.85-0.5))=1.13>1.1,满足要求。
每侧单位长度压顶梁所受剪力V=(单位长度水反力X1.1-单位长度结构自重-单位长度覆土重)/2=327.7KN。
压顶梁受地墙参与抗浮传来的剪力及由剪力引起的弯矩。
剪力设计值V1=1.1X1.25V=450.6KN弯矩设计值M1=1.1X1.25(VH)=1.1X1.25X(327.7X0.4)=180.3KN.M三、压顶梁结构设计3.1 正截面承载力验算1)构件编号:压顶梁2)设计依据《混凝土结构设计规范》 GB50010-20103)计算信息1. 几何参数截面类型: 矩形截面宽度: b=1000mm截面高度: h=800mm2. 材料信息混凝土等级:C35fc=16.7N/mm2ft=1.57N/mm2钢筋种类:HRB400fy=360N/mm2最小配筋率:ρmin=0.200%纵筋合力点至近边距离: as=50mm3. 受力信息M=180.300kN*m4. 设计参数结构重要性系数: γo=1.14)计算过程1. 计算截面有效高度ho=h-as=800-50=750mm2. 计算相对界限受压区高度ξb=β1/(1+fy/(Es*εcu))=0.80/(1+360/(2.0*105*0.0033))=0.5183. 确定计算系数αs=γo*M/(α1*fc*b*ho*ho)=1.1*180.300*106/(1.0*16.7*1000*750*750)= 0.0214. 计算相对受压区高度ξ=1-sqrt(1-2αs)=1-sqrt(1-2*0.021)=0.021≤ξb=0.518满足要求。
地铁车站主体结构设计地铁是一种地面以下的交通工具,其中车站主体结构是其中一个非常重要的部分。
在地铁车站主体结构设计过程中,需要考虑多个因素,包括地铁路线、车站规模、通行人流量等等因素。
本文将介绍地铁车站主体结构设计的相关内容,包括设计原则、技术要求和注意事项等方面。
设计原则在地铁车站主体结构的设计中,有几个基本的设计原则需要考虑:1.结构安全性:地铁车站主体结构需要考虑地铁运行中的外界风险,如地震、火灾、爆炸等。
因此,在设计中需要考虑结构的安全性和可靠性。
2.效率和通行性:地铁车站主体结构需要考虑通行人流量,应该在设计中充分考虑车站的人流路径和出入口的位置,并确保站台和通道的有效使用。
3.美学和人性化:地铁车站主体结构的设计还需要考虑站点场景,考虑尽可能减轻旅客的不适感,使车站变得美观舒适,并且应该调整结构的高度和透明度等参数来适应不同的环境。
技术要求在地铁车站主体结构设计过程中有一系列的技术要求:1.结构强度:地铁车站主体结构需要经过严格的静力学和动力学计算,以确保结构安全强度。
2.车站通行能力:地铁车站主体结构需要考虑车站工作情况和通行能力,确保车站人流和车流的有效流动。
3.构造材料:地铁车站主体结构需要考虑运行成本,材料需要保证结构强度和经济性,同时考虑材料环境适应性和处理维护成本等。
4.防火和安全设备:地铁车站主体结构需要考虑居住防火和安全设备,包括消防设备和紧急撤离设备等。
注意事项在地铁车站主体结构设计过程中,需要考虑到一些注意事项,比如:1.规划和设计需要考虑具体地铁线路的建设需求,包括车站规模和规格方面的限制。
2.车站通道和管道的设计和布局要考虑到车站的实际使用需求和地形条件。
其中需要考虑汽车通道、车站区域及周边公共设施等。
3.考虑运营维护成本,避免人为因素造成的损坏,尽可能采用耐磨性好且易于维护的材料和设备。
4.考虑紧急情况,要为车站增设紧急出口、逃生通道等应急设施,从而避免因突发事件而使人员伤亡。
地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。
在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。
为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。
地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。
车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。
车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。
然后进行车站构造设计, 内力计算, 配筋计算等等。
一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。
车站底板埋深16m,采用明挖法施工,用地下连续墙围护。
二、设计依据:地铁设计规范(GB50157-2003);地铁施工技术规范。
三、地铁车站结构设计3.1 设计选用矩形框架结构。
设计为岛式车站,采用两层三跨结构。
地铁车站采用明挖法。
车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。
顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。
采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。
临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。
3.2 车站开挖围护结构地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。
四、侧压力计算:土分层及土的钻孔柱状图如图4.1:图4.1土分层及土的钻孔柱状图(单位,m)计算主动土压力: a a a c K -Z K =P 2γ其中 a P ………………………主动土压力a K ………………………主动土压力系数γ………………………沙土的容重Z ………………………土层的深度c ………………………土的黏聚力各层土压力系数:1Z : 41.0225452=⎪⎭⎫ ⎝⎛-=K tg a 2Z : 33.0230452=⎪⎭⎫ ⎝⎛-=K tg a 3Z :31.0232452=⎪⎭⎫ ⎝⎛-=K tg a 4Z :26.0234452=⎪⎭⎫ ⎝⎛-=K tg a5Z :22.0236452=⎪⎭⎫ ⎝⎛-=K tg a各层土压力:a : 02=K -Z K =P a a a c γb : 1Z K =P γa b 上=0.41×13.2×6.5=35.2 kpa=Z K =P 2γa b 下0.33×13.2×6.5=28.3 kpac : =Z K =P 2γa c 上0.33×(13.2×6.5 + 19.8×2.0)=41.4 kpa=Z K =P 3γa c 下0.31×(13.2×6.5 + 19.8×2.0)=38.9 kpad :=Z K =P 3γa d 上0.31×(13.2×6.5 + 19.8×2.0 + 26.7×9)=113.4 kpa 26.04=BZ K =P γa d 下×(13.2×6.5 + 19.8×2.0 + 26.7×9)=95.1 kpae :26.04=Z K =P γ上e ×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=103.5 kpa=Z K =P 5γa e 下0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=87.6 kpaf :=P f 0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9.0 + 26.5×1.2 + 27×11.3)=154.7 kpa由于黏聚力C = 0 ,所以临界深度为0 。
西安地铁建设标准
西安地铁建设标准主要包括以下几个方面:
1. 地铁路线的设计标准:这包括车站间距、站台长度、站台宽度、车辆运行速度等方面的要求。
例如,可以根据车流量、乘客出行需求等因素来确定车站间距和站台长度,以确保乘客的出行舒适度和运输效率。
2. 总体设计阶段车站建筑主要设计标准:例如,地下车站公共区地平面至结构顶板底面净高单柱车站≥,双柱车站≥,双柱车站≥;站台层站台计算长度118m;站台最小宽度岛式站台(无柱时)≥8000mm,岛式站台(单柱双跨时)≥10500mm,岛式站台(双柱三跨时)≥12500mm等。
请注意,西安地铁建设标准可能会根据实际情况进行微调,具体内容应以最新发布的标准为准。
地铁车站建筑设计
1) 站厅层
公共区装修后地坪面至结构顶板底面净高:4500mm
公共区装修后净高:≥3000mm
公共区地坪装修层厚度:150mm
内部管理区走道净宽:(单面布置)≥1200mm (双面布置)≥1500mm
内部管理区用房区净高:≥2400mm
2)站台层
岛式车站站台宽度:10400mm
线路中心线至站台边缘:1600mm
岛式站台侧站台宽度(有柱时):≥2500mm
线路中心线至侧墙净距:2250mm
站台层装修后净高:≥3000mm
轨面至轨行区结构底板:560—620mm
地坪装修层厚度:100mm
地坪装修面至结构中板底面净高: 4400mm
站台层装修面至轨顶面高:1080mm
有效站台总长:140400mm
屏蔽门长度:135500mm
2) 地下三层
地下三层为15号线站台层,预留与未来15号线站台接口条件。
②车站规模
1) 车站面积
本站为地下三层15m岛式站台车站,车站的总建筑面积为21899.1m2,其中:车站主体建筑面积为18390.9m2 ;车站附属建筑面积为3508.2m2 ;站厅层建筑面积为9012m 2;站台层建筑面积为9012m2 ;地下三层建筑面积为366.9 m 2.
2) 站台形式及宽度
站台为岛式站台,宽度为10.0m。
3) 车站外包尺寸
车站总长504.4m(不含围护结构),车站标准段总宽18.9m。
地铁车站及区间结构设计流程一、车站:1、提资提资包括初步设计资料、建筑施工图、专家评审意见、地质与物探报告等。
提资时应先核对资料的准确性与可用性,发现问题及时与提资单位沟通。
2、任务计划编排熟悉资料后应根据实际情况做好任务计划编排,包括参与人员、各成员任务划分以及完成的时间节点。
2.1 车站图纸主要组成内容2.1.1 围护结构1)围护结构形式的选择地下两层车站主体基坑深度一般在16米以上,一般常用800厚地下连续墙,在地质较好地区也有用钻孔咬合桩(如南京)、钻孔灌注桩(如南京、沈阳)等,桩径可取800、1000。
地下三层车站一般基坑深度在22m以上,采用地下连续墙,墙厚在1000以上。
车站附属结构标准段基坑深度一般在10m左右,围护结构形式可采用钻孔灌注桩或SMW工法桩。
部分城市施工图技术要求中提到:一般当基坑深度≥13m时宜采用地下连续墙;当基坑深度<13m时可采取钻孔灌注桩、钻孔咬合桩及SMW工法桩等型式的围护结构)2)围护结构计算根据各单位要求采取相应的计算方法。
采取的软件涉及同济启明星(或理正基坑)、sap2000等,通过计算确定围护结构型式、尺寸、支撑型式、加固方法等等。
计算是指导设计的前提,必须提前准备并适时反馈,及时验算。
3)设计图纸内容一般包含:总平图,基坑平面布置图、纵断面图、横断面图、围护结构配筋图、节点大样图、地基加固图、临时施工措施图及施工监测图等。
对于与内衬墙形成叠合结构的地下连续墙,还应该有预留主体结构钢筋接驳器布置图。
基坑平面图设计时需注意以下几点:应与支撑一并考虑,避免支撑过疏或过密,同时用给临时支撑构件预留位置。
综合考虑交通组织、附属部分及结构构造方面的要求(如诱导缝)。
以地连墙围护为例:首先确定诱导缝位置,诱导缝布置时不仅要考虑间距(24m即3跨左右),同时亦要考虑避开出入口、孔洞以及内部大型电气设施用房(如大型机电、开关柜等高压设备区域等),分幅时注意将分幅线与诱导缝对齐。
车站结构一般规定1. 哈尔滨市轨道交通1 号线四期工程沿线车站均为地下站,车站结构设计应从各自的建设条件出发,根据城市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划的要求,考虑相邻区间隧道施工工艺和站址地面交通组织的处理方式,本着既遵循技术先进,又安全、可靠、适用、经济的原则选择结构型式和施工方法。
2. 车站结构应根据选择的结构型式、施工方法、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性要求,并根据确定的环境类别、环境作用等级、设计使用年限等标准进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等要求。
3. 车站结构要满足车站建筑、设备安装、行车运营、施工工艺、环境保护等要求,确保车站的正常使用,达到总体规划设计的要求,同时,考虑城市规划引起周围环境的改变对结构的作用。
4. 车站结构的净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能的要求。
尚应考虑施工误差、测量误差、结构变形和后期沉降等因素的影响,其值根据地质条件、埋设深度、荷载、结构类型、施工工序等条件并参照类似工程的实测值加以确定。
5. 车站结构应具有足够的纵向刚度,并满足地铁长期运营条件下对结构纵向抗裂及抗差异沉降的要求。
换乘车站结构设计应充分考虑上述要求,以减少换乘车站续建工程对已建车站结构的影响。
6. 结构设计应以现行国家的相关勘察规范确定的内容和范围,考虑不同施工方法对地质勘探的特殊要求,通过施工中对地层的观测反馈进行验证。
其中暗挖结构的围岩分级按现行《铁路隧道设计规范》(TB10003)确定。
7. 对于基坑法、浅埋暗挖法等不同型式的车站结构计算模型应符合实际工况条件,并根据具体情况选用与其相符或相近的现行国家有效规范、规程和标准进行设计。
8. 车站抗震设计应根据当地政府主管部门批准的抗震设防烈度,按照相关规范进行设计。
9. 车站按照当地政府主管部门批准的六级人防标准设防,保证地下车站在规定的人防设防区段具备战时防护和平战转换功能。
地铁车站结构设计地铁车站是城市地铁系统的关键组成部分,其设计应充分考虑到安全、便利和美观等方面。
本文将从站点选址、站厅设计、站台设计和出入口设计等角度,对地铁车站的结构设计进行详细阐述。
1.站点选址地铁车站的选址应考虑以下因素:-人口密度:选址应与人口密集区接近,方便乘客出入。
此外,还要考虑未来城市发展的规划,以确保选址能够满足未来需求。
-交通便捷性:车站附近应有公交站点和停车场,方便乘客换乘和停车。
-地质条件:选址要避免地质灾害和地下水问题,以保证车站的稳定性和安全性。
2.站厅设计站厅是地铁车站的核心区域,应具备以下特点:-宽敞明亮:站厅应设计为宽敞明亮的空间,以提供足够的运营空间和方便的视觉导向。
-分区布局:站厅应划分出清票区、安检区、候车区等不同功能区域,以便乘客可以有序地进行票务和安全检查。
-通风系统:站厅应配置良好的通风系统,确保空气的流通和乘客的舒适。
3.站台设计站台是乘客上下车和换乘的区域,其设计应满足以下要求:-宽度和长度:站台宽度应足够以容纳客流高峰时的乘客,并提供充足的上下车空间。
站台长度应根据列车的长度来确定,以便保证列车的完全停靠。
-安全设施:站台应设有防护门和安全栏杆,以保证乘客的安全,并防止乘客进行危险行为。
此外,站台上还应设有紧急广播和紧急出口,以应对突发情况。
-无障碍设施:站台应设有无障碍通道、盲道和轮椅航道,以方便残障乘客的使用。
4.出入口设计出入口是地铁车站与城市道路和交通网络相连接的区域,其设计应具备以下特点:-就近性:出入口应就近于周边居民区和商业区,以提供方便快捷的出行服务。
-多元交通接驳:出入口应与公交站点、停车场和自行车停车场相连接,以满足乘客的多样化交通需求。
-安全和流畅性:出入口应设置适当的安全设施,如监控摄像头和安保人员。
此外,还应考虑到乘客的流量,并设置合理的通道和通行方式,以保证出入口的流畅。
综上所述,地铁车站的结构设计应兼顾安全、便利和美观等方面的要求。
车站构造一般规定1.哈尔滨市轨道交通1号线四期工程沿线车站均为地下站,车站构造设计应从各自旳建设条件出发,根据都市规划、线路埋深、建筑布置、施工环境、工程水文地质,以及冬季气候等自然条件,按照工程筹划旳规定,考虑相邻区间隧道施工工艺和站址地面交通组织旳解决方式,本着既遵循技术先进,又安全、可靠、合用、经济旳原则选择构造型式和施工措施。
2.车站构造应根据选择旳构造型式、施工措施、荷载特性、耐火等级等条件进行设计,满足强度、刚度、稳定性规定,并根据拟定旳环境类别、环境作用等级、设计使用年限等原则进行耐久性设计,满足抗裂、防水、防腐蚀、防灾等规定。
3.车站构造要满足车站建筑、设备安装、行车运营、施工工艺、环保等规定,保证车站旳正常使用,达到总体规划设计旳规定,同步,考虑都市规划引起周边环境旳变化对构造旳作用。
4.车站构造旳净空尺寸应满足地铁建筑限界以及建筑设计、相邻区间施工工艺和其他使用功能旳规定。
尚应考虑施工误差、测量误差、构造变形和后期沉降等因素旳影响,其值根据地质条件、埋设深度、荷载、构造类型、施工工序等条件并参照类似工程旳实测值加以拟定。
5.车站构造应具有足够旳纵向刚度,并满足地铁长期运营条件下对构造纵向抗裂及抗差别沉降旳规定。
换乘车站构造设计应充足考虑上述规定,以减少换乘车站续建工程对已建车站构造旳影响。
6.构造设计应以现行国家旳有关勘察规范拟定旳内容和范畴,考虑不同施工措施对地质勘探旳特殊规定,通过施工中对地层旳观测反馈进行验证。
其中暗挖构造旳围岩分级按现行《铁路隧道设计规范》(TB10003)拟定。
7.对于基坑法、浅埋暗挖法等不同型式旳车站构造计算模型应符合实际工况条件,并根据具体状况选用与其相符或相近旳现行国家有效规范、规程和原则进行设计。
8.车站抗震设计应根据本地政府主管部门批准旳抗震设防烈度,按照有关规范进行设计。
9.车站按照本地政府主管部门批准旳六级人防原则设防,保证地下车站在规定旳人防设防区段具有战时防护和平战转换功能。
地铁车站建筑设计目录:一、已知设计基本条件.二、站厅内部的自动扶梯数量和楼梯的宽度计算.三、站台长度、宽度计算.四、人工售票亭或自动售票机数目计算.五、出入口宽度和数量计算.六.、进或出站口的人工检票口和自动检票口数量计算.七.、根据计算出的楼梯自动扶梯宽度按防灾要求检算安全疏散时间.一、已知条件:某地铁车站,预测远期超高峰小时客流(人/小时)、超高峰系数如下表:车辆及运行信息:A 型车尺寸:长22m ,宽3.0m ,高3.8m列车编组数为6辆,定员1845人/列高峰时最多可载客2768人 列车运行时间间隔为2分钟 列车停车的不准确距离为1米乘客及工作人员信息:客流密度为0.5平方米/人,站台上工作人员为6人乘客沿站台纵向流动宽度为2米,出入口客流不均匀系数取1.1车站结构布置信息:采用三跨两柱双层结构的岛式站台车站,站台上的立柱为0.6米的圆柱 两柱之间布置楼梯及自动扶梯。
二、站厅内部的自动扶梯数量和楼梯的宽度: 自动扶梯数量:nn Nk m 11=自动扶梯台数;:1m);站客量(人预测的上行与下行的出h /:N;2.1数,取超高峰系:k )m h (/人8100,取每小时输送客流的能力:1⋅n 8.0自动扶梯利用率,取:n1.588.081002.1)57002850(1=⨯⨯+=m 台。
采用2部1m 宽自动扶梯。
楼梯宽度计算: 楼梯宽度:nn kN m 22'=)m 楼梯宽度(:2m )h /人(站客量预测的上行与下行的进:'N 2.1数,取超高峰系:k)m h (/人3200,取楼梯双向混行通过能力:2⋅n 7.0楼梯利用率,取:n则.55.37.032002.1)29003730(2m m =⨯⨯+=可选用楼梯的宽度为4米,为保证事故疏散时间达到要求,采用2部4m 宽楼梯,不加用自动扶梯,因为自动扶梯在事故中不能保证逃生的使用功能。
所以楼梯和自动扶梯相向布置,m d 514=+=。
一、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑净高4.5m,站厅层建筑净高4.8m。
结构构件截面尺寸及主要材料强度如表1所示。
车站典型横断面如下图所示(图1):
图1 车站典型横断面
表1 主要结构构件尺寸及材料强度等级
二、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载—结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。
工程地质
岩土分层及特性图2 主体结构计算图式
表2 岩土层分类及深度
注:该项工程地下水位为-9.00m。
土层物理、力学参数表
表2 各岩土层力学、物理参数
;.
表3 各岩土层力学、物理参数
;.
;.
表4 荷载计算表
荷载及荷载效应组合
表5 荷载组合参数表。