当前位置:文档之家› 斐波那契数列——汇编语言

斐波那契数列——汇编语言

斐波那契数列——汇编语言
斐波那契数列——汇编语言

datarea segment

string1 db 'please input the number: ',13,10,'$' string2 db 13,10,'here is:',13,10,'$'

Buffer db 4

db ?

db 4 dup(?)

number db ?

mulfact db 1

fei db 254 dup(?)

datarea ends

codearea segment

mainproc far

assume cs:codearea,ds:datarea

start:

push ds

sub ax,ax

push ax

mov ax,datarea

mov ds,ax

lea dx,string1

mov ah,09

int 21h

lea dx,Buffer

mov ah,0ah

int 21h

call convertnum

mov al,number

lea dx,string2

mov ah,09

int 21h

call init

; mov al,Buffer+1

; and ax,00ffh

; mov si,ax

call outputfei

; mov fei[si+1],24h

; lea dx,fei

; mov ah,09

; int 21h

ret

mainendp

;======================================= convertnum proc near

push bx

mov si,Buffer[1]

and si,00ffh

mov cx,si

mov mulfact,1

mov bx,0

Next:

mov al,Buffer[si+1]

; cmp al,'0'

; js Exit

; cmp al,'9'

; ja Exit

sub al,30h

and ax,000fh

mov dl,mulfact

mul dl

add bx,ax

mov al,mulfact

mov dl,10

mul dl

mov mulfact,ax

dec si

loop Next

mov number,bl

pop bx

ret

convertnum endp

;================================== init proc near

mov cx,al

and cx,00ffh

and ax,00ffh

mov si,1

; and si,00ffh

mov fei+1,1

mov fei+2,1

loop1:

sub cx,2

cmp si,cx

jnb exit

mov bl,0

add bl,fei[si]

add bl,fei[si+1]

mov fei[si+2],bl

inc si

jmp loop1

exit:

ret

init endp

;================================== outputfei proc near

mov cl,number

and cx,00ffh

mov si,0

loop4:

cmp si,cx

jz break

mov ax,fei[si+1]

and ax,00ffh

call output

inc si

jmp loop4

break:

ret

outputfei endp

;================================ output proc near

push ax

push bx

push cx

push dx

cmp ax,100

jl g2

mov bl,100

div bl

add al,30h

mov bh,ah

mov dl,al

mov ah,2

int 21h

mov al,bh

cbw

g2:

cmp ax,10

jl g4

mov bl,10

div bl

mov bh,ah

add al,30h

mov dl,al

mov ah,2

int 21h

mov al,bh

cbw

g4:

add al,30h

mov dl,al

mov ah,2

int 21h

mov dl,20h

mov ah,2

int 21h

pop dx

pop cx

pop bx

pop ax

ret

output endp codearea ends

end start

斐波那契数列

第1章绪论 布置的作业共6题: 基础知识题:1.6 1.7 1.8 1.10 算法设计题:1.17 1.20 一、基础知识题 ◆1.6 ③在程序设计中,常用下列三种不同的出错处理方式: (1)用exit语句终止执行并报告错误; (2)以函数的返回值区别正确返回或错误返回; (3)设置一个整型变量的函数参数以区别正确返回或某种错误返回。 试讨论这三种方法各自的优缺点。] 答题思路:查错和容错能力 答:程序出错处理是指发现错误并根据出错的原因作出适当的处理,处理的目的是找到出错的原因。出错的原因一般包括缺乏某些资源和程序设计有问题两类。如果是前者,程序仍然可以继续运行,只是处于等待资源或执行其他流程的状态。如果是后者,则需要修改源代码。

◆1.7 ③在程序设计中,可采用下列三种方法实现输出和输入: (1)通过scanf和printf语句; (2)通过函数的参数显式传递; (3)通过全局变量隐式传递。 试讨论这三种方法的优缺点。 答题思路:错误局部化(软件模块化)、执行效率(内存开销) 答:在正规的软件设计中,要求各模块之间以恰当的方式进行调用,以便使各模块中出现的错误局部化。 其是方式3,在出现错误时查错的开销将很大,尽量不使用。

◆1.8 ④设n为正整数,试确定下列各程序段中前置以记号@的语句的频度。评析:频度≠时间复杂度 注意:(1)、(2)、(3)三个程序段中任何两段都不等效(即k和i的终值不相同 )

书后附有答案 标答:程序段(8)取自著名的McCarthy91函数 ? ??≤+>-=100 ))1((10010)(x x M M x x x M 对任何 x ≤100,M(x)=91。此程序实质上是一个双重循环,对每个y(>0)值,@语句执行11次,其中10次是执行x++。 刘解:请注意x 的初值已经是91了,必须加到101才能终止程序的循环。if 语句从x=91开始直到x=101都执行,共执行11次,其中10次是执行x++。

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议! 这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:。其中表示正方形的面积,表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。 爬梯子问题(斐波那契数列应用) 1.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法? 这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法. 既:楼梯的级数:12345678... 上楼梯的走法:124713244481... 这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

数列通项公式方法大全很经典精品

【关键字】方法、关键、关系、满足 1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以122 2 a 1 1==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

斐波那契数列的性质

斐波那契数列的性质 一、通项公式:a n = 5〔1+ 52〕n - 5 〔1? 52〕n 二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立:a p a q - a u a v = (-1)p+1a u-p a q-u 三、a n +1a n?1 - a n 2 = (?1)n (n >= 1, n 属于 N) 四、a 2n +1 = a n +12 + a n 2 (n 属于N ) 五、a n +12 - a n?12 = a n 2 (n >= 1, n 属于N) 六、a n +m = a n?1a m + a n a m +1 (n >= 1, n 和m 属于N) 七、a 2n +2a 2n?1 - a 2n a 2n +1 = 1(n >= 1, n 属于N) 八、a m +n 2 - a m?n 2 = a 2m * a 2n (m > n >= 1) 九、a n?1?a n +2 - a n ?a n +1 = (?1)n (n >= 2) 十、{f 2n f 2n +1} 有极限且等于黄金分割率 5 ?12

下面是一篇文章:

斐波那契数列通项公式 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。) 有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 奇妙的属性 随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887…… 从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通) 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64

数列通项公式方法大全

数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

求数列通项公式方法大全

求数列通项公式的常用方法 类型1、()n n S f a = 解法:利用???≥???????-=????????????????=-)2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去 n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例 1 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,12n n a ??= ??? . 变式 1. 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,求n a 变式2. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式 变式3. 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. 求数列{}a n 的通项公式; 变式4. 数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .求数列{}n a 的通项n a 变式5. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式; 变式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2 )2(81+=n n a S (1)求证:}{n a 是等差数列 (2)若n b 3021 -=n a ,求}{n b 的前n 项 和的最小值

斐波那契数列的来历

斐波那契是意大利的数学家.他是一个商人的儿子.儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣. 长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及,叙利亚,希腊,西西里和法兰西.每到一处他都留心搜集数学知识.回国后,他把搜集到的算术和代数材料,进行研究,整理,编写成一本书,取名为《算盘之书》,于1202年正式出版. 这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展.其中有一道"兔子数目"的问题是这样的: 一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子.然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子.那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子? 这是一个有趣的问题.当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关.人们为了纪念这位兔子问题的创始人,就把这个数列称为"斐波那契数列". 你能把兔子的对数计算出来吗? 解: 可以这么推算: 第一个月后,小兔子刚长成大兔子,还不能生小兔子,所以只有一对大兔子. 第二个月后,大兔子生了一对小兔子,他有了一对小兔子和一对大兔子. 第三个月后,原先的大兔子又生了一对小兔子,上月出生的小兔子也长成了大兔子,他共有一对小兔子和两对大兔子. 第四个月后,两对大兔子各生一对小兔子,上月出生的小兔子又长成了大兔子,他共有两对小兔子和三对大兔子.

第五个月后,三对大兔子各生一对小兔子,上月出生的两对小兔子也长成了大兔子,他共有三对小兔子和五对大兔子. …… 以此类推,可知: 每月的小兔子对数等于上月大兔子的对数,每月大兔子的对数等于上月大兔子与小兔子的对数之和. 我们把大小兔子的对数写成上下两行,从买回小兔子算起,每个月后他所拥有的兔子对数便是: 仔细观察两行数发现它们是很有规律的: 每行数,相邻的三项中,前两项的和便是第三项. 有趣的是: 雏菊花花蕊的蜗形小花,有21条向右转,有34条向左转,而21和34,恰是斐波那契数列中相邻的两项;松果树和菠萝表面的凸起,它们的排列也分别成5:8和8:13这样的比例,也是斐波契数列中相邻两项的比. 这个数列不仅在数学,生物学中,还在物理,化学中经常出现,而且它还具有很奇特的数学性质,真是令人叫绝!

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班 莫少勇 指导教师 孙丽英 摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci 数列 黄金数 优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一. F ibonacci 数列的由来 Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1F 1,F Z)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……, 这串数列的特点是:其中任一个数都是前两数之和。 这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。 它的通项是F n =51[(25 1+)n+1-(251-)n+1 ],由法国数学家比内(Binet )求出的。 二.Fibonacci 数列的内涵 (1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。 证法一:

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班莫少勇指导教师孙丽英 摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci数列黄金数优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一.Fibonacci数列的由来 Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,

而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1 F 1,F Z)n 2,(n F F F 102-n 1-n n

使用fork()调用计算Fibonacci数列

实验二Linux 进程创建 实验目的 ?加深对进程概念的理解 ?练习使用fork()系统调用创建进程 ?练习Linux操作系统下C程序设计 实验准备知识 1. fork()函数:创建一个新进程. ?调用格式: #include #include int fork(); ?返回值: 正确返回时,等于0表示创建子进程,从子进程返回的ID值;大于0表示从父进程返回的子进程的进程ID值。 错误返回时,等于-1表示创建失败 实验内容:使用fork()调用计算Fibonacci数列 ?Fibonacci数列是0,1,1,2,3,5,8…….通常表示为:fib0=0, fib1=1,fib n=fib n-1+fib n-2 ?写一个C程序,使用fork()系统调用产生一个子进程来计算 Fibonacci数列,序列通过命令行显示。例如,如果参数为5,Fibonacci数列的前5个数字将在子进程中被输出。 ?因为父进程和子进程拥有各自的数据拷贝,所以需要由子进程

输出。在退出程序之前,父进程调用wait()等待子进程完成。 要求提供必要的错误检测以保证在命令行传递的参数是非负数. 实验程序: #include #include #include #include int main(int argc, char* argv[]) { pid_t pid; int i; int f0,f1,f2; f0=0; f1=1; if(argv[1]<0) { fprintf(stderr,"request a nun-negative number"); } pid=fork(); //printf("pid = %d ",pid); if(pid<0) { fprintf(stderr,"fork failed"); exit(-1); } else if(pid==0) { printf("argv[1] = %d\n",atoi(argv[1])); printf("0 1 "); for(i=2; i<=atoi(argv[1]);i++) { f2=f0+f1; f0=f1; f1=f2; printf("%d ",f2); }

数列通项公式方法大全很经典 - 副本

1,数列通项公式的几种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

相关主题
文本预览
相关文档 最新文档