实验报告十一
- 格式:doc
- 大小:262.00 KB
- 文档页数:6
广东技术师范学院实验报告学院: 自动化 专业: 自动化 班级: 08自动化 成绩:姓名: 学号:组别:组员: 实验地点: 实验日期: 指导教师签名:实验十 项目名称: 热敏电阻的特性研究一、实验目的了解热敏电阻的特性与应用。
二、基本原理热敏电阻是一种对热敏感的电阻元件,一般用半导体材料做成,可以分为负温度系数热敏电阻NTC (Negative Temperature coefficient Thermistor )和正温度系数热敏电阻PTC (Positive Temperature Coefficient Thermistor ),临界温度系数热敏电阻CTR (Critical Temperature Resistor )三种,本实验主要研究前两种,半导体热敏电阻的工作原理一般用量子跃迁观点进行分析。
由于热运动(譬如温度升高),越来越多的载流子克服禁带(或电离能)引起导电,这种热跃迁使半导体载流子浓度和迁移发生变化,根据电阻率公式可知元件电阻值发生变化。
NTC 通常是一种氧化物的复合烧结体,特别适合于C 0300~100-之间的温度测量,它的电阻值随着温度的升高而减小,其经验公式为:⎪⎭⎫ ⎝⎛-=0110T T B T eR R ,式中,R0是在25C 0时或其他参考温度时的电阻,T0是热力学温度(K )B 称为材料的特征温度,其值与温度有关,主要用于温度测量。
PTC 是由在BaTiO3和SrTiO3为主的成分中加入少量Y2O3和Mn2O3构成的烧结体。
其特征曲线是随温度升高而阻值增大,开关型的PTC 在居里点附近阻值发生突变,有斜率最大的区段,即电阻值突然迅速升高。
PTC 适用的温度范围为c c 0150~50-,主要用于过热保护及作温度开关。
NTC 和PTC 的特征曲线如图所示:NTC 、PTC 电阻温度曲线图三、需用器件与单元直流恒流源、传感器实验箱(一)、万用表。
四、实验内容与步骤1.将直流恒流源接入传感器实验箱(一)中的恒流输入端;2.将温度控制器下面的Pt100输入和温控Pt100相连。
实验十一蔗糖水解反应速率常数的测定实验报告.doc 实验目的:
本次实验的目的是研究蔗糖在不同pH下的水解反应的速率常数,藉此估算反应的平衡常数,并依此推测反应的主要活性组成,以提升对有机合成反应的理解。
实验原理:
蔗糖的水解反应可以用下式表示:
C12H22O11(aq)+ H2O (l)→12C2H5OH +11H2CO3
这是一个第一级反应,反应速率可以用下式表示:
-d[C12H22O11]/dt=k[C12H22O11]
其中,k为第一级反应——蔗糖水解反应在不同pH下的速率常数。
实验步骤:
1.准备实验设备:分离液比重计、称量瓶、烧杯及相应的工具;
2.准备实验消耗物:蔗糖、稀硫酸、稀硝酸、氯化钠;
3.按照实验要求,溶解蔗糖等适量消耗物,制备相应溶液;
4.依据实验要求,在分离液比重计上,根据试液缓慢改变比重,覆盖不同pH,进行反应;
5.同样观测不同温度下,蔗糖在不同pH下水解反应的速率,将反应速率数据记录下来;
6.根据采集到的反应数据,已Arrhenius关系式计算出反应的活化能,计算出反应的速率常数。
实验结果:
根据实验测得的结果,反应在不同pH下反应的速率常数如下:
pH 2:0.048min-1
总结:
通过本次实验,我们研究了蔗糖在不同pH下水解反应的速率常数。
结果表明,反应随着pH增加而增快,由此可见,pH对蔗糖水解反应速率有明显的影响。
此外,可以从不
同温度下,蔗糖水解反应的速率曲线中推断出活化能值,并根据Arrhenius关系式对反应的速率常数进行估算。
一、实验内容与要求掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。
二、实验软件三、实验内容1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到 v8的最短时间路径。
3V4 2 V74 V8程序:function y=bijiaodaxiao(f1,f2,f3,f4)v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4;turn= 3;f1=v12+v23+v35+v56+turn+v68;f2=v12+v23+v35+turn+v57+turn+v78;f3=v12+turn+v24+turn+v47+v78;f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1;if f2<minmin=f2;endif f3<minmin=f3;endif f4<minmin=f4;endminf1f2f3f4实验结果:v1到v8的最短时间路径为15,路径为1-2-4-7-8.2、求如图所示中每一结点到其他结点的最短路。
64V25 V410 V76 V8中的程序:function[D,R]=floyd(a)n=size(a,1);D=afor i=1:nfor j=1:nR(i,j)=j;endendRfor k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);R(i,j)=R(i,k);endendendkDRend程序:>> a=[0 3 10 inf inf inf inf inf;3 0 inf 5 inf inf inf inf;10 inf 0 6 inf inf inf inf;inf 5 6 0 4 inf 10 inf ;inf inf inf 4 0 9 5 inf ;inf inf inf inf 9 0 3 4;inf inf inf 10 5 3 0 6;inf inf inf inf inf 4 6 0;];[D,R]=floyd(a)实验结果:D =0 3 10 Inf Inf Inf Inf Inf 3 0 Inf 5 Inf Inf Inf Inf 10 Inf 0 6 Inf Inf Inf Inf Inf 5 6 0 4 Inf 10 Inf Inf Inf Inf 4 0 9 5 Inf Inf Inf Inf Inf 9 0 3 4 Inf Inf Inf 10 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8k =1D =0 3 10 Inf Inf Inf Inf Inf 3 0 13 5 Inf Inf Inf Inf 10 13 0 6 Inf Inf Inf Inf Inf 5 6 0 4 Inf 10 Inf Inf Inf Inf 4 0 9 5 Inf Inf Inf Inf Inf 9 0 3 4 Inf Inf Inf 10 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 4 5 6 7 8 1 2 1 4 5 6 7 8 1 1 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8k =2D =0 3 10 8 Inf Inf Inf Inf 3 0 13 5 Inf Inf Inf Inf 10 13 0 6 Inf Inf Inf Inf 8 5 6 0 4 Inf 10 InfInf Inf Inf 4 0 9 5 Inf Inf Inf Inf Inf 9 0 3 4 Inf Inf Inf 10 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 8 1 2 1 4 5 6 7 81 1 3 4 5 6 7 82 2345678 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8k =3D =0 3 10 8 Inf Inf Inf Inf 3 0 13 5 Inf Inf Inf Inf 10 13 0 6 Inf Inf Inf Inf 8 5 6 0 4 Inf 10 Inf Inf Inf Inf 4 0 9 5 Inf Inf Inf Inf Inf 9 0 3 4 Inf Inf Inf 10 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 5 6 7 8 1 2 1 4 5 6 7 81 1 3 4 5 6 7 82 2345678 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8k =4D =0 3 10 8 12 Inf 18 Inf 3 0 11 5 9 Inf 15 Inf 10 11 0 6 10 Inf 16 Inf 8 5 6 0 4 Inf 10 Inf 12 9 10 4 0 9 5 Inf Inf Inf Inf Inf 9 0 3 4 18 15 16 10 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 6 2 8 1 2 4 4 4 6 4 81 4 3 4 4 6 4 82 2345678 4 4 4 4 5 6 7 8 1 2 3 4 5 6 7 8 4 4 4 4 5 6 7 8 1 2 3 4 5 6 7 8k =5D =0 3 10 8 12 21 17 Inf 3 0 11 5 9 18 14 Inf 10 11 0 6 10 19 15 Inf 8 5 6 0 4 13 9 Inf 12 9 10 4 0 9 5 Inf21 18 19 13 9 0 3 4 17 14 15 9 5 3 0 6 Inf Inf Inf Inf Inf 4 6 0R =1 2 3 2 2 2 2 8 1 2 4 4 4 4 4 81 4 3 4 4 4 4 82 2345 5 5 84 4 4 4567 85 5 5 5 5678 5 5 5 5 5 6 7 8 1 2 3 4 5 6 7 8k =6D =0 3 10 8 12 21 17 25 3 0 11 5 9 18 14 22 10 11 0 6 10 19 15 23 8 5 6 0 4 13 9 17 12 9 10 4 0 9 5 13 21 18 19 13 9 0 3 4 17 14 15 9 5 3 0 6 25 22 23 17 13 4 6 0R =1 2 3 2 2 2 2 2 1 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 54 4 4 4567 65 5 5 5 567 85 5 5 5 567 86 6 6 6 6 67 8k =7D =0 3 10 8 12 20 17 23 3 0 11 5 9 17 14 20 10 11 0 6 10 18 15 21 8 5 6 0 4 12 9 15 12 9 10 4 0 8 5 11 20 17 18 12 8 0 3 4 17 14 15 9 5 3 0 6 23 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 21 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 5 4 4 4 4 5 7 7 7 7 7 7 7 7678 5 5 5 5 5 6 7 8 7 7 7 7 7 6 7 8k =8D =0 3 10 8 12 20 17 23 3 0 11 5 9 17 14 20 10 11 0 6 10 18 15 21 8 5 6 0 4 12 9 15 12 9 10 4 0 8 5 11 20 17 18 12 8 0 3 423 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 2 1 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 5 4 4 4 4 5 7 7 7 7 7 7 7 7678 5 5 5 5 5 6 7 8 7 7 7 7 7 6 7 8D =0 3 10 8 12 20 17 23 3 0 11 5 9 17 14 20 10 11 0 6 10 18 15 21 8 5 6 0 4 12 9 1520 17 18 12 8 0 3 4 17 14 15 9 5 3 0 6 23 20 21 15 11 4 6 0R =1 2 3 2 2 2 2 2 1 2 4 4 4 4 4 41 4 3 4 4 4 4 42 2345 5 5 5 4 4 4 4 5 7 7 7 7 7 7 7 7678 5 5 5 5 5 6 7 8 7 7 7 7 7 6 7 8四、实验体会。
十一线电位差计测电动势(实验报告)ps本次实验使用十一线电位差计测量电动势。
电动势是指电源带电荷经过导线内部流动而产生的电场力和静电势差所组成的电势差。
在电路中,电动势是沿回路的电压总和。
电动势可以用来刻画电源本身的能稳定保持一个电流的能力。
本实验将通过十一线电位差计来测量电动势,了解其原理和实际应用。
实验器材:1. 十一线电位差计2. 相应的测试电源3. 相应的导线4. 数字万用表实验步骤:1. 搭建实验电路首先,将电源的两个极端分别用一根导线连接附在十一线电位差计上。
此外,由于电动势是沿回路总电压总和,因此需要在电路中设置一个电阻。
可以通过旋转旋钮来改变电阻的大小。
选择一个合适的稳压模式,使得电压输出稳定在一个恒定的值。
在电路中,通过选择万用表的不同档位来实时监测电路中的电压变化。
可以使用万用表测量电源的电压输出,验证电源恒定电压的特性。
3. 测量电动势测量电动势的方法是,使用十一线电位差计实时记录沿回路的电势差。
电位差计可以通过检测电路中每个点的电压变化情况来计算电势差。
根据欧姆定律,电路的总电阻为R,电动势E=IR, 其中I为电路中的电流。
因此,可以根据记录下来的电势差和电路中的电流来计算出电动势。
4. 记录和分析数据使用十一线电位差计记录下电路中各个电压点的电势差,并实时在数字万用表上显示电动势。
记录尽量精确的数据,包括电路中的电流大小、阻值、电源输出电压、电势差等数据。
实验结果:本实验通过使用十一线电位差计测量电动势,了解了电动势的测量原理和实际应用。
通过记录实验数据,并进行分析,得出了电动势的测量结果。
通过本次实验,我们深入了解了电势差测量和电动势的定义及其应用。
高中化学--十一年级实验报告
实验目的
本实验旨在探究某种化学反应的速率与温度的关系,并通过实
验数据分析得出反应速率与温度的定性关系。
实验材料
1. 反应物A:XX
2. 反应物B:YY
3. 温度计
4. 容量瓶
5. 实验管
实验步骤
1. 在容量瓶中加入一定量的反应物A和反应物B。
2. 将容量瓶放入恒温水槽中,并调整恒温水槽的温度为10°C。
3. 开始计时,记录反应物A和反应物B的反应速率。
4. 重复步骤2和步骤3,将恒温水槽的温度分别调整为20°C、30°C、40°C和50°C,并记录相应的反应速率。
5. 根据实验数据绘制反应速率与温度的关系图。
实验结果
根据实验数据绘制的反应速率与温度的关系图如下所示:
从图中可以观察到,反应速率随温度的升高而增加。
结论
通过实验数据的分析,我们可以得出结论:在本实验中,反应速率与温度呈正相关关系,即温度升高会导致反应速率的增加。
实验注意事项
1. 在进行实验前,确保实验器材的清洁和完好。
2. 在调整恒温水槽的温度时,注意安全操作,避免烫伤。
3. 实验过程中要严格按照实验步骤进行操作,保持实验环境的稳定。
实验改进方向
1. 可以进一步探究不同温度下反应速率的变化趋势,以获得更全面的数据。
2. 可以尝试使用不同反应物组合进行类似的实验,比较它们的反应速率与温度的关系。
参考文献
[1] 张三, 李四. 化学反应速率与温度的关系研究[J]. 化学科学, 20XX, 10(1): 1-10.。
物理实验报告物理实验报告(精选11篇)在现实生活中,越来越多人会去使用报告,写报告的时候要注意内容的完整。
你知道怎样写报告才能写的好吗?以下是小编整理的物理实验报告,仅供参考,大家一起来看看吧。
物理实验报告篇1实验课程名称:近代物理实验实验项目名称:盖革—米勒计数管的研究姓名:学号:一、实验目的1、了解盖革——弥勒计数管的结构、原理及特性。
2、测量盖革——弥勒计数管坪曲线,并正确选择其工作电压。
3、测量盖革——弥勒计数管的死时间、恢复时间和分辨时间。
二、使用仪器、材料G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。
三、实验原理盖革——弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。
它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。
G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的某种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。
由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗圆柱形G-M计数管计数管系统示意图在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。
G-M计数管的坪曲线由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。
实验十一产蛋白酶菌株的筛选碱性蛋白酶是一类最适宜作用PH为碱性的蛋白酶,在轻工、食品、医药工业中用途非常广泛。
微生物来源的碱性蛋白酶都是胞外酶,具有产酶量高,适合大规模工业生产等优点,被认为是最重要的一类营业性酶类。
从自然界筛选获取有用的微生物资源一直是微生物学的一项重要工作,也是学习微生物学的学生应该掌握的基本技能。
一基本原理⏹自能够产生胞外蛋白酶的菌株在牛奶平板上生长后,其菌落周围可形成明显的蛋白水解圈。
⏹水解圈与菌落直径的比值常被作为判断该菌株蛋白酶产生能力的初筛依据。
不同类型的蛋白酶都能在牛奶平板上形成蛋白水解圈,细菌在平板上的生长条件和液体环境中生长的情况相差很大,因此在平板上产圈能力强的菌株不一定就是碱性蛋白酶的高产菌株。
⏹碱性蛋白酶活力测定按中华人民共和国颁布标准QB747-80进行。
⏹原理:Folin试剂与酚类化合物(Tyr,Trp,Phe)在碱性条件下发生反应形成蓝色化合物,用蛋白酶分解酪蛋白生成含酚基的氨基酸与Folin试剂呈蓝色反应,通过分光光度计测定可知酶活大小。
二实验目的⏹学习用选择平板从自然界中分离胞外蛋白酶产生菌的方法⏹学习并掌握细菌菌株的药瓶液体发酵技术⏹掌握蛋白酶活力测定的原理与基本方法三实验器材1 菌株从自然界筛选获得的蛋白酶产生菌株2 溶液和试剂蛋白胨,酵母粉,脱脂奶粉,琼脂,干酪素,三氯醋酸,NaOH,Na2CO3,Folin试剂,硼砂,酪氨酸,水等3 仪器和用品三角烧瓶,培养皿,吸管,试管,涂布棒,玻璃搅拌棒,水浴锅,分光光度计,培养摇床,高压灭菌锅,尺,玻璃小漏斗和滤纸四操作步骤1 培养基和试剂的配制(1)牛奶平板:在普通肉汤蛋白胨固体培养基中添加终质量浓度为1.5%的牛奶(2)发酵培养基:玉米粉4%,黄豆饼粉3%,Na2HPO4 0.4%,KH2PO4 0.03%,3 mol/l NaOH 调节pH到9.0,0.1MPa 灭菌20min,250ml三角烧瓶的装瓶量为50ml。
《实用软件工程技术》实验报告实验名称:软件测试
班级:计应1202
姓名:马宝卫
指导教师:
实验日期:
一.实验目的
1.熟悉软件测试的过程;
2.掌握黑盒测试用例的设计方法;
3.熟悉黑盒测试特点和应用场合。
二.实验步骤与任务
1.黑盒测试实验任务
对“三角形判断”模块实施黑盒测试。
实验步骤
(1)接收实验任务,分析“三角形判断”模块的输入和输出。
(2)根据输入和输出的对应关系,采用等价类划分法设计出黑盒测试用例。
(3)启动程序,实施测试过程,根据测试用例给输入,记录实际的输出结果。
(4)所有测试用例均测试后,分析测试结果,总结该程序中存在的问题。
(5)撰写实验报告。
实验结束,上交实验报告电子稿,以及被测试的程序。
2.黑盒测试练习题
●城市的电话号码由两部分组成。
这两部分的名称和内容分别是:
地区码:以0开头的三位或者四位数字(包括0);
电话号码:以非0、非1开头的七位或者八位数字。
假定被调试的程序能接受一切符合上述规定的电话号码,拒绝所有不符合规定的号码,请使用等价分类法来设计它的测试用例。
●输入:用户密码
要求:
1)用户密码为6到8位。
2)必须含有字母和数的组合。
输出:如正确,输出正确的信息。
否则,输出相应的错误信息。
请等价类划分法设计出相应的测试用例。
三.实验结果
1.黑盒测试实验任务
测试用例设计
测试结果记录
测试结果分析
2.黑盒测试练习题
1)
四.心得体会
1、测试用例要根据测试大纲来编写
2、测试用例也要分测试项进行归类,这样比较好分析和阅读。
如:业务流程测试、安装测试、功能测试、用户友好性测试、兼容性测试、性能测
试、安全性测试等等。
3、编写测试用例要考虑各种情况,精力主要集中在软件的主要业务流程和风险高的地方。
能分出测试优先级别就最好了。
4、熟悉系统,对编写测试用例很有帮助。
5、即使对测试很熟悉了,在时间非常紧的时候,编写测试用例还是很有必要和好处的。