当前位置:文档之家› 高等数学第12章无穷级数测试卷

高等数学第12章无穷级数测试卷

高等数学第12章无穷级数测试卷
高等数学第12章无穷级数测试卷

第十二章无穷级数测试卷 一、填空题: 1. 若数项级数

∑∞

=1n n

u

收敛,则n n u ∞

→lim = .

2. 若数项级数∑∞

=1n n u 的通项满足1.11

||n u n ≤,则∑∞

=1

n n u 是 级数.

3. 若数项级数

∑∞

=1n n

q

,当 |q | 时收敛,当 |q | 时发散.

4. 若幂级数

n

n n

y a

∑∞

=0

的收敛区间为(-9,9),则幂级数n n n x a 20

)3(-∑∞

=的收敛区间

为 . 5.级数

∑∞

=---1

1

1

2

1)1(n n n 的部分和n S = ,此级数的和为 .

6.已知级数612

1

2π=∑∞

=n n ,则级数∑∞

=-12

)12(1n n 的和等于 . 7.幂级数∑∞

=--+11

2)

3(2n n

n n nx 的收敛半径R= . 8.函数)3ln()(x x f +=在0=x 点展开的幂级数为 .

9.函数)()(2

πππππx x x x f -+=的傅里叶级数为

()∑∞

=++1

sin cos 2n n n nx b nx a a ,则系数=3b .

10.周期为2的函数)(x f ,设它在一个周期[)1,1-上的表达式为||)(x x f =,且它的傅里叶级数的和函数为)(x S ,则=-)5(S . 二、单项选择题:

1.当条件( )成立时,级数

∑∞

=+1

)(n n n

v u

一定发散.

A .

∑∞

=1n n

u

发散且

∑∞

=1

n n

v

收敛; B.

∑∞

=1n n

u

发散;

C.

∑∞

=1

n n

v

发散; D.

∑∞

=1

n n

u

∑∞

=1

n n

v

都发散.

2.若两个正项级数

∑∞

=1

n n

u

∑∞

=1

n n

v

满足),2,1(Λ=≤n v u n n 则结论( )是正确的.

A.

∑∞

=1n n

u

发散,则

∑∞

=1n n

v

发散; B 。

∑∞

=1n n

u

收敛,则

∑∞

=1n n

v

收敛;

C .

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

收敛; D 。

∑∞

=1

n n

u

收敛,则

∑∞

=1

n n

v

发散.

3.

n n n x x )1(3

1

2101+=-∑∞

=+在区间( )上成立. A.(-1,1); B.(-3,3); C.(-2,4); D.(-4,2) . 4.若级数

∑∞

=1

2n n a 收敛, 则∑

=1n n

n

a ( ) (A) 绝对收敛 (B)条件收敛 (C) 发散 (D)收敛性不定 5.下列级数中,条件收敛的是( C )

(A)

=--1n n 1

n )32()

1( (B)

∑∞

=-+-1

2

1

2

)1(n n n n

(C)

∑∞

=--1

n 3

1

n n

1

)

1( ( D)

∑∞

=--1

n 3

1

n n

51)

1(

6.设)11ln()1(n

u n

n +

-=, 则( ).

A .

∑∞

=1n n

u

∑∞

=1

2n n

u

都收敛; B .

∑∞

=1n n

u

∑∞

=1

2n n

u

都发散;

C .

∑∞

=1

n n

u

收敛,

∑∞

=1

2n n

u

发散; D .

∑∞

=1

n n

u

发散,

∑∞

=1

2n n

u

收敛 .

7.设),2,1(0Λφ=n u n 且

∑∞

=1n n u 收敛,常数)2,0(π

λ∈,则级数∑∞

=-1

2)tan ()1(n n n u n n λ

为( ).

A .绝对收敛;

B .收敛性与λ有关

C .条件收敛;

D .发散 . 8.级数

∑∞

=--1

)cos 1()1(n n n λ

(常数0φλ)( ). A .发散; B .条件收敛 C .绝对收敛; D .收敛性与λ有关 .

9.若级数

∑∞

=---1

1

)()

1(n n

n n

a x 在0>x 处发散,在0=x 处收敛,则常数=a ( ). A .-1 ; B .1 ; C .2 ; D .-2 .

10. 若)(x f 是以π2为周期的连续奇函数,则)(x f 的傅里叶系数计算公式是( ).

A. ),2,1(sin )(1

),,2,1,0(00

ΛΛ====?

n xdx x f b n a n n π

π

;

B. ),2,1(0),,2,1,0(cos )(1

ΛΛ====

?

n b n nxdx x f a n n π

π;

C. ),2,1(sin )(2

),,2,1,0(00

ΛΛ====?

n nxdx x f b n a n n π

π ;

D. ),2,1(0),,2,1,0(cos )(2

ΛΛ====

?

n b n nxdx x f a n n π

π

.

三、利用定义判定级数

∑∞

=++-+1

)122(

n n n n 的收敛性.

四、判定级数

∑∞

=-1

)sin (

n n

n π

π

的收敛性. 五、判定级数∑∞

=-+1

3])1(2[n n

n n n 的收敛性.

六、设?

=

4

tan π

xdx a n

n ,求∑∞

=++12)(1

n n n a a n

的值.

七、设级数

∑∞

=1

n n

a

∑∞

=1

n n

b

都收敛且),2,1(Λ=≤≤n b c a n n n ,求证:级数

∑∞

=1

n n

c

收敛.

八、求幂级数1

21

)2(3-∞

=∑-+n n n n x n 的收敛域. 九、求幂级数

1

2)

1(1

211

---∞

=-∑n x n n n 的收敛域及和函数. 十、设)(,!

)(12∞≤≤-∞=∑∞

=x n x x f n n

不求和函数,试将?x dt t tf 0

)(积分用)(x f 表示出来. 十一、设正项数列}{n a 单调减少且

∑∞

=-1

)1(n n n

a 发散,试问∑∞

=+1)11(

n n

n a 是否收敛说明理 十二、证明2

)(x x f =在],[ππ-上能展开成傅里叶级数∑∞

=-+=

12

2

2

cos )1(43

n n

n

nx

x π

并由此结果求下列级数的和:

(1)∑∞

=

+ -

1

2

1

1

)1

(

n n

n

;(2)∑∞

=1

2

1

n

n

.

大学高等数学阶段测验卷

第一章函数与极限阶段测验卷 学号 班级 成绩 考试说明:1、请将客观题答案全部填涂在答题卡上,写在试卷上一律无效。 2、请在答题卡上填涂好、班级、课程、考试日期、试卷类型和考号。试卷类型 划A;考号为学号的后九个数,请填涂在“考号”的九个空格并划线。 3、答题卡填涂不符合规者,一切后果自负。 一.是非判断题(本大题共10题,每题2分,共20分) 1. x y 2cos 1-=与x y sin =是相同的函数. ( ) A 、正确 B 、错误 2. 函数ln(1)y x x =-+在区间(,1)-∞-单调递增.( ) A 、正确 B 、错误 3. 函数x y e =在(0,)+∞有界. ( ) A. 正确 B. 错误 4. 设()f x 在[,](0)a a a ->上有定义,则函数1 ()[()()]2 g x f x f x =--是奇函数.( ) A. 正确 B. 错误 5. 函数2sin y x =是当0x →时的无穷小.( ) A. 正确 B. 错误 6.函数y = 是初等函数.( ) A 、正确 B 、错误 7. 当x →∞时,函数22135x y x +=+趋向于1 3 .( ) A 、正确 B 、错误 8. 当0x →时,函数2 12 y x = 与1cos y x =-是等价无穷小.( ) A 、正确 B 、错误 9. 211lim cos 2 x x x →∞=-( ) A 、正确 B 、错误

10. 函数1 (12),0;, 0x x x y e x ?? +≠=??=? 在0x =处连续. ( ) A 、正确 B 、错误 二.单项选择题(本大题共12个,每题3分,共36分) 11.函数)5)(2ln(+-=x x y 的定义域为( ). A. 25≤≤-x ; B. 2>x ; C. 2>x 或5-

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1?假设对任意的 x R ,都有(x) f(x) g(x),且]im[g(x) (x)] 0,则 lim f (x)() A.存在且等于零 B.存在但不一定为零 C. 一定不存在 D.不一定存在 1 x 2. 设函数f(x) lim 2n ,讨论函数f (x)的间断点,其结论为( ) n 1 x A.不存在间断点 B.存在间断点x 1 C.存在间断点x 0 D.存在间断点x 1 x 2 X 1 3. 函数f (x) 一2 . 1 —2的无穷间断点的个数为( ) X 1 \ x 7.[x]表示取小于等于x 的最大整数,则lim x - x 0 x f(x) asinx A. 0 B. 1 C. 2 D. 3 4.设函数f (x)在( )内单调有界, {X n }为数列,下列命题正确的是( A.若{x n }收敛,则{ f (x n ) }收敛 B.若{&}单调,则{ f (x n ) }收敛 0若{ f (X n ) }收敛,则仏}收敛 D.若{ f (X n ) }单调,则 {X n }收敛 5.设{a n }, {b n }, {C n }均为非负数列,且 lim n a n 0,lim b n 1,limc n n n ,则() A. a n b n 对任意n 成立 B. b n C n 对任意n 成立 C.极限lim a n C n 不存在 n D. 极限lim b n C n 不存在 n 二、填空题(每题 4分,共 20分) 6.设 X, f (X) 2f (1 X) 2 x 2x , 则 f (X) 8.若 lim]1 X X ( 丄 X a)e x ] 1, 则实数a 9.极限lim X (X 2 X a)(x b) 10.设 f (X)在 x 0处可导, f (0) 0,且f (0) b ,若函数 F(x) 在x 0处连续, 则常数 A

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

(完整版)高等数学第一章测试题10选择(带答案和解析)

高等数学第一章测试题 一、单项选择题 1.0 . (),()x x x x x x βα→→当时,都是无穷小,则当时(,)不一定是无穷小 ()()()x A x αβ+ () 22()()x B x αβ+ ()ln[1()()]x C x αβ+? ()2 ()() x x D αβ 答案:D 2 0() (),()1,. () lim x x x x x x x ααββ→===解析:当时 2 1 2.( )0,,,1 lim x x ax b x a b a b →∞ +--=+则常数的值所组成的数组()为()设 10011111A B C D -()(,)()(,)()(,)()(,) 答案:D 解析: 0)1 1(2 lim =--++∞ →b ax x x x 1 ) 1)((1)11( 2 2 lim lim +++-+=--++∞ →∞ →x x b ax x b ax x x x x 01 1)()1(2 lim =+-++--=∞ →x b x b a x a x 10,0,a a b -=+=则分子的二次项和一次项系数为零: 即1,1-==b a 22 1)32 3(x f x x x -=-+、已知函数, 下列说法正确的是( )。

2(A)f(x)有个无穷间断点 ())1(1B f x 有个可去间断点,个无穷间断点 ()2()C f x 有个第一类间断点 ()111()f D x 有个可去间断点,个无穷间断点,个跳跃间断 答案:B 221(1)(1)1 ()32(2)(1)2 x x x x f x x x x x x --++=== -+---解析: 212320,1,2x x x x -+===令得 2.1x x ==是可去间断点,是无穷间断点 4、 是 。 A.奇函数 B.周期函数 C.有界函数 D.单调函数 答案:A ()()f x f x -=-解析: 1()11115. f x x = + +、函数的定义域为____ A. 0,≠∈x R x 但 1 ,10 .x R B x ∈+≠ 1,0,1,.2x x C R ∈≠-- 0.,,1x R x D ∈≠- x ∈R,但x ≠0,?1 答案:C 解析:略. 6、 答案:C |sin | ()cos x f x x xe -=()x -∞<<+∞的值为 , 极限)00()1(lim 0≠≠+→b a a x x b x 答( ) . . a be D e C a b B A a b ) ()(ln )(1)(

高等数学第一章练习题答案

第一章 练习题 一、 设()0112>++=?? ? ??x x x x f ,求)(x f 。 二、 求极限: 思路与方法: 1、利用极限的运算法则求极限; 2、利用有界变量与无穷小的乘积仍是无穷小这一性质; 3、利用两个重要极限:1sin lim 0=→x x x ,e x x x =??? ??+∞→11lim ; 4、利用极限存在准则; 5、用等价无穷小替换。注意:用等价无穷小代替时被代替的应是分子、分母或其无穷小因子。如果分子或分母是无穷小的和差,必须将和差化为积后方可用等价无穷小代替积中的因子部分。 6、利用函数的连续性求极限,在求极限时如出现∞-∞∞ ∞,,00等类型的未定式时,总是先对函数进行各种恒等变形,消去不定因素后再求极限。 7、利用洛比达法则求极限。 1、()()()35321lim n n n n n +++∞ → 2、???? ? ?---→311311lim x x x 3、122lim +∞ →x x x 4、x x x arctan lim ∞ →

5、x x x x sin 2cos 1lim 0-→ 6、x x x x 30 sin sin tan lim -→ 7、()x x 3cos 2ln lim 9 π → 8、11232lim +∞→??? ??++x x x x 三、 已知(),0112lim =??? ?????+-++∞→b ax x x x 求常数b a ,。 四、 讨论()nx nx n e e x x x f ++=∞→12lim 的连续性。 五、 设()12212lim +++=-∞→n n n x bx ax x x f 为连续函数,试确定a 和b 的值。 六、 求()x x e x f --=111 的连续区间、间断点并判别其类型。 七、 设函数()x f 在闭区间[]a 2,0上连续,且()()a f f 20=,则在[]a ,0上 至少有一点,使()()a x f x f +=。 八、 设()x f 在[]b a ,上连续,b d c a <<<,试证明:对任意正数p 和q , 至少有一点[]b a ,∈ξ,使 ()()()()ξf q p d qf c pf +=+

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学第一章练习题

第一章函数、极限、连续 一、单项选择题 1.区间[a,+∞),表示不等式() 2.若 3.函数是()。 (A)偶函数(B)奇函数(C)非奇非偶函数(D)既是奇函数又是偶函数 4.函数y=f(x)与其反函数 y=f-1(x)的图形对称于直线()。 5.函数 6.函数 7.若数列{x n}有极限a,则在a的ε邻域之外,数列中的点() (A)必不存在 (B)至多只有有限多个 (C)必定有无穷多个 (D)可以有有限个,也可以有无限多个 8.若数列{ x n }在(a-ε, a+ε)邻域内有无穷多个数列的点,则(),(其中为某一取定的正数) (A)数列{ x n }必有极限,但不一定等于 a (B)数列{ x n }极限存在且一定等于 a (C)数列{ x n }的极限不一定存在 (D)数列{ x n }一定不存在极限

9.数列 (A)以0为极限(B)以1为极限(C)以(n-2)/n为极限(D)不存在极限 10.极限定义中ε与δ的关系是() (A)先给定ε后唯一确定δ (B)先确定ε后确定δ,但δ的值不唯一 (C)先确定δ后给定ε  (D)ε与δ无关 11.任意给定 12.若函数f(x)在某点x0极限存在,则() (A) f(x)在 x0的函数值必存在且等于极限值 (B) f(x)在x0的函数值必存在,但不一定等于极限值 (C) f(x)在x0的函数值可以不存在 (D)如果f(x0)存在则必等于极限值 13.如果 14.无穷小量是() (A)比0稍大一点的一个数 (B)一个很小很小的数 (C)以0为极限的一个变量 (D)0数 15.无穷大量与有界量的关系是() (A)无穷大量可能是有界量

高数第一章综合测试题复习过程

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学第一章测试卷

高等数学第一章测试卷(B ) 一、选择题。(每题4分,共20分) 1.假设对任意的∈x R ,都有)()()(x g x f x ≤≤?,且0)]()([lim =-∞→x x g x ?,则)(lim x f x ∞ →( ) A.存在且等于零 B.存在但不一定为零 C.一定不存在 D.不一定存在 2.设函数n n x x x f 211lim )(++=∞→,讨论函数)(x f 的间断点,其结论为( ) A.不存在间断点 B.存在间断点1=x C.存在间断点0=x D. 存在间断点1-=x 3.函数222111)(x x x x x f +--=的无穷间断点的个数为( ) A. 0 B. 1 C. 2 D. 3 4.设函数)(x f 在),(+∞-∞内单调有界,}{n x 为数列,下列命题正确的是( ) A.若}{n x 收敛,则{)(n x f }收敛 B.若}{n x 单调,则{)(n x f }收敛 C.若{)(n x f }收敛,则}{n x 收敛 D.若{)(n x f }单调,则}{n x 收敛 5.设}{},{},{n n n c b a 均为非负数列,且∞===∞ →∞→∞→n n n n n n c b a lim ,1lim ,0lim ,则( ) A. n n b a <对任意n 成立 B. n n c b <对任意n 成立 C. 极限n n n c a ∞→lim 不存在 D. 极限n n n c b ∞ →lim 不存在 二、填空题(每题4分,共20分) 6.设x x x f x f x 2)1(2)(,2-=-+?,则=)(x f ____________。 7.][x 表示取小于等于x 的最大整数,则=??????→x x x 2lim 0__________。 8.若1])1(1[lim 0=--→x x e a x x ,则实数=a ___________。 9.极限=???? ??+-∞→x x b x a x x ))((lim 2 ___________。 10.设)(x f 在0=x 处可导,b f f ='=)0(,0)0(且,若函数?????=≠+=00sin )()(x A x x x a x f x F 在0=x 处连续,则常数=A ___________。

高等数学第七版课后练习题

高等数学第七版课后练 习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第一章、函数、极限与连续 1、已知函数2,02()2,24x f x x ≤≤?=?-<≤? ,试求函数g()(2)(5)x f x f x =+-的定义域。 2、设函数()y f x =的定义域是[]0,8,试求3()f x 的定义域。 3、已知函数[]()12f x 的定义域,,试求下列函数的定义域。 4、要使下列式子有意义,函数()f x 应满足什么条件 5、求下列函数的定义域。 6、在下列各对函数中,哪对函数是相同的函数。 7、设函数()2,()55x f x g x x ==+,求1(1),(),(()),(())f x g f g x g f x x x +-的表达式。 8、设2()23,()45f x x g x x =+=-,求(()),(()),(())f g x g f x f f x 的表达式。 9、设2211(),()f x x f x x x +=+求。 10、设(1)(1),()f x x x f x -=-求。 11、下列函数中,那哪些是奇函数,哪些是偶函数哪些是非奇非偶函数。 12、判断下列函数的奇偶性。 13、求下列函数的周期。 14、下列函数能够复合成一个函数。 15、函数13ln sin y y x ==,由哪些较简单的函数复合而成。 16、设()1x f x e =+,函数2(2)()1x x x φ+=+,求1(())f x φ-。 17、下列函数的极限。 18、求下列函数的极限。 19、求下列函数的极限。 20、求下列极限。 21、求下列函数的极限。

高等数学第一章1

高数第一周测试题 出题人:洪义伟姜继伟贾西南马刚 一、选择题 1. 数列有界是函数收敛的() A 充要条件 B 必要条件 C 充分条件D即非充分条件又非必要条件 2.根据limXn=a的定义,对任给ε>0,存在正整数N,使得对于n>N的一切Xn,不等式|Xn—a|<ε都成立,这里的N() A 是ε的函数N(ε),且当ε减小时N(ε)增大 B 与ε有关,但ε给定时N并不唯一确定 C 是由ε所唯一确定的 D 是一个很大的常数,与ε无关 3. f(x)=在其定义域(—∞,+∞)上是() A 最小正周期为3π的周期函数 B 最小正周期为的周期函数 C 最小正周期为的周期函数D非周期函数 5.函数f(x)=(x∈R)的值域是() A (0,1) B (0,1] C [0,1) D [ 0 , 1 ]

7.函数f(x)=x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是增函数,则f(1)等于( ) A -7 B 1 C 17 D 25 8.下列函数是无穷小量的是() ( ) A g(2)>g(-1)>g(-3) B g(2)>g(-3)>g(-1) C g(-1)>g(-3)>g(2) D g(-3)>g(-1)>g(2)

A 1 B ∞ C 2 D 0 二、填空题 13.求 的定义域____________。 14. 已知求f (5)____________。 15.数列 的极限______。 16.求函数 的极限______。 三、 解答题 17.求函数 在指定定义域下的单调性。 18.求 的极限。 19.用数列极限的定义证明 。 20.用函数极限的定义证明 。 21.根据定义证明 22.求 的极限。 ???<+≥-=8,)]5([8 ,3)(x x f f x x x f

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

高等数学上册第一章测试试卷

理科A 班第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷

高等数学(上)第一章练习题

高等数学(上)第一章练习题 一.填空题 1. 12sin lim sin _________.x x x x x →∞??+= ??? 2. lim 9x x x a x a →∞+??= ?-?? , 则__________.a = 3. 若21lim 51x x ax b x →++=-,则___________,___________.a b == 4. 02lim __________.2x x x e e x -→+-= 5. 1(12)0()ln(1)0 x x x f x x k x ?-<=?++≥?在0x =连续,则k = 6. 已知当0x →时,()1 2311ax +-与cos 1x -是等价无穷小,则常数________.a = 7. 设21()cos 1 x k x f x x x π?+≥=??? 在0x =处间断,则常数a 和b 应满足关系____________. 9.()1lim 123n n n n →∞++= 10 .lim x →+∞?=? 11 .lim x ax b →+∞?-=? 0 ,则a = b = 12.已知111()23x x e f x e +=+ ,则0x =是第 类间断点 二.单项选择题 13. 当0x →时, 变量211sin x x 是____________. A. 无穷小量 B. 无穷大量 C. 有界变量但不是无穷小, D. 无界变量但不是无穷大. 14.. 如果0 lim ()x x f x →存在,则0()f x ____________. A. 不一定存在, B. 无定义, C. 有定义, D. 0=. 15. 如果0lim ()x x f x -→和0 lim ()x x f x +→存在, 则_____________.

(完整word版)专升本高数第一章练习题(带答案)

第一部分: 1.下面函数与y x =为同一函数的是() 2 .A y= .B y=ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域() , -∞+∞,∴选D 2.已知?是f的反函数,则()2 f x的反函数是() () 1 . 2 A y x ? =() .2 B y x ? =() 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数为奇函数的是() ()() .A y f x f x =+-()() .B y x f x f x =-- ?? ?? () 32 .C y x f x =()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且()()()()() 3232 y x x f x x f x y x -=-=-=-∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x =.sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界,B arctan 2 x π <有界, C sin cos x x +≤,故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即n x M ≤),反之不成立,(如() {}11n--有界,但不收敛,选A. 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小,则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C

高等数学经典求极限方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】) sin 1tan 1(sin tan lim sin 1tan 1lim 3030 x x x x x x x x x x +++-=+-+→→

同济大学第六版高等数学第一章综合测试题答案

第一章综合测试题解答 一、1.[1,2) 2 .()g x = 3. 11e - 4.ln 5 5 .[ 二、1.(C ) 2.(B) 3.(D ) 4.(D ) 5.(C ) 三、解 2 0,0, 0, ()00, 0, 1 ()(||)[()],0. (),()0,0, 2x x x f x x x f x x x x x x x ????<<

微积分十大经典问题

这里入选原则是必须配得起“经典”二字。知识范围要求不超过大二数学系水平, 尽量限制在实数范围内,避免与课本内容重复。排名不分先后。 1)开普勒定律与万有引力定律互推。绝对经典的问题,是数学在实际应用中的光辉典范,其对奠定数学科学女皇的地位起着重要作用。大家不妨试试,用不着太多的专 业知识,不过很有挑战性。重温下牛顿当年曾经做过的事,找找当牛人的感觉吧,这个问题是锻炼数学能力的好题! 2)最速降线问题。该问题是变分法中的经典问题,不少科普书上也有该问题。答案是摆线(又称悬轮线),关于摆线还有不少奇妙的性质,如等时性。其解答一般变分 书上均有。本问题的数学模型不难建立,即寻找某个函数,它使得某个积分取最小值。这个问题往深层次发展将进入泛函领域,什么是泛函呢?不好说,一个通俗的解释是“函数的函数”,即“定义域”不是区间,而是“一堆”函数。最速降线问题通过引入光的折射定律可以直接化为常微分方程,大大简化了求解过程。不过变分法是对这类问题的一般方法,尤其在力学中应用甚广。 3)曲线长度和曲面面积问题。一条封闭曲线,所围面积是有限的,但其周长却可以是无限的,比如02年高中数学联赛第14题就是这样一条著名曲线-----雪花曲线。 如果限制曲线是可微的,通过引入内折线并定义其上确界为曲线长度。但把这个方法搬到曲面上却出了问题,即不能用曲面的内折面的上确界来定义曲面面积。德国数学家H.A.Schwarz 举出一个反例,说明即使像直圆柱面这样的简单的曲面,也可以具有面积任意大的内接折面。 4)处处连续处处不可导的函数。长久以来,人们一直以为连续函数除了有限个或可数无穷个点外是可导的。但是,魏尔斯特拉斯给出了一个函数表达式,该函数处处连续却处处不可导。这个例子是用函数级数形式给出的,后来不少人仿照这种构造方式给出了许多连续不可导的函数。现在教材中举的一般是范德瓦尔登构造的比较简单的例子。至于魏尔斯特拉斯那个例子,可以在齐民友的《重温微积分》中找到证明。其实上面那个雪花曲线也是一条处处连续处处不可导的曲线。 5)填满正方形的连续曲线。数学总是充满神奇与不可思议,以前人们总是以为曲线是一维的,但是皮亚诺却发现了一条可以填满正方形的连续曲线。结果人们不得不重新审视以往对曲线的看法。 BTW:先写到这里,明天接着写另外5个。1345中的例子可以在《数学分析新讲》中找到。

相关主题
文本预览
相关文档 最新文档