高速逆流色谱法
- 格式:ppt
- 大小:2.32 MB
- 文档页数:13
l 高速逆流色谱是液相色谱的一种新技术,无需载体,从几种色谱原理方法可以清晰说明。
大约50年前,根据对两种液体进行分配的理念,产生了两种相似的方法:逆流分配技术和液-液色谱分配技术,即:逆流色谱和液相色谱。
30年前,日本Sanki Engineering Ltd.利用前一种技术开发出了高性能的逆流色谱仪(HPCPC),它结合了液相色谱中的快速、高效和先进技术。
HPCPC尤其在利用色谱技术进行半制备和全制备的应用中倍受瞩目,它和采用色谱柱技术的液相色谱在四个方面具有显著优势:● 无样品损失:因为流动相和固定相都是液体,样品可以全部回收。
● 大容量和高的分离能力:流动相和固定相的体积比明显很高,从而无需更大的理论塔板数,就可以获得更大的容量和更高的分离能力。
● 十分灵活的两相系统:(两种、三种、四种溶剂混合)为了获得一种纯的化合物,实验中需要比较灵活的更改流动相,HPCPC可以很方便地调整两相的极性。
● 溶剂消耗少:相对于色谱柱制备系统,对于同样的制备量,HPCPC的溶剂消耗量只有十分之一,使用逆流色谱在实验室完成分离后,可以直接放大到生产规模。
● 固定相价格低:另一个显著优点是逆流色谱的固定相是溶剂,相比色谱柱中的填充材料价格低很多;而且固定相可以很容易再生,一些添加的物质如手性选择剂或复杂的配位体可以无损失地回收,国际上出版的论文可以提供十分有用的信息和应用参考。
新型的高速逆流色谱仪HPCPC广泛地应用于化学领域的纯化,如抗生素、缩氨酸、丹宁酸、皂角苷、油脂、药品等,将来的发展可以预见更大规模和产量的HPCPC设备出现,在化学领域将更加广泛地应用,如手性药物分离等。
与传统制备液相的优势● 逆流色谱仪HPCPC十分快速由于固定相溶剂通过离心力保留在分配通道中,可以不用顾及分离精度的高低要求而让流动相的流速保持很高。
● 明显优于传统制备液相由于逆流色谱仪HPCPC不需要固定相,不会出现对十分昂贵的样品产生不可逆转的保留,而在传统色谱柱的液相色谱中,经常出现的变性和分解现象在逆流色谱不会产生,同时保留了原来的生物活性。
1922010, Vol. 31, No. 20食品科学※工艺技术高速逆流色谱法分离纯化红曲色素组分郑允权 1 ,李泳宁 1 ,王阿万 2 ,陈芬玲 2 ,石贤爱 2 ,郭养浩 1 , 2 , *(1.福州大学药物生物技术与工程研究所,福建 福州 2.福建省医疗器械与医药技术重点实验室,福建 福州 350002; 350002)摘 要:采用高速逆流色谱法(HSCCC)分离纯化红曲发酵产品中 6 种 Azaphilone 类色素组分。
筛选弱极性分离溶剂 系统正己烷 - 醋酸乙酯 - 甲醇 - 水,研究 6 种色素组分在不同溶剂体系中的分配系数,建立两步逆流萃取分离的技术 路线。
经过 HPCCC 分离纯化和丙酮结晶操作,得到 6 种高纯度的 Azaphilone 类色素组分,纯度均大于 98.5%,得 率达到 81.40%~84.78%,所得的 6 种色素组分的摩尔吸光系数分别为 13313、13877、9380、9360、25621、25849 L/(mol·cm)。
本研究可提供一种新型的制备高纯度红曲 Azaphilone 类色素组分的技术路线。
关键词:红曲色素;高速逆流色谱;分离纯化Separation and Purification of Monascus Pigments by High-speed Counter-current ChromatographyZHENG Yun-quan1,LI Yong-ning1,WANG A-wan2,CHEN Fen-ling2,SHI Xian-ai 2,GUO Yang-hao1,2,* (1. Institute of Pharmaceutical Biotechnology and Engineering, Fuzhou University, Fuzhou 350002, China; 2. Fujian Key Laboratory of Medical Instrumentation and Pharmaceutical Technology, Fuzhou 350002, China) Abstract: azaphilone-type pigments were separated from Monascus-fermented solid medium and purified/fractionated by Six by high-speed counter-current chromatography (HSCCC). A solvent system with weak polarity involving four components nhexane, ethyl acetate, methanol and water was selected and used for HSCCC. Based on a comparative analysis of partition coefficients of target compounds in different solvent systems, a two-step HSCCC routine was developed. After separation by HSCCC and crystallization with acetone, six azaphilone-type pigments with high purity were obtained. The purity of each pigment was above 98.5% and their yields were between 81.40% and 84.78%. Their molar absorption coefficients were 13313, 13877, 9380, 9360, 25621 L/(mol·cm) and 25849 L/(mol·cm), separately. Key words:Monascus pigments;high-speed counter-current chromatography;separation and purification 中图分类号:TS202;Q819 文献标识码:A 文章编号:1002-6630(2010)20-0192-04红曲霉菌发酵产品的生产与应用在我国已有一千多 年历史,主要用于食品着色、酿酒和传统中药材。
应用高速逆流色谱分离中药中有效成分及质谱结构研究I. 研究背景在中医药学的发展过程中,中药已经成为了人们日常生活中不可或缺的一部分。
随着科技的进步,人们对中药的研究也越来越深入,尤其是对中药中有效成分的提取和分离技术。
高速逆流色谱(HSLC)作为一种高效的分离技术,已经在中药研究领域得到了广泛应用。
本研究旨在通过HSLC技术分离中药中的有效成分,并利用质谱技术对其进行结构解析,以期为中药的现代化研究和开发提供理论依据和技术支撑。
在过去的几十年里,我国中医药事业取得了世界公认的辉煌成果。
然而随着现代医学的发展,中医药面临着前所未有的挑战。
为了更好地传承和发扬中医药文化,我们需要不断地对中药进行创新研究,提高其药效和安全性。
高速逆流色谱作为一种新兴的分离技术,具有操作简便、分离效率高、适用范围广等优点,为中药的有效成分提取和分离提供了有力保障。
质谱技术作为现代分析科学的重要手段,已经在生物医药领域取得了显著的应用成果。
通过对中药中有效成分的结构解析,我们可以更深入地了解其药理作用机制,为新药的研发提供理论依据。
此外质谱技术还可以用于中药的质量控制和评价,确保药品的安全性和有效性。
中药中有效成分的研究意义及现状在我们的日常生活中,中药已经成为了许多人的日常调理和疾病治疗的重要手段。
而其中最让人着迷的,莫过于中药中那些神奇的有效成分。
这些成分不仅能够治病救人,还能够为我们的生活带来诸多健康益处。
因此研究中药中有效成分的意义不言而喻。
然而尽管中药有着悠久的历史和丰富的经验,但在现代科学技术的发展下,我们对中药中有效成分的认识仍然有限。
这主要是因为中药中的有效成分种类繁多,分离提取难度较大,而且很多成分的结构性质尚不清楚。
因此如何高效、准确地从中药中提取出这些有效成分,成为了一个亟待解决的问题。
近年来随着高速逆流色谱等现代分离技术的不断发展,我们对中药中有效成分的研究取得了一定的进展。
通过对大量中药样品的分析,我们已经发现了许多具有潜在药用价值的化合物。
高速逆流色谱仪原理高速逆流色谱(high-speed countercurrent chromatography ,HSCCC )是20 世纪80 年代发展起来的一种连续高效的液—液分配色谱分离技术,它不用任何固态的支撑物或载体。
它利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量固定相。
由于不需要固体支撑体,物质的分离依据其在两相中分配系数的不同而实现,因而避免了因不可逆吸附而引起的样品损失、失活、变性等,不仅使样品能够全部回收,回收的样品更能反映其本来的特性,特别适合于天然生物活性成分的分离。
而且由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。
它相对于传统的固—液柱色谱技术,具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。
目前HSCCC 技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域,特别在天然产物行业中已被认为是一种有效的新型分离技术;适合于中小分子类物质的分离纯化。
我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。
美国FDA 及世界卫生组织(WHO )都引用此项技术作为抗生素成分的分离检定,90 年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。
1.逆流色谱是20世纪50年代源于多极萃取技术(非连续性)但是多极萃取设备庞大复杂、易碎、溶剂体系容易乳化,溶剂耗量大,分离时间长。
2.20世纪70年代,出现了液滴逆流色谱(DCCC)特点:(1)流体静力学原理(Hydrostatic equilibrium system,HSES)(2)分离时间过长、连接处容易出现渗漏等3.20世纪70年代出现了离心分配色谱仪(Centrifugal partition chromatography,CPC)特点:(1)基于流体静力学原理(Hydrostatic equilibrium system,HSES),利用公转产生的单一力场(2)连接处较多而且容易出现渗漏,清洗维护复杂4.20世纪80年开始出现了现在的高速逆流色谱,可称为最先进的逆流色谱特点:(1)基于流体动力学原理(Hydrodynamic equilibrium system,HDES)(2)通过公转、自转(同步行星式运动)产生的二维力场,保留两相中的其中一相作为固定相程5.HSCCC分离流程图举例1.高速逆流色谱分离黄柏中的小檗碱和巴马亭1实验部分1. 1仪器与试剂HSCCC2TBE300 型高速逆流色谱仪, 深圳同田生化有限公司;HD2212C2B 核酸蛋白检测仪, 上海康华生化仪器厂;R2201 旋转蒸发器, 上海申胜生物技术有限公司;LC210A T 高效液相色谱仪, 日本岛津色谱仪器公司;氯仿、甲醇、正丁醇、乙酸均为国产分析纯, 水为重蒸水, 黄柏购于杭州胡庆余堂, 为川黄柏。
2012年第29期(总第44期)科技视界Science &Technology VisionSCIENCE &TECHNOLOGY VISION 科技视界环氧化合物是有机合成中一个很有用的结构单元,也是一种比较活泼的化合物,在多种试剂及物理因素作用下都可以进行开环反应,它是合成二醇、卤代醇、氨基醇、及其它醇的衍生物的重要中间体,常用的亲核试剂主要是胺,醇,硫醇以及卤素等[1-2]。
环氧化合物与胺的发生的开环反应,产物为β氨基醇是合成天然化学品和药物的重要中间体在有机合成中具有广阔的应用前景。
但在开环反应过程中,因亲核反应位点的不同而区域选择性地产生不同的异构体产物,如果图1.化合物1为空间有利的产物,但也会有部分2作为副产物产生,化合物1和2为异构体,采用一般的分离手段较难分离[3]。
图1环氧化合物和胺的反应高速逆流色谱(high speed countercurrent chromatography,简称HSCCC)是一种基于液液分配为基础的新型分离技术,可以在短时间内实现高效分离和制备,可以达到几千个理论塔板数[4]它的突出特点是在用很长的软管(如聚四氟乙烯管)绕制成的色谱柱内不加入任何固态支撑体或填料。
HSCCC 利用的是螺旋管的方向性与高速行星式运动相结合产生的一种独特的流体动力学现象,使两相溶剂在螺旋管中实现高效的接触、混合、分配和传递。
使用时根据被分离混合物的理化特征,选择某一种有机/有机两相溶剂体系或有机/水溶剂体系,此体系可以是二元的或多元的。
用此体系的上层或下层作为色谱过程的固定相,首先将其注满管柱内,然后让此管柱作特定的旋转运动,用由此形成的离心力场来支撑住柱内的液态相。
这时,若用溶剂体系中的另一层作为流动相,带着混合物样品由泵的压力推入分离管柱,样品就会穿过两个液相对流的整个管柱空间,各个组分也就会按其在两相中的分配系数分离开来。
由于HSCCC 不需固相载体作固定相,克服了固相载体带来的样品吸附、损失、污染和峰形拖尾等缺点,另外,逆流色谱不需填料,它的分离柱容易做的大一些,柱内空间全部是有效空间,因而样品的负载能力强,制备量较大。
高速逆流色谱法在中药有效成分分离中的应用研究【摘要】高速逆流色谱是近几年发展起来的新型色谱技术,由于其独特之处已被广泛应用于各个领域,本文就人们关心的热点中药有效成分的分离,采用新的色谱技术高速逆流色谱技术分离取得的成就进行总结,并展望未来的前景。
【关键词】高速逆流色谱法;中药有效成分;分离;应用中图分类号r283 文献标识码 b 文章编号1674-6805(2012)35-0156-01近年来,随着中国经济的高速发展,中草药已经越来越受到人们的关注。
而中药的有效成分复杂,如何获得高效的有效成分,分离效果成为研究的热点。
高速逆流色谱法(high-speed countercurrent chromatography,hsccc)具有分析能量大、分离效率高、结果重现性好等其他色谱无法替代的优点。
现高速逆流色谱技术这种新型的液-液分配色谱已广泛应用于医药、农林、化工等各领域[1]。
应用新型的高速逆流色谱分离成分复杂的中药有效成分可取得良好的效果,具体总结如下。
1 工作原理高速逆流色谱hsccc是应用不同物质在固液两相中的分配系数不同进行分离。
一台高速逆流色谱仪是由输液泵、分离柱、检测器、工作站、数据采集系统及馏分收集器等组成。
首先选择固定相,是将两相预先平衡好的溶剂中的一相填充满螺旋管柱,将流动相以一定的流速泵入高速旋转的螺旋管柱内。
在有液体流动相流出时,说明体系达到平衡,此时将样品注入高速逆流色谱体系中,螺旋管分离柱将依据不同成分在固液两相中的分配系数不同达到分离,依据工作站和数据采集系统将分离后的结果进行记录并积分处理。
在仪器运行的时候,可调节溶剂、固定相、流动相、样品浓度、柱温、洗脱方式、进样方式、流动相的流速及转速等使分离效果达到最好。
还需要根据所检测样品的特点,选择不同的检测器,uv-vis(紫外-可见光检测器)、elsd(蒸发光散射检测器)或者质谱检测器等[2]。
2 中药的有效成分各种植物中所含的有效成分分类为生物碱、黄酮、苷、萜、蒽醌、木脂素、香豆素、有机酸等。
高速逆流色谱技术名词解释
高速逆流色谱法(High Performance Reversed Phase,HPLC)是用于分离高分子物质的一种有效的分析技术。
其原理是利用两相溶液的相分离效应,将分子大小和组成的不同物质分离出来,以提高分析的灵敏度和准确度。
HPLC是一种高精密和快速的技术,在多学科领域有着广泛的应用,比如说化学、分析化学、药理、免疫学和生物学等。
高速逆流色谱法的关键是精确控制好柱温,使用色谱液和流速。
色谱液中含有目标分离物质,可以用弱酸或碱性溶液,以及选择性的表面活性剂进行改性,以形成两种不同的溶剂,用不同的流速进行分离。
扩散和摩擦力作用会导致分离物质在柱内停留不同时间,以达到分离目的。
使用高速逆流色谱分离物质时,必须使用高品质的过滤器和检测仪,以确保色谱柱中的溶液质量,并获得准确的分离结果。
这种技术不仅能用于分离物质,而且还能
快速检测滤失和含量,甚至可以检测目标物的性质。
HPLC在药物的研制和测试方面也有着重要的作用。
它能够准确地检测出药物制剂中不同原料之间的比例,从而保证制剂质量,同时也能快速测定药物的组分和结构含量等。
另外,高速逆流色谱法还可用于药物的发掘,通过检测不同地质环境中各类有用的生物活性物质,可以大大提高寻找新药的效率。
可以看出,高速逆流色谱法影响着一系列领域的分析方法,它可以提高分析的准确性,简化试验过程,还可以避免出现许多不必要的错误。
虽然HPLC有着一系列优良的性能,但是在使用时,仍然应该采用谨慎,确保滤失和污染等方面的控制,为科研和实验提供准确可靠的数据。
高速逆流色谱法分离小花黄堇中延胡索乙素和原阿片碱1植物来源:样品小花黄堇采收自福建省永春县, 经福建中医药大学药学院杨成梓副教授鉴定为罂粟科小花黄堇Corydalisracemosa( Thunb1) Pers1的全草。
2化合物分子结构图及化合物用途:小花黄堇为罂粟科紫堇属植物小花黄堇Corydalis race-mosa(Thunb1) Pers1的全草或根。
味苦, 性寒, 有毒。
具有清热利尿,解毒杀虫之功效。
主治湿热泄泻, 痢疾,黄疸, 目赤肿痛, 亭耳流脓, 疮毒, 疥癣,毒蛇咬伤。
3提取前处理方法:总生物碱的提取取小花黄堇药材1kg,用95%的乙醇( 含011%HCl)回流提取3次, 次115h, 合并提取液,过滤,回收乙醇, 至无醇味。
加入5%的HCl 溶液, 调节pH值至2左右, 置12h, 过滤,弃去沉淀;再往滤液中加入NaOH, 调节pH值至12左右, 静置12h, 过滤, 取沉淀,干燥, 即得总生物碱粉末。
4具体提取过程:将正已烷-乙酸乙酯-甲醇-水按照体积比8:8:12:8振摇充分混合,静置平衡后分得上相(固定相)和下相( 流动相), 分别超声脱气15min, 备用。
称取小花黄堇总生物碱粉25mg,加人溶剂系统的上、下相各10mL, 振摇使之溶解,作为样品溶液。
上相以流速为10mL/min-1进入HSCCC螺旋管, 待螺旋管完全充满固定相后, 开启HSCCC主机, 转方向为顺时针,使转速逐渐增加到800r/min-1, 同时以210mL/min-1的流速抽入下相( 流动相) 。
当流动相从螺旋管尾端流出时, 系统即达到动力学平衡, 基线平稳后即可进样。
紫外检测器检测波长设为280nm, 根据色谱图收集各流分。
按HSCCC图谱( 3) 上的各成分峰收集流分, 得到5个组分, 分别用HPLC法测其纯度。
5个组分通过HPL检测, 结果表明,组分1、2、3均为未知成分的混合物, 组分4和5为目标成分,以面积归一化法计算其纯度分别为9916%和9912%。