化工热力学第三章 纯流体的热力学性质计算
- 格式:ppt
- 大小:2.40 MB
- 文档页数:103
第三章 纯流体的热力学性质3.1热力学性质间的关系3.1.1单相流体系统基本方程 根据热力学第一、二定律,对单位质量定组成均匀流体体系,在非流动条件下,其热力学性质之间存在如下关系: pdV TdS dU -=;Vdp TdS dH +=pdV SdT dA --=;Vdp SdT dG +-=上述方程组是最基本的关系式,所有其他的函数关系式均由此导出。
上述基本方程给我们的启示是:p-V-T 关系数据可以通过实验测定,关键是要知道S 的变化规律,若知道S 的变化规律,则U 、H 、A 、G 也就全部知道了。
下面所讲主要是针对S 的计算。
3.1.2点函数间的数学关系式对于函数:()y x f z ,=,微分得:dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=如果x 、y 、z 都是点函数,且z 是自变量x 、y 的连续函数,Ndy Mdx +是z (x ,y )的全微分,则M 、N 之间有:该式有两种意义:①在进行热力学研究时,如遇到(1)式,则可以根据(2)式来判断dz 是否全微分,进而可判定z 是否为系统的状态函数;②如已知z 是状态函数,则可根据(2)式求得x 与y 之间的数学关系。
以下循环关系式也经常遇到:3.1.3Maxwell 关系式由于U 、H 、A 和G 都是状态函数,将(2)式应用于热力学基本方程,则可获得著名的Maxwell 方程:V S S p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂;p S S V p T ⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ T V V S T p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂能量方程的导数式:T S H S U pV =⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂;p V A V U T S -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂V p G p H TS =⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂;S T A T G V p -=⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 在实际工程应用中,Maxwell 方程应用之一是用易于实测的某些数据来代替或计算那些难于实测的物理量。
第三章 纯流体的热力学性质3-2 将25℃、0.1MPa 的液态水注满一密闭容器,若将水加热至60℃,则压力变为多少?已知水在25℃时比容为1.003cm 3•g -1,25~60℃之间体积膨胀系数β平均值为36.2×10-5K -1,在0.1MPa 、60℃时压缩系数k 为4.42×10-4MPa -1,并假设与压力无关。
解: p T V V ⎪⎭⎫ ⎝⎛∂∂=1β Tp V V k ⎪⎪⎭⎫⎝⎛∂∂-=1 T p Tp V p T V p VT V k ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂-=β由循环关系可知:1-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂TV p V p p T T V V VT p T p p T V p T V ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂1所以: 1415819.01042.4102.36----⋅=⨯⨯=⎪⎭⎫ ⎝⎛∂∂=K MPa MPaK T p k V βdT dp 819.0=⎰⎰=pdT dp 1.06025819.0MPa p 67.28)2560(819.0=-=3-3 对于服从Van Der Waals 状态方程的气体,式求出(C p -C V )的表达式,并证明这种气体的C V 仅是温度的函数。
解:VDW 方程为:2Vab V RT p --=由定义可知:Vp V p T U T H C C ⎪⎭⎫⎝⎛∂∂-⎪⎭⎫⎝⎛∂∂=- pp p p T S S H T S S H T H ⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂⋅∂∂=⎪⎭⎫ ⎝⎛∂∂由Maxwell 关系式:T S H p=⎪⎭⎫⎝⎛∂∂ 所以:pp T S T T H ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 同理:VV T S T T U ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Vp V p T S T T S T C C ⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=- (A )),(V T f S =dV V S dT T S dS TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=pT V p T V V S T S T S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ pT V p T V V S T S T S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂ (B ) 将(B )式代入(A )式:pT V p T V V S T C C ⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=-将Maxswell 关系式应用于上式:pVpV V p V T T p TT V T p T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=- 对VDW 方程求上述偏微分:bV R T p V -=⎪⎭⎫⎝⎛∂∂ ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++=⎪⎭⎫ ⎝⎛∂∂3221V a b V V a p R V T p⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=3221V ab V a p R⎥⎦⎤⎢⎣⎡+--=-322V ab V a p Rb V R TC C V p(2)VV V T S T T U C ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂= V VV V T T VTV T p T T P T T V S T V T S T V C ⎪⎪⎭⎫ ⎝⎛∂∂=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂⎪⎭⎫ ⎝⎛∂∂∂=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂⎪⎭⎫ ⎝⎛∂∂∂=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂⎪⎭⎫ ⎝⎛∂∂∂=⎪⎭⎫ ⎝⎛∂∂22 对VDW 方程求上述偏微分:b V R T p V-=⎪⎭⎫⎝⎛∂∂ 022=⎪⎪⎭⎫⎝⎛∂∂VT p 0=⎪⎭⎫⎝⎛∂∂TV V C 所以C V 仅是温度的函数。
Mar. 25, 2011主要内容3.1 热力学性质间的关系3.2 热力学性质的计算3.3 逸度与逸度系数3.4 两相系统的热力学性质及热力学图表关键:剩余焓H R和剩余熵S R的计算!计算方法:①根据p-V-T实验数据计算②状态方程法③普遍化关系法3.2.4 气体热力学性质的普遍化关系面临难题:实际工程计算中,如计算高压下热力学函数,通常缺乏所需的p-V-T实验数据及所需物质的热力学性质图表。
策略:借助近似的方法处理,即将压缩因子的普遍化方法扩展到对剩余性质的计算。
特点:¾对比态原理可以作为高压下的热力学函数的近似计算方法;¾根据具体条件,选择普遍化维里系数法或普遍化压缩因子法;¾普遍化方法适用性广,既可用公式计算,也可采用图表估算,但精度低。
(1)普压法1Z Z Zω=+要点:采用式(2-38)计算方法——普维法和普压法微分后代入普遍化式(3-57)、(3-58),整理后得到相关H R 、S R 计算式。
(3)注意点¾普遍化关系式(普维法,普压法)仅适用于极性较弱,非缔合物质,不适用于强极性和缔合性物质;¾选择算式之前,一定要进行判据,图2-9中曲线上方或Vr≧2用普维法,否则,需采用普压法。
()mol/J .HHHH H H R R v 3407685822056413402175421=−++=++−+==∗ΔΔΔ()()K mol /J .....SSSS S S R R v ⋅=−++=++−+==∗27883814142287210647921ΔΔΔ63340767100.28151032106/U H pV J mol−=−=−×××=例3-7 确定过热水蒸汽在473.15K 和9.807 ×105Pa时的逸度和逸度系数。
()1.9612879.0/9.652/ii p kPa H kJ kg S kJ kg K ∗∗∗===⋅解: 根据附表中473.15K时的最低压力,并假设蒸汽处于该状态时为理想气体,则从蒸汽表中查出如下的基准态值:例3-8 计算1-丁烯蒸气在473.15K,7MPa下的f 和φ。