大气颗粒物采样器工作原理
- 格式:docx
- 大小:3.17 KB
- 文档页数:2
KC-120H型(TSP采样器)操作规程1、工作原理采用重量法对大气颗粒物进行测定,分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。
必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。
2、性能指标(1)流量范围:(60~125)L/min;(2)流量精度:2.0级;(3)流量稳定性:≤±2.5%(电压变化±20%,阻力变化8KPa);(4)切割器标定流量:100L/min(采样头入口速度为0.3m/s);(5)最大累计流量:999.99m3;(6)采样方式:手动、自动连续循环采样;(7)本机噪声:≤62dB。
3、工作条件(1)温度测量范围:(-30~99)℃;(2)大气压测量范围:(70~130)KPa;(3)工作电源:AC220V±22V,50Hz;4、操作步骤(1)选择干燥、避阳处,将仪器平稳放置。
(2)将粉尘采样滤膜装进PM10/TSP采样头里面,再安装到主机上,注意要旋紧密封,若测PM2.5,应将多级切割器装入采样头。
(3)确认电源为220V后,接通电源,打开电源开关。
(4)开机后,进入主操作菜单,选择“手动采样”或“自动采样”,并设置具体数据。
(5)进入“手动采样”菜单,可调整采样流量(60L/min-120L/min),设置采样时间,对于粉尘采样,需要输入滤膜的编号,便于用户对样品的标记和管理,按“开始采样”进行采样。
(6)启动“开始采样”后会进入采样状态界面,可以显示当前的实际采样流量、当前累计采样时间、实际采样体积、标况采样体积、计前温度和计前压力。
(7)采样结束后,可进入查询菜单,通过功能键选中文件,选择详细菜单可查看其它信息。
颗粒物采样器原理
颗粒物采样器是一种用于测量空气中颗粒物浓度的仪器。
其工作原理基于颗粒物在空气中的悬浮和沉降特性。
颗粒物采样器包括一个进气口和一个采样装置。
进气口通常位于采样器的上部,用于将大气中的空气引入仪器内。
采样装置通常由一个过滤器组成,用于捕集悬浮在空气中的颗粒物。
过滤器可以是一种特定的材料,如玻璃纤维滤纸,具有精细的孔隙结构,以便捕集不同大小的颗粒物。
当空气通过进气口进入采样器时,其速度会减小,使颗粒物在空气中悬浮并向下沉降。
由于采样装置中的过滤器具有细小的孔隙,悬浮在空气中的颗粒物无法通过过滤器的孔隙进入采样器内部,从而被捕集在过滤器上。
采样器通常通过一定的时间间隔更换过滤器,以便获得一定时间段内的颗粒物浓度数据。
更换过滤器后,可以使用不同的方法对过滤器上的颗粒物进行分析和计算,从而确定空气中颗粒物的浓度。
此外,为了确保采样器的准确性和可靠性,采样器通常还配备了温度传感器和湿度传感器,以监测和记录空气中的温度和湿度。
这些参数可以对颗粒物的浓度进行校正和修正,以提高测量结果的准确性。
总的来说,颗粒物采样器通过引导空气通过过滤器,可收集悬浮在空气中的颗粒物,并根据采集到的颗粒物进行浓度测量。
这种仪器广泛应用于环境监测、室内空气质量评估以及科学研究等领域。
大气颗粒物采样器工作原理
大气颗粒物采样器是一种用于收集大气中悬浮颗粒物的装置,其工作原理主要包括以下几个步骤:
1.空气进入采样器:大气颗粒物采样器通过进气口将大气中的空气吸入采样器内部。
2.过滤器过滤:空气进入采样器后,通过过滤器进行初步过滤,去除较大的颗粒物和杂质,保证采样器内部的空气质量。
3.颗粒物沉积:经过初步过滤的空气进入采样器内部后,由于采样器内部的设计和气流状态,空气中的悬浮颗粒物会向下沉积,沉积到采样器内部的采样头上。
4.采样头采样:采样头是采样器内部的一个小孔,通过这个小孔采集沉积在上面的颗粒物。
采样头通常使用特殊材料制成,可以有效地收集不同粒径范围内的颗粒物。
5.颗粒物存储:采样头采集到的颗粒物会定期取出并送往实验室进行分析和检测。
在取出采样头之前,通常需要使用特殊的密封措施,避免颗粒物在取出过程中发生损失或污染。
大气颗粒物采样器的工作原理比较简单,但是在实际应用中需要注意一些问题,比如采样器的放置位置、采样时间和频率、过滤器的更换等等,这些因素都会影响采样器的采样效果和数据质量。
- 1 -。
空气采样的原理及应用1. 空气采样的概述空气采样是指通过采集气体样品进行分析,以获得有关空气质量和污染物浓度的信息。
空气采样广泛应用于环境监测、室内空气质量评估、工业生产过程监控等领域。
本文将介绍空气采样的原理和不同应用场景。
2. 空气采样的原理2.1 主动采样和被动采样空气采样可分为主动采样和被动采样两种方式。
主动采样是通过一定的动力机构,如采样泵或风扇等设备,将气体主动抽取到采样器或采样袋中。
常见的主动采样方法包括吸附管采样、高体积采样和低体积采样等。
主动采样方法具有采样速度快、精度高的特点。
被动采样是将采样装置置于待测环境中,利用自然扩散或被动吸附的方式收集气体样品。
被动采样方法包括芯片采样、吸附板采样和袋式采样等。
被动采样方法操作简单,适用于长期监测和大范围采样。
2.2 采样介质在空气采样过程中,采样介质起到承载和保存气体样品的作用。
常见的采样介质包括吸附剂、滤膜、活性碳和采样袋等。
不同的采样介质适用于不同的分析目的和污染物类型。
吸附剂主要用于吸附气体中的有机化合物,如苯、甲醛等。
滤膜主要用于捕集颗粒物,如PM2.5和PM10等细颗粒物。
活性碳适用于吸附有机气体和恶臭气体。
采样袋适用于存储气体样品,方便后续分析。
2.3 采样时间和流量采样时间和流量是影响空气采样结果的重要参数。
采样时间过短可能导致低浓度污染物无法被充分吸附,采样时间过长则会造成采样介质的饱和,影响后续分析结果。
采样流量的选择取决于待测物浓度、采样时间和采样介质等因素。
通常情况下,采样流量越大,采样结果的代表性越好。
但是过高的采样流量也可能导致采样损失和背景污染增加。
3. 空气采样的应用3.1 环境监测空气采样在环境监测中起着重要的作用。
通过采集不同地点和时间的气体样品,可以评估大气环境质量,并监测空气中的污染物浓度。
环境监测中常用的空气采样方法包括高体积采样和袋式采样等。
3.2 室内空气质量评估室内空气质量与人们的健康和舒适度密切相关。
大气颗粒物采样器原理
大气颗粒物采样器是用于收集大气中的颗粒物,以便分析颗粒物的组成和浓度的仪器。
其工作原理可以简要概括为以下几个步骤:
1. 空气引入:大气颗粒物采样器通常通过一个进气口将环境空气引入到采样器中。
进气口通常带有一个过滤器,以防止较大的颗粒物进入采样器内部,从而保护采样装置。
2. 分离:引入的空气在采样器内部经过一系列的分离装置。
其中最常用的分离装置是采样头旁流器或撞击器。
这些装置可以将空气中的颗粒物与气态物质分离开来。
3. 采集:一旦颗粒物与气态物质被分离开来,颗粒物需要被采集并收集起来。
采样器通常使用一种或多种采集介质,如过滤器或沉积器,来捕捉颗粒物。
这些采集介质可以是具有特定颗粒物捕捉能力的材料。
4. 测量:采集的颗粒物需要进行后续的测量和分析。
常用的方法包括重量法、显微镜观察和化学分析等。
这些方法可以确定颗粒物的质量、分布和化学成分等信息。
需要注意的是,不同的大气颗粒物采样器可能会使用不同的原理和采样方式,但基本的工作原理通常是相似的。
最终采集到的颗粒物样品可以用于环境污染监测、健康影响研究、大气模型验证等领域。
环境大气颗粒物的测定原理环境大气颗粒物的测定原理是通过采集大气中的颗粒物样品,然后利用不同的分析方法来确定其质量浓度和组成。
大气颗粒物主要包括可吸入颗粒物(PM10)和细颗粒物(PM2.5),其测定原理有以下几种方法:1. 重量法:重量法是最常用的测定大气颗粒物质量浓度的方法。
该方法是将空气中的颗粒物通过采样器收集在滤膜上,然后将滤膜放入称量器中进行称重,通过测量滤膜的质量变化来确定颗粒物的质量浓度。
重量法适用于测定PM10和PM2.5的质量浓度,但无法确定颗粒物的化学组成。
2. 光学法:光学法是一种基于颗粒物对光的散射和吸收特性进行测定的方法。
常用的光学法包括激光散射法和激光吸收法。
激光散射法利用激光束与颗粒物发生散射,通过测量散射光的强度来确定颗粒物的浓度。
激光吸收法则是利用颗粒物对激光光束的吸收特性进行测定。
光学法适用于测定颗粒物的质量浓度和粒径分布,但对颗粒物的化学组成无法确定。
3. X射线荧光光谱法:X射线荧光光谱法是一种通过颗粒物中元素的特征X射线荧光来测定其化学组成的方法。
该方法将颗粒物样品暴露在X射线束中,颗粒物中的元素吸收X射线后会发射出特定的荧光信号,通过测量荧光信号的强度和能量来确定颗粒物中各元素的含量。
X射线荧光光谱法适用于测定颗粒物的化学组成,但对颗粒物的质量浓度和粒径分布无法确定。
4. 电子显微镜法:电子显微镜法是一种通过电子显微镜观察颗粒物的形态和结构来确定其组成和来源的方法。
该方法将颗粒物样品放入电子显微镜中,利用电子束与颗粒物相互作用产生的信号来观察颗粒物的形貌、晶体结构和元素分布情况。
电子显微镜法适用于测定颗粒物的形态、组成和来源,但对颗粒物的质量浓度和粒径分布无法确定。
综上所述,环境大气颗粒物的测定原理主要包括重量法、光学法、X射线荧光光谱法和电子显微镜法。
不同的测定方法适用于不同的测定目的,可以综合应用来获取更全面的颗粒物信息。
pm2.5监测原理一、重量法我国目前对大气颗粒物的测定主要采用重量法。
其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。
必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。
环境空气监测中采样环境及采样频率要按照HJ.T194的要求执行。
PM10连续自动监测仪的采样切割装置一般设计成旋风式,它在规定的流量下,对空气中10um粒径的颗粒物具有50%的采集效率、以下为其技术性能指标表。
二、微量振荡天平法TEOM微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。
当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。
微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。
流量为1m3/h环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。
样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。
在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。
三、Beta射线法/β射线法Beta射线仪则是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。
六级撞击式采样器原理六级撞击式采样器(Sixth-order Impactor Sampler)是一种常用的气溶胶采样器,主要用于采集大气中的颗粒物。
其采样原理是通过撞击的方式将颗粒物聚集在采样器的收集器上,然后进行后续的分析和测量。
六级撞击式采样器由一系列的撞击器构成,每个撞击器都由一个小孔和一个收集器组成。
大气中的颗粒物进入采样器后,首先通过第一个撞击器的小孔,然后被撞击在收集器上。
撞击器的小孔尺寸根据采样任务的要求而确定,通常为几微米到几十微米。
颗粒物在撞击过程中,会在收集器上形成连续的夹层,其中包括不同直径的颗粒物。
这些夹层中的颗粒物可以进一步通过撞击式采样器的多个撞击器进行大气分级分析。
每个撞击器的小孔尺寸比前一个撞击器的小孔尺寸要小,这样可以将更小直径的颗粒物聚集在接下来的撞击器中。
在六级撞击式采样器中,第一、二、三级撞击器可以采集直径大于10微米、大于2.5微米和大于1微米的颗粒物,分别用于研究大颗粒物的空气污染、研究细颗粒物的空气污染以及分析超细颗粒物对人体的健康危害。
第四、五、六级撞击器通常使用非常小的孔径,用于采集直径小于1微米的细颗粒物,这些颗粒物对人体健康的影响更大。
在撞击过程中,撞击器的小孔直径和撞击器之间的距离都会影响颗粒物的收集效率。
较小的孔径和较短的撞击器距离可以捕集更多的颗粒物,但同时也容易导致颗粒物在撞击过程中被弹射回大气中。
因此,在设计撞击式采样器时,需要找到一个平衡点,即保证收集率的同时,尽可能减小颗粒物的损失。
为了更好地分析和测量采集的颗粒物,收集器上通常会附加有相应的过滤膜或其他的采样介质,以便后续分析。
在分析过程中,可以使用多种方法,如重量法、化学分析、质谱分析等,对收集的颗粒物进行定性和定量的分析。
大气颗粒物采样器工作原理
大气颗粒物采样器是一种用于采集大气中颗粒物的仪器。
它的工作原理是利用物理或化学方法将空气中的颗粒物捕集下来,然后进行分析和检测。
大气颗粒物采样器的主要组成部分包括采样头、过滤器、泵和控制器。
采样头是用于捕集空气中的颗粒物的部分,通常采用玻璃纤维过滤器或膜过滤器。
过滤器的孔径大小可以根据需要进行调整,以便捕集不同大小的颗粒物。
泵则是用于将空气吸入采样头的部分,通常采用旋转式或膜式泵。
控制器则是用于控制采样器的运行和记录采样数据的部分。
大气颗粒物采样器的工作过程如下:首先,将采样头安装在需要采集颗粒物的位置,然后启动泵将空气吸入采样头。
空气中的颗粒物被捕集在过滤器上,而其他气体成分则通过过滤器被排出。
采样时间通常为24小时或更长时间,以便获得足够的样品量。
采样结束后,将过滤器取出并送往实验室进行分析和检测。
大气颗粒物采样器可以用于监测空气中的颗粒物浓度和组成,以及评估大气污染的程度和影响。
它广泛应用于环境监测、空气质量评估、健康风险评估等领域。
同时,大气颗粒物采样器也是研究大气颗粒物来源、传输和转化过程的重要工具。
大气颗粒物采样器是一种重要的环境监测仪器,它的工作原理是利
用物理或化学方法将空气中的颗粒物捕集下来,然后进行分析和检测。
它的应用可以帮助我们更好地了解大气污染的情况,保护环境和人类健康。