矩阵的逆(完整版)实用资料
- 格式:doc
- 大小:1.66 MB
- 文档页数:14
矩阵的逆及其应用姓名:刘欣班级:14级数计1班专业:数学与应用数学学号:1408020129一、矩阵的逆的概念对于n阶矩阵A,如果有一个n阶矩阵B,使得AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A的逆矩阵记作A1。
二、逆矩阵的性质和定理㈠逆矩阵的性质1、若矩阵A、B均可逆,则矩阵AB可逆,其逆矩阵为 ,当然这一性质可以推广到多个矩阵相乘的逆。
若A1,A2,,Am都是n阶可逆矩阵,则A1A2Am也可逆,且(A1A2Am)1=(Am)1(A2)1(A1)1.2、若A可逆,则 也可逆,且( )=A;3、若A可逆,实数λ≠0,则λA可逆,且(λ )=λ;4、若A可逆,则 也可逆,且( )=( );5、=;6、矩阵的逆是唯一的;证明:运用反证法,如果A是可逆矩阵,假设B,C都是A的逆,则有AB=BA=E=AC=CA,B=BE=B(AC)=(BA)C=EC=C(与B≠C矛盾),所以是唯一的。
㈡逆矩阵的定理1、初等变换不改变矩阵的可逆性。
2、n阶矩阵可逆的充分必要条件是A与n阶单位阵In等价。
3、n阶矩阵A可逆的充分必要条件是A可以表成一些初等矩阵的乘积。
4、n阶矩阵可逆的充分必要条件是A只经过一系列初等行变换便可化成单位矩阵。
5、n阶矩阵A可逆的充分必要条件是|A|≠0。
三、逆矩阵的计算方法㈠定义法定义:设A是n阶方阵,如果存在n阶方阵B使得AB=E,那么A称为可逆矩阵,B称为A的逆矩阵,记为A1。
例1、求矩阵A=223110121的逆矩阵。
解:∵|A|≠0∴A1存在设A1=x11x12x13x21x22x23x31x32x33,由定义知A1A=E,∴223110121x11x12x13x21x22x23x31x32x33=由矩阵乘法得2x11+2x21+3x312x12+2x22+3x322x13+2x23+3x33x11x21x12x22x12x23x11+2x21+x31x12+2x22+x32x13+2x23+x33=由矩阵相乘可解得x11=1x21=1x31=1;x12=4x22=5x32=6;x13=3x23=3x33=4故㈡、伴随矩阵法n阶矩阵A=(aij)可逆的充要条件|A|≠0,而且当n(n>=2)阶矩阵A有逆矩阵,A1=1AA,其中A为伴随矩阵。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵的知识点总结一、逆矩阵的基本概念1.1 矩阵的逆在矩阵理论中,矩阵的逆是一个重要的概念。
如果存在一个矩阵B,使得矩阵A与矩阵B相乘得到单位矩阵I,那么矩阵B就被称为矩阵A的逆矩阵,记作A-1。
换句话说,如果AB=I,那么B就是A的逆矩阵。
1.2 逆矩阵的存在性并非所有的矩阵都有逆矩阵。
只有当矩阵是可逆的时候,才会存在逆矩阵。
一个矩阵是可逆的,当且仅当它是一个方阵且其行列式不为0。
1.3 逆矩阵的求解要求解矩阵的逆,可以使用多种方法。
其中最常用的方法是高斯-约当法求解逆矩阵。
这一方法通过行变换和列变换来将矩阵化为单位矩阵,从而得到矩阵的逆。
1.4 逆矩阵与解的关系在线性代数中,矩阵的逆与线性方程组的解密切相关。
如果一个矩阵是可逆的,那么它所代表的线性方程组一定有唯一解,反之亦然。
二、逆矩阵的性质2.1 逆矩阵的唯一性如果一个矩阵有逆矩阵,那么逆矩阵是唯一的。
这是因为如果存在两个不同的矩阵B和C,使得AB=I且AC=I,那么由矩阵乘法的结合律可得B=BI=B(AC)=(BA)C=IC=C,即B=C。
2.2 逆矩阵的乘法逆矩阵有一个重要的性质,即两个可逆矩阵的乘积仍然是可逆的,并且其逆矩阵等于这两个矩阵的逆的乘积的逆。
换句话说,如果A和B都是可逆的矩阵,那么(AB)-1=B-1A-1。
2.3 逆矩阵与转置矩阵的关系矩阵的转置是将矩阵的行和列互换得到的新矩阵。
在逆矩阵的情况下,有一个重要的性质,即一个矩阵的逆与其转置的逆是相等的,即(A-1)T=(AT)-1。
2.4 逆矩阵与幂的关系矩阵的逆与幂有着密切的关系。
如果一个矩阵A是可逆的,那么其幂A^n也是可逆的,并且(A^n)-1=(A-1)^n。
2.5 逆矩阵与伴随矩阵的关系在矩阵理论中,有一个与逆矩阵密切相关的概念,即伴随矩阵。
伴随矩阵是一个矩阵的行列式和代数余子式构成的矩阵。
与逆矩阵的关系在于,如果一个矩阵A是可逆的,那么它的伴随矩阵乘以矩阵A的行列式就等于单位矩阵。
矩阵逆的公式范文一、矩阵逆的定义和性质矩阵逆可用于矩阵的除法运算,类似于数学中的倒数运算。
矩阵A的逆记作A^(-1),满足A*A^(-1)=A^(-1)*A=I,其中I为单位矩阵。
若矩阵A存在逆矩阵,则称矩阵A为可逆矩阵或非奇异矩阵。
矩阵逆的性质有:1.如果A、B都是可逆矩阵,则AB也是可逆矩阵,且(AB)^(-1)=B^(-1)*A^(-1)。
2.矩阵的转置的逆等于矩阵的逆的转置,即(A^T)^(-1)=(A^(-1))^T。
3.如果A可逆,则A^(-1)也可逆,且(A^(-1))^(-1)=A。
4.如果A可逆,则(A^-1)^-1=A。
5.如果A可逆,则kA(k≠0)也可逆,且(kA)^(-1)=(1/k)A^(-1)。
二、矩阵逆的求解方法1.初等行变换法:设A为n阶矩阵,则可由初等行变换将A化为行阶梯形矩阵U,再由U化为对角矩阵D,若U和D都是单位矩阵,则A可逆,且A^(-1)=D^(-1)*U^(-1)。
2.初等列变换法:设A为n阶矩阵,则可由初等列变换将A化为列阶梯形矩阵V,再由V化为对角矩阵D,若V和D都是单位矩阵,则A可逆,且A^(-1)=D^(-1)*V^(-1)。
3.行列式法:设A为n阶矩阵,若,A,≠0,则A可逆,且A^(-1)=(1/,A,)*A*,其中A*为A的伴随矩阵。
4. 使用矩阵伴随的方法求逆:设A为n阶矩阵,则若,A,≠0,则A可逆,且A^(-1) = (1/,A,) * adj(A),其中adj(A)为A的伴随矩阵。
三、矩阵逆的应用1.解线性方程组:考虑一个线性方程组Ax=b,其中A是已知的系数矩阵,b是已知的常向量,x是未知的解向量。
若A可逆,则方程组的解为x=A^(-1)*b,可以利用矩阵逆的公式求解。
2.计算特征值和特征向量:设A是n阶矩阵,若A可逆,则特征值λ和对应的特征向量v满足Av=λv。
可以通过求解A和单位矩阵之差的行列式来计算特征值,然后再通过解线性方程组(A-λI)v=0来求解特征向量。
求逆矩阵知识点总结一、定义矩阵的逆是指存在一个矩阵使得它与原矩阵相乘得到单位矩阵。
具体来说,如果矩阵A的逆矩阵存在,我们用A^-1来表示它,那么矩阵A的逆矩阵定义为满足下式的矩阵B:A *B = B * A = I其中,I是单位矩阵。
二、求解方法1. 初等变换法利用行初等变换把矩阵A转换为单位矩阵,所做的初等行变换同时作用于一个相同次序的单位矩阵,然后将单位矩阵转换得到的矩阵即是A的逆矩阵。
2. 伴随矩阵法对于n阶方阵A,它的伴随矩阵定义为其每个元素的代数余子式。
A的伴随矩阵记作Adj(A),则有A^-1 = (1/det(A)) * Adj(A),其中det(A)是A的行列式。
3. 初等矩阵法对于矩阵A,构造一个n阶单位矩阵In,然后对In进行一系列的乘法和加减操作所得到的新矩阵记为B,如果B=A^-1,则B就是矩阵A的逆矩阵。
三、性质1. 逆矩阵的唯一性如果一个矩阵A有逆矩阵,那么这个逆矩阵是唯一的。
也就是说,如果存在矩阵B和C,使得A*B=I和A*C=I,那么B=C。
2. 若A和B都是可逆矩阵,则AB也是可逆矩阵,并且有(A*B)^-1=B^-1*A^-13. (A^-1)^-1 = A4. (A^T)^-1 = (A^-1)^T5. 行列式为0的矩阵没有逆矩阵。
四、应用求逆矩阵在实际应用中有着广泛的作用,其中包括但不限于以下几个方面。
1. 线性方程组求解线性方程组Ax=b时,如果A是可逆矩阵,则可以直接用逆矩阵求解:x=A^-1*b。
2. 信号处理在信号处理领域中,矩阵的逆可以用来解决信号的解耦、滤波等问题。
3. 机器学习矩阵的逆在机器学习中也有重要的应用,比如用于参数的最小二乘估计以及矩阵分解等问题。
4. 几何变换在计算机图形学和几何变换领域,矩阵的逆可以用来表示坐标点的逆向变换。
总结求逆矩阵是线性代数中的一个重要概念,有着广泛的应用。
本文从定义、求解方法、性质和应用等方面对求逆矩阵的知识点进行了总结,希望能帮助读者更好地理解和应用这一概念。
逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
矩阵的逆(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)§4 矩阵的逆一、可逆矩阵的概念在§2我们看到,矩阵与复数相仿,有加、减、乘三种运算.矩阵的乘法是否也和复数一样有逆运算呢?这就是本节所要讨论的问题.这一节矩阵,如不特别声明,都是n n ⨯矩阵. 对于任意的级方阵A 都有A EA AE ==这里E 是n 级单位矩阵.因之,从乘法的角度来看,n 级单位矩阵在级方阵中的地位类似于1在复数中的地位.一个复数0≠a 的倒数可以用等式11=-aa来刻划,相仿地,我们引入定义7 n 级方阵A 称为可逆的,如果有n 级方阵B ,使得E BA AB ==, (1)这里E 是n 级单位矩阵.首先我们指出,由于矩阵的乘法规则,只有方阵才能满足(1).其次,对于任意的矩阵A ,适合等式(1)的矩阵B 是唯一的(如果有的话).定义8 如果矩阵B 适合(1),那么B 就称为A 的逆矩阵,记为1-A . 二、可逆矩阵的逆矩阵的求法下面要解决的问题是:在什么条件下矩阵A 是可逆的?如果A 可逆,怎样求1-A ?定义9 设ij A 是矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211 中元素ij a 的代数余子式,矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n A A A A A A A A A A 212221212111* 称为矩阵A 的伴随矩阵.由行列式按一行(列)展开的公式立即得出:dE d d d A A AA =⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000**, (2) 其中||A d =.如果0||≠=A d ,那么由(2)得E A A dA d A ==)1()1(**. (3) 定理3 矩阵A 可逆的充要条件是A 非退化的,而)0||(1*1≠==-A d A dA根据定理3容易看出,对于n 级方阵B A ,,如果E AB =那么B A ,就都是可逆的并且它们互为逆矩阵.定理3不但给出了一矩阵可逆的条件,同时也给出了求逆矩阵的公式(4).按这个公式来求逆矩阵,计算量一般是非常大的.在以后我们将给出另一种求法.由(5)可以看出,如果0||≠=d A ,那么11||--=d A推论 如果矩阵B A ,可逆,那么A '与AB 也可逆,且)()(11'='--A A 111)(---=A B AB .利用矩阵的逆,可以给出克拉默法则的另一种推导法.线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********,, 可以写成B AX =. (6)如果0||≠A ,那么A 可逆.用B A X 1-=代入(6),得恒等式B B A A =-)(1,这就是说B A 1-是一个解.如果C X =是(6)的一个解,那么由B AC =得B A AC A 11)(--=,即B AC 1-=.这就是说,解B A X 1-=是唯一的.用1-A 的公式(4)代入,乘出来就是克拉默法则中给出的公式.定理4 A 是一个n s ⨯矩阵,如果P 是s s ⨯可逆矩阵,Q 是n n ⨯可逆矩阵,那么秩(A )=秩(PA )=秩(AQ ).© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.第五章 二次型§5.1 习题1.证明,一个非奇异的对称矩阵必与它的逆矩阵合同.2.对下列每一矩阵A ,分别求一可逆矩阵P ,使AP P '是对角形式:(i);311112121⎪⎪⎪⎭⎫ ⎝⎛=A (ii);0111101111011110⎪⎪⎪⎪⎪⎭⎫⎝⎛=A(iii).1111142112411111⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=A3.写出二次型∑∑==-3131||i j jixx j i 的矩阵,并将这个二次型化为一个与它等价的二次型,使后者只含变量的平方项.4.令A 是数域F 上一个n 阶斜对称矩阵,即满足条件A A -='. (i)A 必与如下形式的一个矩阵合同:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--00001100101(ii) 斜对称矩阵的秩一定是偶数.(iii) F 上两个n 阶斜对称矩阵合同的充要条件是它们有相同的秩.§5.2 复数域和实数域上的二次型1.设S 是复数域上一个n 阶对称矩阵.证明,存在复数域上一个矩阵A ,使得A A S '=.2.证明,任何一个n 阶可逆复对称矩阵必定合同于以下形式的矩阵之一:.12,1;2,+=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛v n OOO O I O I O v n O I I O v v vv 若若3.证明,任何一个n 阶可逆实对称矩阵必与以下形式的矩阵之一合同:.22⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--v n vv v n v v I OOO OI OI O I OO O O I O I O或 4.证明,一个实二次型),,,(21n x x x q 可以分解成两个实系数n 元一次齐次多项式的乘积的充分且必要条件是:或者q 的秩等于1,或者q 的秩等于2并且符号差等于0.5.令.906010604,233354345⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=B A证明A 与B 在实数域上合同,并且求一可逆实矩阵P ,使得B AP P ='.6.确定实二次型n n x x x x x x 2124321-++ 的秩和符号差. 7.确定实二次型cxy bzx ayz ++的秩和符号差.8.证明,实二次型∑∑==>++n i nj jin xx j i ij 11)1()(λ的秩和符号差与λ无关.§5.3 正定二次型1.判断下列实二次型是不是正定的:)(i 3121232221443210x x x x x x x +++-; )(ii .48455323121232221x x x x x x x x x --+++2.λ取什么值时,实二次型24133221232221222)(x x x x x x x x x x +--+++λ是正定的.3.设A 是一个实对称矩阵.如果以A 为矩阵的实二次型是正定的,那么就说A 是正定的.证明,对于任意实对称矩阵A,总存在足够大的实数t ,使得A tI +是正定的.4.证明,n 阶实对称矩阵)(ij a A =是正定的,必要且只要对于任意,121n i i i k ≤<<<≤ ,k 阶子式.,,2,1,0212221212111n k a a a a a a a a a kk k k kki i i i i i i i i i i i i i i i i i =>5.设)(ij a A =是一个n 阶正定实对称矩阵.证明nn a a a A 2211det ≤当且仅当A 是对角形矩阵时,等号成立.[提示:对n 作数学归纳法,利用定理的证明及习题4.]6.设)(ij a A =是任意n 阶实矩阵.证明∏=+++≤nj nj j j a a a A 1222212)()(det (阿达马不等式).[提示:当0det ≠A 时,先证明A A '是正定对称矩阵,再利用习题5.]§5.4 主轴问题1.对于下列每一矩阵A,求一个正交矩阵U,使得AU U '具有对角形式:)(i ⎪⎪⎭⎫⎝⎛=a b b a A ;)(ii ⎪⎪⎪⎭⎫ ⎝⎛------=211121112A ;)(iii ⎪⎪⎪⎪⎪⎭⎫⎝⎛----=2200250000220025A2.设A 是一个正定对称矩阵.证明:存在一个正定对称矩阵S 使得2S A =.3.设A 是一个n 阶可逆实矩阵.证明,存在一个正定对称矩阵S 和一个正交矩阵U,使得US A =.[提示: A A '是正定对称矩阵.于是由习题2存在正定矩阵S,使得A A '=2S .再看一下U 应该怎样取.]4.设}{i A 是一组两两可交换的n 阶实对称矩阵.证明,存在一个n 阶正交矩阵U,使得U A U i '都是对角形矩阵.。