高等数学习题详解-第9章-无穷级数
- 格式:doc
- 大小:1.71 MB
- 文档页数:21
无穷级数习题课1.判别级数的敛散性:(1)(2)(3)(4)(5)()211ln1nn n¥=+å()41tan1nn p¥=+å363663666-+-++×××+-++×××++×××21sinlnnnnp¥=æö+ç÷èøå()211lnnnn n¥=--å解:(1)为正项级数,当时, ,根据比较审敛准则,与有相同敛散性,根据积分审敛准则,与反常积分有相同敛散性, 而发散,故发散.()211ln 1n n n ¥=+ån ®¥()2111~2ln ln 1n u n n n n =+()211ln 1n n n ¥=+å21ln n n n ¥=å21ln n n n¥=å21ln dx x x +¥ò21ln dx x x +¥ò()211ln 1n n n ¥=+å(2)为正项级数,当时,,而收敛,根据比较审敛准则,收敛.()41tan 1n n p¥=+ån ®¥()422421tan1tan~21n u n n n n npp p =+-=++211n n ¥=å()41tan1n n p¥=+å(3)为正项级数, 令,其中,易证单调递增且,故收敛;令,由,两边取极限得,,(舍去);,,根据达朗贝尔比值审敛法,该级数收敛.363663666-+-++×××+-++×××++×××3n n u a =-666n a =++×××+{}n a 3n a <{}n a lim n n a a ®¥=16n n a a -=+6a a =+Þ260a a --=3a =2a =-111113311333n n n n n n n a a u u a a a +++++-+=×=-++1111lim lim 136n n n nn u u a +®¥®¥+==<+(4)看成交错级数,单调递减趋于0,根据Leibniz 定理,该级数收敛; 其绝对值级数发散(这是因为当时,,而且),故级数条件收敛. ()2211sin 1sin ln ln n n n n n n p ¥¥==æö+=-ç÷èøåå1sin ln n ìüíýîþ21sin ln n n ¥=ån ®¥11sin ~ln ln n n 1lim ln n n n®¥×=+¥(5)为交错级数,其绝对值级数为,当时,, 所以,该级数绝对收敛.()211ln nn n n¥=--å211ln n n n ¥=-ån ®¥2211~ln n n n-2. 设,且,证明级数条件收敛. ()01,2,n u n ¹= lim 1n nn u ®¥=()111111n n n n u u ¥-=+æö-+ç÷èøå证明:设级数的部分和为,则 ,因为,所以,于是 ,即级数收敛;其绝对值级数为,因为, 所以级数发散,故原级数条件收敛.()111111n n n n u u ¥-=+æö-+ç÷èøån s ()()211223111111111111n n n n n n n s u u u u u u u u ---+æöæöæöæö=+-+++-++-+ç÷ç÷ç÷ç÷èøèøèøèø()111111n n u u -+=+-lim1n nn u ®¥=()()1111111lim 1lim 101n n n n n n n u u n --®¥®¥+++-=-×=+()1111111lim lim 1n n n n n s u u u -®¥®¥+éù=+-=êúëû()111111n n n n u u ¥-=+æö-+ç÷èøå1111n n n u u ¥=++å11111lim lim 21n n n n n n n n nn u u u u n ®¥®¥+++×+=+×=+1111n n n u u ¥=++å3. 填空(1) _____(2) 设幂级数在处收敛, 则级数__收敛__.(收敛还是发散)(3) 设幂级数在处条件收敛,则幂级数在处( 绝对收敛 ),在处( 发散 ); (4)设,, ,则________;________.11(1)2n n n -¥=-=å130(1)nn n a x ¥=-å12x =-0(1)n n n a ¥=-å1()nn x a n ¥=-å2x =-1()2nn n x a ¥=+åln 2x =-x p =11,02()1,12x f x x x ì£<ïï=íï ££ïî1()sin nn s x bn xp ¥==å102()sin n b f x n xdx p =ò3()2s =34-5()2s =344. 求幂级数的收敛域2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 解:令,原级数变为变量t的幂级数.因为,所以收敛半径.又时级数发散,时级数收敛, 故收敛域为;再由,解得, 原函数项级数的收敛域为.122xt x +=-21sin 2n n t n ¥=æöç÷èøå ()11sin21limlim 11sin2n n n nn a a n+®¥®¥+==1R =1t=21sin 2n n ¥=å1t=-()211sin 2nn n ¥=-å21sin 2n n t n ¥=æöç÷èøå [)1,1-12112x x +-££-133x -£<2112sin 22nn x n x ¥=+æöæöç÷ç÷-èøèøå 13,3éö-÷êëø5.求下列级数的和函数(1) (2)221212n n n n x ¥-=-å()()()201123!nn n n x n ¥=-++å解:(1).令,,所以收敛半径. 当时,级数发散,所以幂级数的收敛域为.设级数的和函数为,对幂级数逐项积分得,, 对上式两边求导得, .221212n n n n x ¥-=-å212n n n a -=11lim 2n n n a a +®¥=1212R ==2x =±()2,2D =-()s x ()212200112122n xx n n n n n n x s x dx x dx -¥¥-==-==ååòò222212xx x x ==--()2,2x Î-()()2222222x x s x x x ¢+æö==ç÷-èø-()2,2x Î-(2). 易求该幂级数的收敛域为;设级数的和函数为,,, 两边取积分,逐项求积分得, ()()()201123!nnn n x n ¥=-++å(),-¥+¥()s x ()()()()201123!nn n n s x xn ¥=-+=+å()()()()2101123!nn n n xs x x n ¥+=-+=+å()()()()()()21220000111123!223!nnxx n n n n n xs x dx x dx x n n ¥¥++==-+-==++ååòò当时,,求导得 , 当时,由所给级数知.因此. 0x ¹()()()()230111sin 223!2nxn n xs x dx x x x x n x¥+=-==-+åò()2sin 1sin cos 22x x x x xxs x x x ¢--æö==ç÷èø()3sin cos 2x x x s x x -=0x =()106s =()3sin cos ,021,06x x xx xs x x -ì¹ïï=íï=ïî6.求级数的和.()22112n n n ¥=-å解:考虑幂级数,收敛区间,设和函数为, 则当且时,,. ()2211nn x n ¥=-å()1,1-()s x 11x -<<0x ¹()()222211121211nnnn n n x x s x x n n n ¥¥¥=====--+-ååå112212121n n n n x x x n x n -+¥¥===--+åå11220121212n n n n x x x x x n x n -+¥¥==æö=---ç÷-+èøåå()11ln 12224x x x x æö=--++ç÷èø()2211311153ln ln 2242288412nn s n ¥=æö==++=-ç÷-èøå()()211ln 1ln 1222x x x x x x éù=-------êúëû7.设,试将展开成的幂级数.()111ln arctan 412x f x x x x +=+--()f x x 解:,取0到x 的定积分,幂级数逐项求积分, .()241111111114141211f x x x x x¢=++-=-+-+-44011n n n n x x ¥¥===-=åå()11x -<<()()()4410111041xx nn n n f x f f x dx x dx x n ¥¥+==¢=+==+ååòò1x <8.设在上收敛,试证:当时,级数必定收敛. ()0nn n f x a x ¥==å[]0,1010a a ==11n f n ¥=æöç÷èøå证明: 由已知在上收敛,所以,从而有界. 即存在,使得 ,所以,;级数收敛,根据比较审敛准则,级数绝对收敛.()0n n n f x a x ¥==å[]0,1lim 0n n a ®¥={}n a 0M>n a M£()1,2,n = 0123232323111111f a a a a a a n n n n n n æö=++++=++ç÷èø()2231111111n M M M n n n n næö£++==ç÷-èø- ()2n ³()211n n n ¥=-å11n f n ¥=æöç÷èøå9.已知为周期是的周期函数,(1)展开为傅立叶级数; (2)证明;(3)求积分的值.[)2(),0,2f x x x p =Î2p ()f x ()1221112n n np -¥=-=å()10ln 1x dx x +ò解:(1)在处间断,其它点处都连续.所以由Dirichlet 收敛定理,时,级数收敛于,所以当时,有,亦即:.()f x ()20,1,2,x k k p ==±± ()()22220011183a f x dx f x dx x dx pppp pp pp-====òòò222022014cos ,14sin ,1,2,n n a x nxdx n b x nxdx n npp p p p ====-=òò ()()221414cos sin 20,1,2,3n f x nx nx x k k nn p p p ¥=æö=+-¹=±±ç÷èøå ()22214114cos sin ,0,23n x nx nx x nn p p p ¥=æö=+-Îç÷èøå()20,1,2,x k k p ==±± ()()2002022f f p p ++-=()20,1,2,x k k p ==±± 222141423n np p ¥=+=å22116n n p ¥==å(2)是连续点,所以即:;x p =()f x 2221414cos ,3n n np p p ¥==+å()221112nn n p¥=-=-å()1221112n n n p-¥=-Þ=å(3)积分是正常积分,不是瑕点, 对,令,.()10ln 1x dx x +ò0x=()1,1t "Î-()()()()111112000111ln 1111n n n tt tn n nn n n x dx x dx x dx tx n nn---¥¥¥--===+---===åååòòò1t -®()10ln 1x dx x +ò()01ln 1lim t t x dx x -®+=ò()12111lim n n t n t n --¥®=-=å()12111lim n n t n t n --¥®=-=å()1221112n n np -¥=-==å10.证明下列展开式在上成立:(1);(2).并证明. []0,p ()221cos 26n nxx x n pp ¥=-=-å()()()31sin 21821n n xx x n p p¥=--=-å()()133113221n n n p -¥=-=-å证明:将函数展开为余弦级数和正弦级数.(1) 对作偶延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的余弦级数处处收敛于.,()()f x x x p =-[]0,x p Î()f x []0,x p Î()f x ()f x ()()0022a f x dx x x dx ppp p p==-òò23202233x x pp p p æö=-=ç÷èø, ,所以在上,.()()022cos cos n a f x nxdx x x nxdx ppp p p==-òò()()()()200022sin 2sin 2cos x x nx x nxdx x d nx n n pppp p p ppéù=---=-êúëûòò()2211nn éù=--+ëû()()202112cos 11cos 26n n n n a f x a nx nx n p ¥¥==éù=+=--+ëûåå221cos 26n nxnp ¥==-å[]0,x p Î[]0,p ()221cos 26n nxx x n p p ¥=-=-å(2)对作奇延拓,再作周期延拓,得到的周期函数处处连续,根据Dirichlet 定理,时,的正弦级数处处收敛于. , ()f x []0,x p Î()f x ()f x ()()0022sin sin n b f x nxdx x x nxdx p pp p p ==-òò()()()()200022cos 2cos 2sin x x nx x nxdx x d nx n n p p p p p p p p éù=----=-êúëûòò()3411n n p éù=--ëû, 所以在上,. 令,有. ()()3114sin 11sin n n n n f x b nx nx n p ¥¥==éù==--ëûåå()()31sin 21821n n x n p ¥=-=-å[]0,x p Î[]0,p ()()()31sin 21821n n xx x n p p ¥=--=-å2x p =()()23181sin 214221n n n p p p ¥==--åÞ()()133113221n n n p -¥=-=-å。
无穷级数1、无穷级数:表达式 +++++n u u u u 321 称为无穷级数,简称级数.记作∑∞=1n nu, 其中n u 称为级数的一般项.2、部分和: 级数∑∞=1n nu的前n 项和 ∑==nk kn uS 1称为级数∑∞=1n nu的部分和.3、收敛的定义: 如果级数∑∞=1n nu的部分和数列}{n S 有极限S ,即S S n n =∞→lim ,则称级数∑∞=1n nu收敛.S 称为级数∑∞=1n nu的和, 并写成: ++++=321u u u S ∑∞==1n nu.如果}{n S 没有极限, 则称级数∑∞=1n nu发散.4、常数项级数收敛的必要条件:若级数∑∞=1n nu收敛,则必有0lim =∞→n n u ,反之若0lim ≠∞→n n u ,则级数一定发散5常用级数敛散性判定方法: ①等比级数:∑∞=0n n aq ,当 1q < 收敛,且级数收敛于qa -111q ≥ 发散当然等比级数的敛散性也可以由等比级数的部分和数列来判断:若S 存在则收敛,反之则发散. ②P-级数:∑∞=1n P n 11p >收敛,1p ≤发散(p=1时为调和级数);③常数级数:∑∞=0n C 当0≠C 时级数发散,0=C 时,级数收敛.6、级数收敛的性质 以下假设∑∞=1n nu与∑∞=1n nv收敛于S 与T , 则①∑∑∞=∞==11n n n nu u λλ, (λ为常数). ②∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.③∑∞=1n nu收敛⇔对任意的非负整数m ,有∑∞+=1m n nu收敛.即: 在级数前面去掉或加上有限项不影响级数的敛散性. ④若S un n=∑∞=1,则将级数的项任意加括号后所成的级数S n n=∑∞=1σ. 反之不然.7、正项级数敛散性的判定方法: ①充要条件:部分和数列有界②比较法:对级数的缩放,利用已知的级数来判断未知级数的敛散性;适用于含有P(型)-级数、、多项式和正余弦的级数.其中P(型)-级数、对数、多项式主要是删减低次项和常数项,而正余弦主要是利用其小于1的性质.③比阶法:找到一个已知敛散性的级数,通过其与需求级数作商曲极限,来判断需求级数的敛散性.适用于P(型)-级数,等比级数、多项式等.定义如下:设∑∞=1n n u 与∑∞=1n n v 均为正项级数,若L v u nnn =∞→lim,则(1)当L=0时,若∑∞=1n nv收敛,则∑∞=1n nu也收敛;(2)当L=+∞时,若∑∞=1n nv发散,则∑∞=1n nu也发散.(3)当0<L<+∞时,∑∞=1n nv与∑∞=1n nu有相同敛散性.④比值法:通过对级数通向第n+1项与第n 项作商取极限来判断级数敛散性.不适用含有对数、多项式和正余弦的级数.定义如下:设∑∞=1n n u 为正项级数,若ρ=+∞→nn n u u 1lim,则(1)1<ρ时, 级数∑∞=1n nu收敛;(2) 1>ρ或+∞=ρ时, 级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.⑤其他常用方法(1)关于级数中带有多项式的分式方程的:ⅰ分子最高次≥分母最高次则级数一定发散; ⅱ分子最高次<分母最高次,则用比阶法来判断. 设sn n V 1=(s 为分子最高项-分母最高项的差值) (2)关于级数中带有对数的:用比阶法题目中()c n U tn +=ln ,就设tn n V 1=作商取极限,需要用L ,hospital 定理8、交错级数的审敛法:(莱布尼茨定理) 设∑∞=--11)1(n n n u 为交错级数, 若满足(1) n n u u ≤+1, ,2,1=n ; (2) 0lim =∞→n n u , 则 ∑∞=--11)1(n n n u 收敛,9、任意项级数的绝对收敛和条件收敛 ①绝对收敛的级数∑∞=1n nu :∑∞=1||n nu 收敛;②条件收敛的级数∑∞=1n n u:∑∞=1||n nu发散, 但∑∞=1n n u 收敛.③∑∞=1||n nu收敛 ⇒ ∑∞=1n n u 收敛. 反之不然.④此类级数多用比值法来判断绝对值级数是否发散 ⑤若任意项级数∑∞=1n nu条件收敛,则其所有正项或者负项构成的级数均为发散的.10、函数项级数①定义: 设 ),(,),(),(21x u x u x u n 是定义在I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数.②收敛域(1) 收敛点I x ∈0—— ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——∑∞=10)(n nx u 发散;(3) 收敛域D —— ∑∞=1)(n nx u 的所有收敛点的全体D ;(4) 发散域G ——∑∞=1)(n n x u 的所有发散点的全体G .(5)解题方法:已知级数∑∞=1)(n nx u,求其收敛域.ⅰ用比值法算出大致收敛域:)(的式子关于x 1Q x lim==+∞→nn n u u ρ,令)(x Q <1,算出x 收敛大范围(a ,b ),收敛半径R=2b-a (()∞++∞∞-∈可以为R R ,,) ⅱ将端点值带入级数∑∞=1)(n nx u中,算出∑∞=1)(n n a u 与∑∞=1)(n n b u 的敛散性,判断端点值是否可以取到,过程可以略过. ⅲ综上所述,写出级数∑∞=1)(n nx u的收敛域③和函数)(x S —— ∑∞==1)()(n nx u x S , D x ∈.解题方法:已知级数∑∞=1)(n nx u,求其和函数.ⅰ求出其收敛域;ⅱ将级数经过求导或者积分,得到一个等比级数 ⅲ用等比级数收敛公式qa -11算出和函数的导数或者原函数的表达式;ⅳ将求出的表达式积分或求导,写成)(x S 的形式,并注明收敛域.【注】已知级数∑∞=1)(n nx u,求∑∞=1n n V 的和ⅰ-ⅳ步骤同上ⅴ将n n V x u 与)(建立起联系,想当x 为何值时n n V x u =)(,然后将x 带入)(x S 中.11、函数项级数的展开式.(1) f (x ) = e x= ∑∞=0!n nn x , x ∈(-∞, +∞);(2) f (x ) = sin x = ∑∞=++-012!)12()1(n n n xn ,x ∈(-∞, + ∞);(3) f (x ) = cos x = ∑∞=-02!)2()1(n nn x n ,x ∈(-∞, + ∞);(4) 11()1n n f x x x ∞===-∑ ,x ∈(-1, 1);(5) 11()()1n n f x x x ∞===-+∑ ,x ∈(-1, 1);(6) f (x ) = ln (1 + x ) = ∑∞=+-11)1(n nn x n , x ∈(-1, 1]。
第十一章无穷级数§级数的概念、性质一、单项选择题1. 若级数an 1 q n收敛 ( a为常数 ),则q 满足条件是( ).(A) q 1 ;(B) q 1 ;(C) q 1 ;(D) q 1 .答 (D) .2.下列结论正确的是 ().(A) 若 lim u n 0 ,则u n收敛; (B) 若 lim( u n 1 u n ) 0 ,则u n 收敛;n n 1 n n 1(C) 若u n 收敛,则 lim u n 0 ; (D) 若u n 发散,则 lim u n 0. 答 (C) .n 1 n n 1 n3. 若级数u n 与v n 分别收敛于 S1 , S2,则下述结论中不成立的是( ).n 1 n 1(A) (u n v n ) S1 S2;(B) ku n kS1;n 1 n 1(C) kv n kS2;(D) u n S1 .答 (D) .n 1 n 1v n S24. 若级数u n 收敛,其和 S 0 ,则下述结论成立的是( ).n 1(A) ( u n S) 收敛;(B) 1收敛;n 1 n 1 u n(C) u n 1 收敛;(D) u n 收敛 . 答 (C) .n 1 n 15. 若级数a n 收敛,其和 S 0 ,则级数( a n a n 1 a n 2 ) 收敛于( ).n 1 n 1(A) S a1 ;(B) S a2; (C) S a1 a2;(D) S a2 a1.答 (B) .6. 若级数a n发散,b n收敛则( ).n 1 n 1(A)(a n b n ) 发散;(B)(a n b n ) 可能发散,也可能收敛;n 1 n 1(C)a n b n发散;(D)( a n2 b n2 ) 发散. 答 (A) .n 1 n 1二、填空题1. 设 a1 ,则( a)n.答: 1.n 01 a2. 级数 (ln 3)n 的和为.答:22n1 .n 0ln 33. 级数( n 2 2 n1 n) ,其和是.答: 12 .n 04.数项级数1的和为 . 答: 1.n 1 (2n1)(2n 1)25*. 级数2n 1 的和为.答: 3.n 02n 三、简答题1. 判定下列级数的敛散性(1)8 82 83L( 1) 8n 答: 收敛 .9 29 39 n L9解:1 1 1 L1 答: 发散 .(2)6 9 L33n解:1 1 1L1L答: 发散 .(3)333 n3 3解:3 32 33 L3n L答: 发散 .(4)2223 2n2解:1 1 1 1 1 11 1 L 答: 收敛 .(5)3223223 33L3n2 2n解:§正项级数收敛判别法、 P — 级数一、单项选择题1. 级数u n 与v n 满足 0 u n v n , (n 1,2,L ) ,则 ().n 1n 1(A) 若v n 发散 ,则 u n 发散; (B) 若u n 收敛 ,则 v n 收敛;n 1n 1n 1n 1(C) 若u n 收敛 ,则v n 发散; (D) 若u n 发散,则v n 发散 .答 (D) .n 1n 1n 1n12. 若 0a n 1, ( n 1,2, L ) ,则下列级数中肯定收敛的是().n (A)a n ;(B)( a n 1 a n ) ;n1n1(C)a n2;(D)a n .答 (C) .n 1n 13. 设级数 (1)2n nn!与 (2)3n n n! ,则 ( ).n 1nn 1 n(A) 级数 (1)、 (2)都收敛;(B) 级数 (1) 、 (2)都发散;(C) 级数 (1)收敛,级数 (2)发散;(D) 级数 (1)发散,级数 (2)收敛.答 (C) .4. 设级数 (1)1 与 (2) 10n , 则 ( ).n 1n nn 1 n!(A) 级数 (1)、 (2)都收敛;(B) 级数 (1) 、 (2)都发散;(C) 级数 (1)收敛 ,级数 (2)发散;(D) 级数 (1)发散 ,级数 (2)收敛.答 (D) .5. 下列级数中收敛的是 ().(A)n1 ; (B)sin1;n 1 n( n 2) n 1n(C)( 1)nn ; (D)1. 答 (A) .n 13n 1n 1 2n 11 216*. 若级数,则级数().n 1 n 2 6 n 1 (2n1)22222(A);(B);(C);(D).答 (B) .4812167. 设 u n 与 v n 均为正项级数 ,若 lim u n1,则下列结论成立的是().n 1n 1nv n(A)u n 收敛 ,v n 发散;(B)u n 发散 ,v n 收敛;n 1n1n 1n 1(C)u n 与v n 都收敛 ,或 u n 与 v n 都发散 .(D) 不能判别 .答 (C) .n 1n1n 1n 18. 设正项级数u n 收敛,则 ().n 1(A) 极限 limun 11;(B)极限 limu n 1 1;nu nnu n(C) 极限 lim n u n1;(D) 无法判定 .答 (A)n9. 用比值法或根值法判定级数u n 发散,则u n ().n 1n 1(A) 可能发散; (B) 一定发散;(C) 可能收敛;(D) 不能判定 .答 (B)二、填空题1. 正项级数u n 收敛的充分必要条件是部分和 S n.答:有上界 .n 12. 设级数2n 1收敛,则 的范围是.n 1n3. 级数u n 的部分和 S n2n ,则 u n.n 1n 14. 级数2n1是收敛还是发散.n 02n3 答:.22答:.n( n 1)答:收敛 . 5. 若级数1收敛,则 p 的范围是.答: p 0 . n 1n p sinn6. 级数3n n! 是收敛还是发散.答:发散 .n 1n n三、简答题1. 用比较法判定下列级数的敛散性:(1)1 n ;答:发散 . (2)1 ;答: 收敛 .n 1 1 n 2n 1 (n 1)(n 2)(3)sin n ;答:收敛 . (4)1 n (a 0) .答 a 1 收敛 ; a 1 发散 .a n 12 n 112. 用比值法判定下列级数的敛散性:(1)3n ; 答:发散 .(2)n 2 ;答: 收敛 .n 1 n 2nn 1 3n解:(3)2n nn!;答: 收敛 .(4)n tan n 1.答: 收敛 .n 1 nn 12解:3. 用根值法判定下列级数的敛散性: (1)n 1解:(3)n1nn1;答: 收敛 .(2) ;答:收敛 .2n 1 n 1[ln( n 1)]n解:2n 1n; 答:收敛 .3n 1解:b n(4) 其中 a n a, (n ) , a n , b, a 均为正数.a nn 1答:当 b a 时收敛,当 b a 时发散,当 b a 时不能判断.§一般项级数收敛判别法一、单项选择题1. 级数u n 与v n 满足u n v n , ( n 1,2, L ) ,则 ( ).n 1 n 1(A) 若v n 收敛 ,则u n 发散;(B) 若u n 发散 ,则v n 发散;n 1 n 1 n 1 n 1(C)若u n 收敛 ,则v n 发散;(D) 若v n 收敛 ,则u n 未必收敛.答(D) .2.下列结论正确的是 ().(A)u n收敛,必条件收敛;(B)u n 收敛,必绝对收敛;n 1 n 1(C)u n 发散,则u n 必条件收敛;n 1 n 1(D)u n 收敛,则u n 收敛.答 (D) .n 1 n 12.下列级数中,绝对收敛的是 ().(A) ( 1)n n; (B) ( 1)n 1 1 ;n 1 3n 1 n 1 n2(C) ( 1)n 1 1 ;(D) ( 1)n 1 1.答 (B) .n 1 ln( n 1) n 1 n3. 下列级数中,条件收敛的是 ( ).nn 2(A) ( 1)n 1 ;(B) ( 1)n 1 ;n 12n3 1 n 1 3(C) ( 1)n 1 1 ;(D) ( 1)n 1 1 .答 (A) .n 1n2 n 1 n 2n4. 设为常数,则级数sin n 1( ).n2 nn 1(A) 绝对收敛;(B) 条件收敛;(C) 发散;(D) 敛散性与的取值有关.答 (C) .5. 设a n cos n ln(1 1 ) (n 1,2,3, ) ,则级数( ).n(A) a n 与a n2 都收敛 . (B) a n与a n2 都发散 .n 1 n 1 n 1 n 1(C) a n 收敛,a n2发散. (D) a n发散,a n2 收敛 . 答 (C) .n 1 n 1 n 1 n 16.设0 a n 1(n 1,2,3, ) ,则下列级数中肯定收敛的是(). n(A) a n . (B) ( 1) n a n.(C) an . (D) a n2 ln n . 答 (D) .n 1 n 1 n 2ln n n 27.下列命题中正确的是( ).(A) 若u n2与v n2都收敛,则(u n v n)2收敛 .n 1 n 1 n 1(B) 若u n v n收敛,则u n2与v n2都收敛.n 1 n 1 n 1(C) u n 发散 ,则u n 1若正项级数.n 1 n(D) 若u n v n (n 1,2,3, ) ,且u n 发散 ,则v n 发散 . 答 (A) .n 1 n 1二、填空题1. 级数( 1)n 1的取值范围是.答:1.绝对收敛,则n 1 n2. 级数1 sin n条件收敛, 则 的取值范围是 .答: 01.n 1 n 23. 级数a n 2收敛,则( 1)nan是条件收敛还是绝对收敛.n 0n 0n答:绝对 收敛 .三、简答题1. 判定下列级数的敛散性,若收敛,是条件收敛还是绝对收敛(1)( 1)n 11; n 1n解:(2)( 1)n 1 n;n 13n1解:sin n(3)n 1( n 1)2;解:(4)( 1)n 11;n 13 2n解:(5)( 1)n 11 ;n 1ln( n 1)解:(6)n 1 2n2( 1)n 1n!答: 条件收敛 .答: 绝对收敛 .答: 绝对收敛 .答: 绝对收敛 .答: 条件收敛 .答: 发散 .解:§幂级数收敛判别法一、单项选择题1. 幂级数x n 的收敛区间是 ( ).n 1 n(A) [ 1, 1] ;(B) ( 1, 1) ;(C) [ 1, 1) ; (D) ( 1, 1] .答 (C) .2. 幂级数( 1)n (x 1)n 的收敛区间是 ( ).n 1n 2n(A) [ 2 , 2] ;(B) ( 2 , 2) ;(C) [ 2, 2) ; (D) ( 2, 2] .答 (D) .3. 幂级数x 2 n的收敛半径是 ( ).1 n2 3nn(A) R 3 ;(B) R 3 ;(C) R 1(D)1答 (B) . ;R .3 3( A)(C)( B)(D)4. 若级数C n ( x 2)n在x 4 处是收敛的,则此级数在x 1 处 ( ).n 1(A) 发散; (B) 条件收敛;(C) 绝对收敛;(D) 收敛性不能确定.答 (C) .5. 若级数C n ( x 2)n在x 4 处是收敛的,则此级数在x 1 处( ).n 1(A) 发散;(B) 条件收敛;(C) 绝对收敛;(D) 收敛性不能确定.答 (D) . 6.若幂级数a n (x 1)n在x 1处条件收敛,则级数a n( ).n 0 n 0(A) 条件收敛;(B) 绝对收敛;(C) 发散;(D) 敛散性不能确定. 答(B) .二、填空题1. 幂级数xn的收敛域是.答: [ 1,1]. n 1n22. 幂级数2n 3n n的收敛域是.答:1 1n n2 x3,. n 1 33. 幂级数( 1)n 1 x2 n 1的收敛半径 R ,和函数是.(2 n 1)!n 1答: R , sin x.4. 幂级数( 1)n x 2n,和函数是.(2 n)!的收敛半径 Rn 0答: R , cosx.5. 设a n x n的收敛半径为R,则a n x2 n的收敛半径为.答: R.n 0 n 06. 设幂级数a n x n 的收敛半径为 4 ,则a n x2n 1的收敛半径为.答: 2.n 0 n 07. 幂级数( 1)n 1 (2 x 3)n 的收敛域是. 答: (1, 2].n 0 2n 18. 幂级数a n ( x 1)2 n在处x 2 条件收敛,则其收敛域为.答:[ 0,2] .n 0一、简答题1.求下列幂级数的收敛域.(1) nx n;答: ( 1,1). (2) ( 1)n 1 x n ;答: [ 1,1].n 1 n 1n2(3) x n ;答: [ 3, 3) .(4) 2n x n;答: 1 , 1.n 1 n 3nn 1 n2 1 2 2(5) ( x 5)n ;答:[4, 6). (6) ( 1)n x2n 1 .答: [ 1,1].n 1 n n 1 2n 12.用逐项求导或逐项积分,求下列幂级数的和函数.(1)nx n 1;答: S(x) 1 2 , x ( 1,1) .n 1 (1 x)解:(2)x2n 1 1 1 x.2n.答: S(x)ln1, x ( 1,1)n 1 1 2 x解:3*. 求级数1的和.答: 2ln 2. n 1 n 2n解:§函数展开成幂级数一、单项选择题1. 函数f ( x) e x2 展开成 x 的幂级数是( ).(A) 1 x 2 x4 x6L ; (B) 1 x 2x4 x6;2! 3! 2!L3!(C) 1 x x2 x3L ; (D) 1 xx2 x3.答 (B) . 2! 3! 2!L3!2. 如果f ( x)的麦克劳林展开式为a n x2 n,则 a n是( ).n 0(A) f ( n) (0) ;(B) f (2 n ) (0) ;(C) f (2 n ) (0) ;(D) f ( n ) (0) .答 (A) .n! n! (2 n)! (2 n)!3. 如果f ( x)在x x0的泰勒级数为a n ( x x0 ) n,则 a n是( ).n 0(A) f ( n) ( x0 ) ;(B) f (2 n ) ( x ) f (2 n ) ( x ) f ( n ) ( x )0; (C)n!0; (D) 0 .答 (C) .n! n!4. 函数 f ( x)sin 2x 展开成 x 的幂级数是 ( ). (A)xx 3 x 5 x 7 ; (B) 1 22 x 2 24 x 4 26 x 6;3! 5! L 2! 4! L7! 6!(C) 2 x 23 x 325 x 527 x 7 L ; (D) 1x 2x 4x 6L .答 (C) .3!5!7!4! 6!二、填空题1. 函数 f ( x) a x的麦克劳林展开式为x 12. 函数 f ( x) 3 2 的麦克劳林展开式为3. n 1x 2n 1幂级数( 1)(2n 的和函数是n 11)!4. 1 的麦克劳林级数为函数 f ( x)1 x5. 1的麦克劳林级数为函数 f ( x)1 x6. 函数 f ( x) ln(1 x) 的麦克劳林级数为7. 函数 f ( x) e x在 x 1 处的泰勒级数. 答:(ln n a) x n .n 0n!n. 答: 3ln 3 x n.n 02 n!.答: sin x ..答:n 0 x n ..答:( 1)n x n .n 0.答:(n 1x n1).n 1n. 答:e( x 1)n .n 0n!8. 函数 f ( x)1 在 x 1处的泰勒级数.答:( 1)n ( x 1)n .x 1n 02n 19. 函数 f ( x) 1 展开成 x 3 的幂级数为 .答:( 1)n (x3)n .xn 03n 110. 函数 f ( x)21n22 n 1 x 2n.cos x 展开成 x 的幂级数为. 答:( 1)(2n)!2 n 011. 级数( 1)n 的和等于.答: cos1.n 0 (2n)!三、简答题1. 将下列函数展开成 x 的幂级数,并求展开式成立的区间.(1) f ( x) ln( a x), ( a 0) ;解:答: ln(an 1x nn. x) ln a( 1)n an 1(2) f ( x) sin2 x ;解:答: sin2 x ( 1)n 1 (2 x) 2 n , ( , ).n 1 2(2n)!(3) f ( x) (1 x)ln(1 x) ;解:答: (1 x)ln(1( 1)n 1 x nx) x , ( 1, 1].n 2 n( n 1)(4*) f ( x) x ;1 x2 解:x ( 1)n 2(2 n)! x 2 n 1答:x , [ 1, 1].1 x2 n 1 ( n!) 2 2(5). f ( x) x .2xx2 3解:x 1 1 ( 1)n 1 x n 2(2n)! x 2 n 1答:, ( 1, 1).x 2 2 x 3 4 n 1 3n ( n!) 2 22. 将函数 f ( x) cos x 展开成 x的幂级数.3解:2 n2 n 1 n答: cosx1 ( 1)n 1 x 33 x 3, ( ,).2 n 0(2n)!(2n 1)! 3*. 将函数 f ( x) ln(3 x x 2 ) 在 x 1 展开成幂级数.解:答: ln(3 xx 2 ) ln 2( 1)n 11 ( x 1)n , (0, 2].n 02n n4*. 将函数 f (x)1展开成 x 4 的幂级数 .2 3xx 2解:答:1 11n3x 2n 0 2n 13n 1 ( x 4) , ( 6, 2).x 2§2 为周期的傅里叶级数一、单项选择题1. 函数系 1, cosx ,sin x ,cos 2x ,sin 2x, L ,cos nx ,sin nx,L ( ).(A) 在区间 [ , ] 上正交; (B) 在区间 [ , ] 上不正交;(C) 在区间 [0, ] 上正交; (D) 以上结论都不对.答 (A) .2. 函数系 1, sin x , sin 2x, L , sin nx ,L().(A) 在区间 [0,] 上正交;(B) 在区间 [0, ] 上不正交;(C) 不是周期函数;(D) 以上结论都不对.答 (B) .3. 下列结论不正确的是 ().(A) cosnx cosmxdx 0, ( n m) ; (B) sin nxsin mxdx 0, (n m) ; (C)cosnx sin mxdx 0 ;(D)cosnx cosnxdx0 . 答 (D) .4. f ( x) 是以 2 为周期的函数,当 f ( x) 是奇函数时,其傅里叶系数为 ().(A) a n 0, b n 1 f ( x)sin nxdx ; (B) a n 0, b n 1 f ( x)cos nxdx ;0 0(C) a n 0, b n 20, b n2sin nxdx .答 (C) .f ( x)sin nxdx ; (D) a n0 05. f ( x) 是以 2 为周期的函数,当 f ( x) 是偶函数时,其傅里叶系数为( ).(A) b n 0, a n 1 f ( x)sin nxd x ; (B) b n 0, a n 2 f ( x)cos nxdx ;0 0(C) b n 0, a n 10, a n2cosnxdx .答 (B) .f (x)cos nxdx ; (D) b n0 0二、填空题1. f ( x) 是以 2 为周期的函数, f ( x) 傅里叶级数为.答:a0 (a n cosnx b n sin nx). 其中2 n 1a n1f ( x)cos nxdx , n 0,1,2,L , b n1f ( x)sin nxdx , n 1,2,L .2. f ( x) 是以 2 为周期的偶函数, f ( x) 傅里叶级数为.答: a0 a n cosnx. 其中 a n 2 f ( x)cos nxdx , n 0,1,2, L .2 n 1 03. f ( x) 是以 2 为周期的奇函数, f ( x) 傅里叶级数为.答:b n sin nx.2f ( x)sin nxdx , n 1,2, L . 其中 b nn 1 04. 在 f ( x) x,( x ) 的傅里叶级数中,5. 在 f ( x) x 1,( x ) 的傅里叶级数中,6. 在 f ( x) x 1,( x ) 的傅里叶级数中,sin x 的系数为.答:2. sin 2x 的系数为.答: 1. cos2 x 的系数为.答:0.三、简答题1.下列函数 f ( x) 的周期为 2 ,试将其展开为傅里叶级数.(1) f ( x) 3x21, (x) ;解:答: f ( x) 2 1 12 ( 1)2 n cosnx , ( , ).n 1 nbx , x 0 (2) f ( x) 0 x ;ax ,解:答: f (x)(a b) [1 ( 1)n]( ba)cosnx ( 1)n 1 ( a b) sin nx ,4n 1n 2nx (2 k 1) .2. 将函数 f (x)xx) 展开为傅里叶级数.2sin (3解:答: f (x)18 3( 1)n 1n sin nx, ( , ).n 19n 213. 将函数 f ( x)x ,(x) 展开成傅里叶级数.cos2解:答: f (x)2 4 ( 1)n 11 cosnx, [ , ].n 14n 214. 将函数 f (x)x x) 展开成正弦级数., (02解:答: f (x)sin nx , (0, ]. n 1n 5. 将函数 f ( x) 2x 2 , (0 x) 展开成正弦级数和余弦级数.解:41)n2 22答: f (x)( nsin nx, [0, ).n 1n 3n 3f ( x) 228 ( 1)n cosnx , [0,].3n 1n 2§ 一般周期函数的傅里叶级数一、单项选择题1. 下列结论不正确的是 ( ).ln x m x(A) coscos dx 0, ( n m) ;ll l(B)lxsinm xd x 0, ( nm) ;sin nlll(C) ln x sinm xd x 0 ; (D) lx sin n xdx 0答 (D) . cos sin n.l l l ll l2. f ( x) 是以 2l 为周期的函数,则 f (x) 的傅里叶级数为 ( ). (A) a 0a n cosn xb n n x ; (B) a 0a n cosnx b n n x ;n 1l l 2n 1l l(C) b n n x ;(D) a 0 a n cos nx . 答 (B) .n 1l 2 n 1 l 3. f ( x) 是以 2l 为周期的函数,当 f (x) 是偶函数时,其傅里叶级数为 ( ). (A) a 0a n cosnx ;(B) a 0a n cosnx ;2n 1ln 1l(C)b n sinn x;(D) a 0a n sin nx . 答 (A) .n 1l2 n 1 l4. f ( x) 是以 2l 为周期的函数,当f (x) 是奇函数时,其傅里叶级数为 ( ).(A) b 0b n sinnx ;(B) b 0b n cosnx2 n1ln 1l(C)b n sinn x;(D)b n cosnx .答 (C) .n 1ln 1l二、填空题1. f ( x) 是以 2为周期的函数 , f ( x) 的傅里叶级数为.答:aa n cos nx b n sinnx .2n 122其中 an 11f ( x)cosnxdx,n 0,1,2, , bn1 1f (x)sin nxdx , n 1,2, L .2 12L2 122. f ( x) 是以 2l 为周期的偶函数 ,f ( x) 的傅里叶级数为.答:aa n cosnx. 其中 a n2 2 n 1lllnf ( x)cos xdx , n 0,1,2, L .3. f ( x) 是以 2l 为周期的奇函数, f (x) 的傅里叶级数为 .答:b n sinn x . 其中 b n2 0 f (x)sin nxdx , n 1,2, L .n 1 l l l4. 设 f ( x) 是以 3 为周期的函数,1 x , 1 x 0 f ( x) , 0x.又设 f ( x) 的傅里叶x 2 级数的和函数为 S( x) ,则 S(0), S(3).答: S(0)S(3) 1 .25. 设 f ( x) 是以 3 为周期的函数, 2 ,1x 0f ( x)0 x,则 f (x) 的傅里叶级数x 3 ,1在 x 1 处收敛于.答: 3.2x ,1 0 x6. 设f ( x)是以2为周期的函数, f ( x)2,又设 S( x) 是 f ( x) 的正0,1x 12弦级数的和函数,则7.S4答: S 71 .4 4三、简答题1. 设周期函数在一个周期内的表达式为f (x) 1 x21x 1 ,试将其展开2 2为傅里叶级数.解:答:11 1 ( 1)n 1x) ( , ).f ( x) 2 cos(2n12 n 122. 设周期函数在一个周期内的表达式为 f ( x) 2x 1, 3 x 0,试将其展开1 , 0 x 3 为傅里叶级数.解:答:1 62 [1 ( n n n 1 6 nf (x)n 1 n 2 1) ]cos x ( 1) sinx , x 3(2 k 1).2 3 n 33*. 将函数f ( x) x2 , (0 x 2) 分别展开成正弦级数和余弦级数.解:答: 28 ( 1)n 1 2 n nx n n3 2 [( 1) 1] sin 2 x, 0 x 2.n 1x 24 16 ( 1)n n0 x 2. 32n2 cos x,n 1 2。
第十章无穷级数【考试要求】1.理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质.2.掌握正项级数的比值审敛法.会用正项级数的比较审敛法.3.掌握几何级数、调和级数与p级数的敛散性.4.了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法.5.了解幂级数的概念,收敛半径,收敛区间.6.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分).7.掌握求幂级数的收敛半径、收敛区间的方法.【考试内容】一、常数项级数的相关概念 1.常数项级数的定义一般地,如果给定一个数列 1u ,2u,,n u,,则由这数列构成的表达式123n u u u u +++++叫做常数项无穷级数,简称常数项级数或级数,记为1nn u∞=∑,即1231n n n u u u u u ∞==+++++∑,其中第n 项n u 叫做级数的一般项. 2.常数项级数收敛、发散的概念作常数项级数1nn u ∞=∑的前n 项和121nn n i i s u u u u ==+++=∑,ns 称为级数1nn u ∞=∑的部分和,当n 依次取1,2,3,时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,,1n s u =,. 如果级数1nn u ∞=∑的部分和数列{}n s 有极限s ,即lim n n s s →∞=,则称无穷级数1n n u ∞=∑收敛,这时极限s 叫做这级数的和,并写成123n s u u u u =+++++或者1nn us ∞==∑;如果{}n s 没有极限,则称无穷级数1n n u ∞=∑发散.3.收敛级数的基本性质(1)如果级数1nn u ∞=∑收敛于和s ,则级数1nn ku ∞=∑也收敛,且其和为ks .一般地,级数的每一项同乘一个不为零的常数后,它的收敛性不变. (2)如果级数1nn u ∞=∑、1nn v ∞=∑分别收敛于和s 、σ,则级数1()nn n uv ∞=±∑也收敛,且其和为s σ±. (3)在级数1nn u ∞=∑中去掉、加上或改变有限项,不会改变级数的收敛性.(4)如果级数1nn u ∞=∑收敛,则对这级数的项任意加括号后所成的级数仍收敛,且其和不变. (5)如果级数1nn u ∞=∑收敛,则它的一般项n u 趋于零,即lim 0n n u →∞=. 说明:此条件称为级数收敛的必要条件.由原命题成立逆否命题一定成立可得,如果lim n n u →∞不为零,则级数1n n u ∞=∑一定发散.4.几个重要的常数项级数(1)等比级数级数21nnn q q q q ∞==++++∑或 21nnn q q q q ∞==+++++∑称为等比级数或几何级数,其中q 叫做级数的公比.其收敛性为:当1q <时,级数收敛;当1q ≥时级数发散. (2)调和级数级数11111123n nn∞==+++++∑ 称为调和级数,此级数是一个发散级数. (3)p 级数级数11111123p p p pn nn ∞==+++++∑称为p 级数,其中常数0p >.其收敛性为:当1p >时,级数收敛;当1p ≤时级数发散.二、正项级数的审敛法 1.比较审敛法设1n n u ∞=∑和1nn v ∞=∑都是正项级数,且存在正数N ,使当n N ≥时有n n u v ≤成立.若级数1nn v ∞=∑收敛,则级数1n n u ∞=∑收敛;如果级数1nn u ∞=∑发散,则级数1nn v ∞=∑也发散. 2.比较审敛法的极限形式设1nn u ∞=∑和1nn v ∞=∑都是正项级数.(1)如果lim nn nu l v →∞=,0l ≤<+∞,且级数1n n v ∞=∑收敛,则级数1nn u∞=∑收敛;(2)如果lim nn nu l v →∞=,0l <≤+∞,且级数1n n v ∞=∑发散,则级数1nn u ∞=∑发散.说明:极限形式的比较审敛法,在两个正项级数的一般项均趋于零的情况下,其实是比较它 们的一般项作为无穷小的阶.上述结论表明,当n →∞时,如果n u 是与n v 同阶或是比n v 高阶的无穷小,而级数1n n v ∞=∑收敛,则级数1nn u∞=∑收敛;如果n u 是与n v 同阶或是比n v 低阶的无穷小,而级数1nn v ∞=∑发散,则级数1nn u ∞=∑发散. 3.比值审敛法(达朗贝尔判别法)设1nn u∞=∑为正项级数,如果1lim n n nu u ρ+→∞=,则当1ρ<时级数收敛;1ρ>(或1limn n nu u +→∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散.4.根值审敛法(柯西判别法)设1nn u ∞=∑为正项级数,如果lim n ρ→∞=,则当1ρ<时级数收敛;1ρ>(或lim n →∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散.三、交错级数及其审敛法1.交错级数的概念所谓交错级数是这样的级数,它的各项是正负交错的,从而可以写成下面的形式:1234u u u u -+-+=,或12341(1)nnn u u u u u ∞=-+-+-=-∑ ,其中1u ,2u,都是正数.2.交错级数的审敛法—莱布尼茨定理如果交错级数11(1)n nn u ∞-=-∑满足条件:(1)1n n u u +≥ (1,2,3,n =);(2)lim 0n n u →∞=.则级数收敛.四、绝对收敛与条件收敛 1.绝对收敛与条件收敛对于一般的级数12n u u u ++++ ,它的各项为任意实数.如果级数1nn u ∞=∑各项的绝对值所构成的正项级数1nn u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛;如果级数1n n u ∞=∑收敛,而级数1nn u ∞=∑发散,则称级数1n n u ∞=∑条件收敛.例如,级数1211(1)n n n ∞-=-∑是绝对收敛级数,而级数111(1)n n n ∞-=-∑是条件收敛级数.对于绝对收敛级数,我们有如下结论:如果级数1nn u ∞=∑绝对收敛,则级数1nn u ∞=∑必定收敛.这说明,对于一般的级数1nn u ∞=∑,如果我们用正项级数的审敛法判定级数1nn u ∞=∑收敛,则此级数一定收敛.这就使得一大类级数的收敛性判定问题,转化为正项级数的收敛性 判定问题. 2.重要结论一般说来,如果级数1nn u ∞=∑发散,我们不能断定级数1nn u ∞=∑也发散.但是,如果我们用比值审敛法或根值审敛法根据1lim 1n n nu u ρ+→∞=>或lim 1n ρ→∞=>判定级数1n n u ∞=∑发散,则我们可以断定级数1nn u ∞=∑必定发散(这是因为从1ρ>可推知n →∞时n u 不趋于零,从而n →∞时n u 也不趋于零,因此级数1nn u ∞=∑发散). 五、幂级数 (一)函数项级数1.函数项级数的定义如果给定一个定义在区间I 上的函数列 1()u x ,2()u x ,,()n u x ,,则由这函数列构成的表达式123()()()()n u x u x u x u x +++++称为定义在I 上的函数项无穷级数,简称函数项级数.2.收敛域、发散域、和函数对于每一个确定的值0x I ∈,函数项级数1()n n u x ∞=∑成为常数项级数102030()()()u x u x u x +++.如果该常数项级数收敛,就称点0x 是函数项级数1()n n u x ∞=∑的收敛点;如果该常数项级数发散,就称点0x 是发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为收敛域,发散点的全体称为发散域.对应于收敛域内的任意一个常数x ,函数项级数成为一收敛的常数项级数,因而有一确定的和s .这样,在收敛域上,函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成 123()()()(s x u x u x u x=++ .(二)幂级数及其收敛性1.幂级数的定义函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数,即所谓幂级 数,形式为012nn n a x a a x a x ∞==++∑,其中常数0a ,1a ,2a ,,n a ,叫做幂级数的系数. 2.阿贝尔定理 如果级数nn n a x ∞=∑当0x x =(00x ≠)时收敛,则适合不等式0x x <的一切x 使这幂级数绝对收敛.反之,如果级数nnn a x ∞=∑当0x x =时发散,则适合不等式0x x >的一切x 使这幂级数发散.由上述定理可以推出,如果幂级数nn n a x∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R 存在,使得当x R <时,幂级数绝对收敛;当x R >时,幂级数发散;当x R =或x R =-时,幂级数可能收敛也可能发散.正数R 叫做幂级数的收敛半径,开区间(,)R R -叫做幂级数的收敛区间.3.求收敛半径及收敛区间的方法 (1)对于标准形式的幂级数nnn a x ∞=∑或1nnn a x ∞=∑,有如下方法:如果1lim n n na a ρ+→∞=,其中n a 、1n a +是幂级数0nn n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1,0,00,R ρρρρ⎧≠⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩ .(2)对于非标准形式的幂级数0()n n u x ∞=∑或1()nn u x ∞=∑(如202!nnn x n ∞=∑或0(1)2n nn x n ∞=-∑),方法如下:令1()lim 1()n n nu x u x +→∞<,得到x 的范围,然后再求x 的两个边界值所对应的常数项级数的敛散性即可.(三)幂级数的和函数 1.幂级数和函数的性质 性质 1 幂级数n n n a x ∞=∑的和函数()s x 在其收敛域I 上连续.性质 2 幂级数n n n a x ∞=∑的和函数()s x 在其收敛域I 上可积,并有逐项积分公式0000()xxn n n n s x dx a x dx ∞∞==⎡⎤==⎢⎥⎣⎦∑∑⎰⎰ (x I ∈),逐项积分后所得到的幂级数和原来的幂级数有相同的收敛半径.性质 3 幂级数nnn a x ∞=∑的和函数()s x 在其收敛区间(,)R R -内可导,并有逐项求导公式()00()n n n n n n s x a x a x ∞∞==''⎛⎫'=== ⎪⎝⎭∑∑(x R <),逐项求导后所得到的幂级数和原来的幂级数有相同的收敛半径. 2.幂级数和函数的求法(“先导后积”或“先积后导”)当幂级数的一般项形如(1)nxn n +时,可用先求导后求积分的方法求其和函数;当幂级数的一般项形如2(21)n n x +、1n nx -等形式,可用先求积分后求导的方法求其和函数.3.常用的幂级数展开式 (1)2111n nn x x x x x ∞===+++++-∑,11x -<<;(2)21(1)11n n n x x x x ∞==-=-+-++∑,11x -<<.【典型例题】【例10-1】用比较法或其极限形式判别下列级数的敛散性. 1.11n ∞=∑. 解:因1141lim lim 12n n n n n→∞→∞-==,而调和级数11n n∞=∑发散,故原级数发散.2.213n n ∞=-∑ .解:因222233lim lim 31n n n n n n n →∞→∞-==-,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.3.1352nn nn ∞=-∑ .解:因33552lim lim 152335nn n n n n n n nn n →∞→∞-=⋅=-⎛⎫ ⎪⎝⎭,而级数135nn ∞=⎛⎫⎪⎝⎭∑是收敛的等比级数,故原级数收敛.4.11sin n n ∞=∑ .解:因 1sin lim 11n n n→∞=,而调和级数11n n ∞=∑发散,故原级数发散. 5.11(1cos )n n ∞=-∑ .解:因 211cos1lim 12n n n→∞-=,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.6.32tan n nn π∞=∑ .解:因2222tan lim lim 211n n n n n n n n πππ→∞→∞⋅==,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.7.312(1)n n n n ∞=++∑ .解:因333322(1)lim lim 11(1)n n n n n n n n n n→∞→∞+++=⋅=+,而级数311n n∞=∑是收敛的p 级数,故原级数收敛.8.111nn a∞=+∑ (0a >). 解:当1a =时, 111lim lim 0122n n n a →∞→∞==≠+,故原级数发散;当01a <<时,11lim lim 10110n n n a →∞→∞==≠++,故原级数发散;当1a >时,因11lim lim 111n n n n n n a a aa →∞→∞+==+,而级数11nn a∞=∑是收敛的等比级数,故原级数收敛.【例10-2】利用比值审敛法判别下列级数的敛散性.1.1(1)!2nn n ∞=+∑ . 解:因11(2)!(2)!22lim lim (1)!2(1)!2n n n n n n n n n n ++→∞→∞++=⋅=++,故原级数发散.2.213n n n∞=∑ .解:因221212(1)(1)313lim lim 1333n n n n n n n n n n ++→∞→∞++=⋅=<,故原级数收敛.3.1135(21)3!nn n n ∞=⋅⋅⋅⋅-⋅∑ .解:因1135(21)(21)3(1)!limlim 135(21)3!n n n nn n n n n +→∞→∞⋅⋅⋅⋅-⋅+⋅+=⋅⋅⋅⋅-⋅,故原级数收敛.4.110!nn n ∞=∑ .解:因111010!(1)!lim lim 0110(1)!10!n n n n n n n n n n ++→∞→∞+=⋅=<+,故原级数收敛.5.1212nn n ∞=-∑ . 解:因112121212lim lim 2122122n n n n n n n n n n ++→∞→∞++=⋅=<--,故原级数收敛. 6.21sin2nn nπ∞=∑ . 解:因22sin22limlim 1122nnn n nnn n πππ→∞→∞==⋅,故原级数与级数212n n n∞=∑敛散性相同.对于级数212n n n∞=∑,因221212(1)(1)212lim lim 1222n n n n n n n n n n ++→∞→∞++=⋅=<,故级数212n n n∞=∑收敛,所以原级数也收敛.【例10-3】利用根值审敛法判别下列级数的敛散性.1.12(1)2nnn ∞=+-∑ . 解:111lim lim lim 22nn n n e→∞→∞→∞==,故原级数收敛.2.11[ln(1)]nn n ∞=+∑ . 解:lim lim lim ln(1n n n →∞→∞→∞==,故原级数收敛.【例10-4】判定下列级数的敛散性,如果是收敛的,判定是绝对收敛还是条件收敛. 1.111(1)n n ∞-=-∑ . 解:因级数11111(1)n n n ∞∞-==-=∑∑发散,但由莱布尼茨定理可知,原级数满足111n n u u +=>=,且1lim 0n →∞=,所以原级数收敛且为条件收敛. 2.1211(1)n n n∞-=-∑ .解:因级数1221111(1)n n n n n∞∞-==-=∑∑收敛,所以原级数绝对收敛.3.11(1)1n n nn ∞+=-+∑ .解:因1lim(1)1n n n n +→∞-+不存在,故原级数发散.4.11sin 27n n n π∞=∑ .解:11sin 272n n n π≤,而级数112nn ∞=∑是收敛的等比级数,故根据比较审敛法可知,级数11sin 27n n n π∞=∑收敛,故原级数绝对收敛.【例10-5】求下列幂级数的收敛半径和收敛域. 1.11(1)nn n xn∞-=-∑. 解:因111lim lim 11n n n na n a nρ+→∞→∞+===,所以收敛半径11R ρ==,故收敛区间为(1,1)-.又当1x =-时,原级数即为11()n n ∞=-∑,发散;当1x =时,原级数即为111(1)n n n ∞-=-∑,收敛,故原级数的收敛域为(1,1]-.2.0!nn xn ∞=∑ .解:因111(1)!lim lim lim11!n n n n na n a n n ρ+→∞→∞→∞+===+,所以收敛半径R =+∞,故级数的收敛域为(,)-∞+∞.3.0!nn n x ∞=∑. 解:因1(1)!lim lim !n n n na n a n ρ+→∞→∞+===+∞,所以收敛半径0R =,即级数仅在点0x =处收敛.4.2121n nn x n ∞=+∑ . 解:因12122(1)1limlim lim 21n n n n n n na n a n ρ++→∞→∞→∞++===+,所以收敛半径112R ρ==,故收敛区间为11(,)22-.又当12x =-时,原级数即为21(1)1n n n ∞=-+∑,收敛;当12x =时,原级数即为2111n n ∞=+∑,收敛,故原级数的收敛域为11[,]22-.【例10-6】求下列幂级数的收敛域.1.1(1)2nnn x n ∞=-⋅∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 11(1)1(1)2lim 1(1)22n n n n n x x n x n ++→∞--+⋅=<-⋅,则12x -<,故当13x -<<时级数收敛,当1x <-或3x >时级数发散.当1x =-时,原级数即为1(1)n n n ∞=-∑,收敛;当3x =时,原级数即为11n n∞=∑,发散.因此原级数的收敛域为[1,3)-.2.211(1)21n nn xn +∞=-+∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 231221(1)23lim 1(1)21n n n n n xn x x n +++→∞-+=<-+,则当11x -<<时级数收敛,当1x <-或1x >时级数发散.当1x =-时,原级数即为111(1)21n n n ∞+=-+∑,收敛;当1x =时,原级数即为11(1)21nn n ∞=-+∑,也收敛.因此原【例10-7】求下列幂级数的和函数. 1.11n n nx∞-=∑ .解:先求幂级数的收敛域.令 1(1)lim 1nn n n xx nx-→∞+=<,可得收敛区间为(1,1)-.当1x =-时,原级数即为1(1)nn n ∞=-∑,发散;当1x =时,原级数即为1n n ∞=∑,也发散.因此原再求和函数.设和函数11()n n s x nx ∞-==∑,则11()()()()1nnn n xs x x x x ∞∞=='''====-∑∑, (1,1)x ∈-.2.2111(1)21n n n xn -∞-=--∑ . 解:先求幂级数的收敛域.令212211(1)21lim 1(1)21n nn n n x n x x n +-→∞--+=<--,可得收敛区间为(1,1)-.当1x =-时,原级数即为11(1)21nn n ∞=--∑,收敛;当1x =时,原级数即为111(1)21n n n ∞-=--∑,也收敛.因此原级数的收敛域为[1,1]-.再求和函数.设和函数2111()(1)21n n n xs x n -∞-==--∑,则 122241()(1)1n n n s x xx x ∞--='=-=-+-∑, 故[]2001()arctan arct 1xxs x dx x x ===+⎰, [1,1]x ∈-.3.111(1)n n x n n ∞+=+∑. 解:先求幂级数的收敛域. 令211(1)(2)lim 11(1)n n n xn n x xn n +→∞+++=<+,可得收敛区间为(1,1)-.当1x =-时,原级数即为111(1)(1)n n n n ∞+=-+∑,收。
大一下高数知识点无穷级数大一下高数知识点:无穷级数在大一下的高等数学课程中,无穷级数是一个重要的知识点。
无穷级数是由无穷多个数相加(或相减)所得的结果,它在数学和其它科学领域中都有广泛的应用。
本文将着重介绍无穷级数的定义、性质和一些重要的收敛准则。
一、无穷级数的定义无穷级数可以写作以下形式:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁、a₂、a₃等为级数的各项。
二、常见的无穷级数1. 等差级数等差级数是最常见的一类无穷级数。
它的通项公式一般为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差。
例如,等差级数的前5项可以表示为:S₅ = a₁ + (a₁ + d) + (a₁ + 2d) + (a₁ + 3d) + (a₁ + 4d)2. 等比级数等比级数的通项公式一般为:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比。
例如,等比级数的前5项可以表示为:S₅ = a₁ + a₁r + a₁r² + a₁r³ + a₁r⁴三、无穷级数的性质1. 部分和在无穷级数中,我们通常用部分和来近似计算级数的和。
部分和Sn定义为:Sₙ = a₁ + a₂ + a₃ + ... + aₙ其中,n为正整数。
2. 收敛和发散对于无穷级数,如果其部分和Sn在n趋向于无穷大时有极限S,则称该级数收敛,否则称该级数发散。
如果收敛,其收敛值S即为无穷级数的和。
3. 收敛性质无穷级数有以下重要的收敛性质:(1)若级数Sn收敛,则其任意子级数也收敛。
(2)若级数Sn发散,则其任意超级数也发散。
(3)若级数Sn和级数Tn都是收敛的,则它们的和级数Sn + Tn也是收敛的。
4. 绝对收敛和条件收敛若级数的所有项的绝对值构成的级数收敛,则称原级数绝对收敛。
否则,若级数本身收敛但其对应的绝对值级数发散,则称原级数条件收敛。
四、无穷级数的收敛准则在判断无穷级数的收敛性时,有一些常用的收敛准则:1. 正项级数判别法如果级数的所有项都是非负数,并且后一项总是比前一项大或相等,则该级数收敛。
习题9-11. 判定下列级数的收敛性:(1) 1n ∞=∑; (2) 113n n ∞=+∑; (3)1ln 1n n n ∞=+∑; (4) 1(1)2nn ∞=-∑;(5) 11n n n ∞=+∑; (6) 0(1)21n n nn ∞=-⋅+∑. 解:(1)11n n k S ===∑,则lim lim(11)n nnS n =+-=+?,级数发散。
(2)由于14113n n n nゥ===+邋,因此原级数是调和级数去掉前面三项所得的级数,而在一个级数中增加或删去有限项不改变级数的敛散性,所以原级数发散。
(3)11ln[ln ln(1)]ln1ln(1)ln(1)1n nn k k n S n n n n n ====-+=-+=-++邋,则lim lim[ln(1)]n nnS n =-+=-?,级数发散。
(4) 2 , 21, 1,2,3,; 0 , 2n n k S k n k ì-=-ïï==íï=ïîL 因而lim n n S 不存在,级数发散。
(5)级数通项为1n n u n =+,由于1lim 10n n n+=?,不满足级数收敛的必要条件,原级数发散。
(6)级数通项为(1)21n n nu n -=+,而lim n n S 不存在,级数发散。
2. 判别下列级数的收敛性,若收敛则求其和: (1) 11123n n n ∞=⎛⎫+ ⎪⎝⎭∑; (2)11(1)(2)n n n n ∞=++∑; (3) 1πsin 2n n n ∞=⋅∑; (4) 0πcos 2n n ∞=∑.解:(1)因为111111111131111(1).23232232223nn nn k k k k n nn n k k k S ===骣÷ç=+=+=-+-=--?÷ç÷ç桫邋? 所以该级数的和为31113lim lim(),22232n n n n n S S ==--? 即1113.232n n k ¥=骣÷ç+=÷ç÷ç桫å(2)由于1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++,则111111111[][](1)(2)2(1)(1)(2)22(1)(2)nnn k k S k k k k k k k n n ====-=-+++++++邋所以该级数的和为 1111lim lim [],22(1)(2)4n n n S S n n ==-=++即111.(1)(2)4n n n n ¥==++å(3)级数的通项为sin 2n u n n p =,由于sin2lim sin lim()02222n n n n n npp ppp =??,不满足级数收敛的必要条件,所以原级数发散。
(4)由于11 , 441cos,0,1,2,3,;0 , 42432n n k n k n k k S k n k n k p -=ì==+ïï===íï=+=+ïîåL 或或 因而lim n nS 不存在,原级数发散。
习题9-21. 判定下列正项级数的敛散性: (1) 11(1)(2)n n n ∞=++∑;(2)n ∞=; (3)111n n a∞=+∑ (a >0); (4) 41121n n n ∞=+-∑; (5) 132n n n n ∞=⋅∑; (6) 1!n n n n ∞=∑; (7) 1357(21)4710(31)n n n ∞=⋅⋅⋅⋅+⋅⋅⋅⋅+∑L L ; (8) 13nn n∞=∑;(9) 221(!)2n n n ∞=∑; (10)121nn n n ∞=⎛⎫ ⎪+⎝⎭∑; (11) π312sinnnn ∞=∑; (12) 2π31cos 2n nn n ∞=∑. 解:(1)由于2110(1)(2)n n n <<++,而级数211n n ¥=å收敛,由比较判别法知11(1)(2)n n n ¥=++å收敛。
(2)因为32232limlim lim 15(5)1nn n n n n n===++,而p -级数3121n n ¥=å收敛,由比较判别法的极限形式知1n ¥=å(3)若1a =,通项1112n nu a ==+,级数111n n a¥=+å显然发散; 若01a <<,有1lim lim 11n n n n u a ==+,不满足级数收敛的必要条件,级数111n n a ¥=+å发散;若1a >,有11101n n n a a a 骣÷ç<<=÷ç÷ç桫+,而级数11nn a ¥=骣÷ç÷ç÷ç桫å收敛,由比较判别法知111n n a ¥=+å收敛。
(4)因为34434111(1)121lim lim lim 112122n n n n n n n n n n n +++-===--,而p -级数311n n ¥=å收敛,由比较判别法的极限形式知41121n n n ¥=+-å收敛。
(5)通项32nn nu n =´,则111333(1)2lim lim lim 132(1)22n n n n n n n n nu n n u n n ++++===>+´,所以由比值判别法知,级数发散。
(6)通项!nn n u n =,则11(1)(1)1(1)!lim lim lim lim(1)1!n n n n n n n n n n n n u n n e n u n nn +++++===+=>,所以由比值判别法知,级数发散。
(7)通项357(21)4410(31)n n u n 创创+=创创+L L ,则1357[2(1)1]2(1)124410[3(1)1]limlim lim 1357(21)3(1)134410(31)n nn n nn u n n n u n n +创创++++创创++===<创创+++创创+L L L L ,所以由比值判别法知,级数收敛。
(8)通项3n n n u =,则111113lim lim lim 1333n n n n n n nn u n n u n ++++===<,所以由比值判别法知,级数收敛。
(9)通项22(!)2n nn u =,则2222(1)1221[(1)!](1)2limlim lim 01(!)22n n n nn n nnn u n n u +++++===<,所以由比值判别法知,级数收敛。
(10)通项21nn n u n 骣÷ç=÷ç÷ç桫+,则1lim lim lim 121212n n n n n n n u n n ÷ç===<÷ç÷ç桫++,所以由根值判别法知,级数收敛。
(11)由于202sin 2333n n n nnpp p 骣÷ç#?÷ç÷ç桫,而级数123nn ¥=骣÷ç÷ç÷ç桫å收敛,由比较判别法推论知级数12sin3n nn p¥=å收敛。
(12)对于级数12n n n ¥=å,因为111112lim lim lim 1222n n n n n n n n u n n u n ++++===<,由比值判别法知级数12n n n¥=å收敛;由于2cos 3022nn n n np #,而级数12n n n ¥=å收敛,由比较判别法知,级数21cos 32nn n n p¥=å收敛。
习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛: (1) 11(1)21nn n ∞=--∑; (2)11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) 21sinn nx n∞=∑;(4)111π(1)sin πn n n n∞+=-∑; (5) 21111210n n n ∞-=⎛⎫- ⎪⎝⎭∑; (6)1(1)nn n x ∞=-+∑; (7) 1sin(2)!n n x n ∞=⋅∑; (8)1sin n nx n ∞=∑(0<x <π).解:(1)这是一个交错级数,121n u n =-,且1112121n n u u n n +=>=-+,1lim lim 021n n n u n →∞→∞==-.由莱布尼兹判别法知11(1)21nn n ∞=--∑收敛.但1111(1)2121nn n n n ∞∞==-=--∑∑发散,故11(1)21n n n ∞=--∑条件收敛。
(2)由于1(1)23(1)22n n n n --+≤-⋅,而级数132n n ∞=∑收敛,所以11(1)2(1)2nn n n -∞=-+-⋅∑收敛,故11(1)2(1)2nn n n -∞=-+-⋅∑绝对收敛。
(3)由于22sin 1nx n n ≤,而级数211n n∞=∑收敛,所以21sin n nx n ∞=∑收敛,故21sin n nxn ∞=∑绝对收敛。
(4)由于12111(1)sin n n n n n n ππππ+-≤⨯=,而级数211n n∞=∑收敛,所以111(1)sin n n n n ππ∞+=-∑收敛,故111(1)sin n n n nππ∞+=-∑绝对收敛。
(5)由于级数112n n ∞=∑和级数211110n n ∞-=∑都绝对收敛,所以21111210n n n ∞-=⎛⎫- ⎪⎝⎭∑绝对收敛。
(6)当n 充分大时,除去级数前面有限项,这是一个交错级数,1n u n x=+,且有111(1)n n u u n x n x +=>=+++,1lim lim 0n n n u n x →∞→∞==+.由莱布尼兹判别法知1(1)nn n x ∞=-+∑收敛.但(1)1n n kn k n x n x ∞∞==-=++∑∑发散(0k x +>),故1(1)n n n x ∞=-+∑条件收敛。