(3)无穷级数复习课概述
- 格式:ppt
- 大小:653.01 KB
- 文档页数:32
⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。
2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。
. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。
②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。
③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。
4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。
第十章 无穷级数精选讲义【考试要求】1.理解级数收敛、发散的概念.掌握级数收敛的必要条件,了解级数的基本性质. 2.掌握正项级数的比值审敛法.会用正项级数的比较审敛法. 3.掌握几何级数、调和级数与p 级数的敛散性.4.了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法. 5.了解幂级数的概念,收敛半径,收敛区间.6.了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分). 7.掌握求幂级数的收敛半径、收敛区间的方法.【考试内容】一、常数项级数的相关概念1.常数项级数的定义一般地,如果给定一个数列1u ,2u,,n u,,则由这数列构成的表达式123n u u u u +++++叫做常数项无穷级数,简称常数项级数或级数,记为1nn u∞=∑,即1231nn n uu u u u ∞==+++++∑,其中第n 项n u 叫做级数的一般项.2.常数项级数收敛、发散的概念作常数项级数1nn u∞=∑的前n 项和121nn n ii s u u u u ==+++=∑,n s 称为级数1nn u∞=∑的部分和,当n 依次取1,2,3,时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,,12n n s u u u =+++,.如果级数1nn u∞=∑的部分和数列{}n s 有极限s ,即limn n s s →∞=,则称无穷级数1nn u ∞=∑收敛,这时极限s 叫做这级数的和,并写成123n s u u u u =+++++或者1nn us ∞==∑;如果{}n s 没有极限,则称无穷级数1n n u ∞=∑发散.3.收敛级数的基本性质 (1)如果级数1nn u∞=∑收敛于和s ,则级数1nn ku∞=∑也收敛,且其和为ks .一般地,级数的每一项同乘一个不为零的常数后,它的收敛性不变. (2)如果级数1n n u ∞=∑、1nn v∞=∑分别收敛于和s 、σ,则级数1()nn n uv ∞=±∑也收敛,且其和为s σ±. (3)在级数1nn u∞=∑中去掉、加上或改变有限项,不会改变级数的收敛性.(4)如果级数1nn u∞=∑收敛,则对这级数的项任意加括号后所成的级数仍收敛,且其和不变.(5)如果级数1nn u∞=∑收敛,则它的一般项n u 趋于零,即lim 0nn u →∞=.说明:此条件称为级数收敛的必要条件.由原命题成立逆否命题一定成立可得,如果lim nn u →∞不为零,则级数1nn u∞=∑一定发散.4.几个重要的常数项级数 (1)等比级数级数21nnn q q q q ∞==++++∑或21n n n q q q q ∞==+++++∑称为等比级数或几何级数,其中q 叫做级数的公比.其收敛性为:当1q <时,级数收敛;当1q ≥时级数发散.(2)调和级数级数 11111123n nn∞==+++++∑ 称为调和级数,此级数是一个发散级数.(3)p 级数级数 11111123p p p p n nn∞==+++++∑称为p 级数,其中常数0p >.其收敛性为:当1p >时,级数收敛;当1p ≤时级数发散.二、正项级数的审敛法1.比较审敛法设1n n u ∞=∑和1nn v∞=∑都是正项级数,且存在正数N ,使当n N ≥时有n n u v ≤成立.若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛;如果级数1nn u∞=∑发散,则级数1nn v∞=∑也发散.2.比较审敛法的极限形式 设1n n u ∞=∑和1nn v∞=∑都是正项级数.(1)如果lim nn n u l v →∞=,0l ≤<+∞,且级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;(2)如果lim nn nu l v →∞=,0l <≤+∞,且级数1n n v ∞=∑发散,则级数1n n u ∞=∑发散.说明:极限形式的比较审敛法,在两个正项级数的一般项均趋于零的情况下,其实是比较它 们的一般项作为无穷小的阶.上述结论表明,当n→∞时,如果n u 是与n v 同阶或是比nv 高阶的无穷小,而级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛;如果n u 是与n v 同阶或是比n v 低阶的无穷小,而级数1nn v∞=∑发散,则级数1nn u∞=∑发散.3.比值审敛法(达朗贝尔判别法)设1n n u ∞=∑为正项级数,如果1lim n n nu u ρ+→∞=,则当1ρ<时级数收敛;1ρ>(或1lim n n nu u +→∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散. 4.根值审敛法(柯西判别法)设1nn u∞=∑为正项级数,如果n ρ→∞=,则当1ρ<时级数收敛;1ρ>(或n →∞=+∞)时级数发散;1ρ=时级数可能收敛也可能发散.三、交错级数及其审敛法1.交错级数的概念所谓交错级数是这样的级数,它的各项是正负交错的,从而可以写成下面的形式:112341(1)n n n u u u u u ∞-=-+-+=-∑ ,或12341(1)nn n u u u u u ∞=-+-+-=-∑ , 其中1u ,2u ,都是正数.2.交错级数的审敛法—莱布尼茨定理如果交错级数11(1)n n n u ∞-=-∑满足条件: (1)1nn u u +≥ (1,2,3,n =);(2)lim 0nn u →∞=.则级数收敛.四、绝对收敛与条件收敛1.绝对收敛与条件收敛对于一般的级数12n u u u ++++,它的各项为任意实数.如果级数1nn u∞=∑各项的绝对值所构成的正项级数1nn u∞=∑收敛,则称级数1nn u∞=∑绝对收敛;如果级数1nn u∞=∑收敛,而级数1nn u ∞=∑发散,则称级数1n n u ∞=∑条件收敛.例如,级数1211(1)n n n ∞-=-∑是绝对收敛级数,而级数111(1)n n n∞-=-∑是条件收敛级数.对于绝对收敛级数,我们有如下结论:如果级数1nn u∞=∑绝对收敛,则级数1nn u∞=∑必定收敛.这说明,对于一般的级数1nn u∞=∑,如果我们用正项级数的审敛法判定级数1nn u∞=∑收敛,则此级数一定收敛.这就使得一大类级数的收敛性判定问题,转化为正项级数的收敛性 判定问题. 2.重要结论一般说来,如果级数1nn u∞=∑发散,我们不能断定级数1nn u∞=∑也发散.但是,如果我们用比值审敛法或根值审敛法根据1lim1n n nu u ρ+→∞=>或1n ρ→∞=>判定级数1nn u∞=∑发散,则我们可以断定级数1nn u∞=∑必定发散(这是因为从1ρ>可推知n →∞时nu 不趋于零,从而n→∞时n u 也不趋于零,因此级数1n n u ∞=∑发散).五、幂级数(一)函数项级数1.函数项级数的定义如果给定一个定义在区间I 上的函数列1()u x ,2()u x ,,()n u x ,,则由这函数列构成的表达式1231()()()()()n n n u x u x u x u x u x ∞=+++++=∑称为定义在I 上的函数项无穷级数,简称函数项级数. 2.收敛域、发散域、和函数对于每一个确定的值0x I ∈,函数项级数1()n n u x ∞=∑成为常数项级数1020300()()()()n u x u x u x u x +++++.如果该常数项级数收敛,就称点0x 是函数项级数1()nn u x ∞=∑的收敛点;如果该常数项级数发散,就称点0x 是发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为收敛域,发散点的全体称为发散域.对应于收敛域内的任意一个常数x ,函数项级数成为一收敛的常数项级数,因而有一确定的和s .这样,在收敛域上,函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成123()()()()()n s x u x u x u x u x =+++++.(二)幂级数及其收敛性1.幂级数的定义函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数,即所谓幂级 数,形式为20120nn n n n a xa a x a x a x ∞==+++++∑,其中常数0a ,1a ,2a ,,n a,叫做幂级数的系数.2.阿贝尔定理如果级数nn n a x∞=∑当0xx =(00x ≠)时收敛,则适合不等式0x x <的一切x 使这幂级数绝对收敛.反之,如果级数0nn n a x ∞=∑当0x x =时发散,则适合不等式0x x >的一切x 使这幂级数发散.由上述定理可以推出,如果幂级数nn n a x∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R 存在,使得当x R <时,幂级数绝对收敛;当x R >时,幂级数发散;当x R =或x R =-时,幂级数可能收敛也可能发散.正数R叫做幂级数的收敛半径,开区间(,)R R -叫做幂级数的收敛区间. 3.求收敛半径及收敛区间的方法(1)对于标准形式的幂级数nn n a x∞=∑或1n n n a x ∞=∑,有如下方法: 如果1limn n na a ρ+→∞=,其中n a 、1n a +是幂级数0n n n a x ∞=∑的相邻两项的系数,则这幂级数的收敛半径1,0,00,R ρρρρ⎧≠⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩.(2)对于非标准形式的幂级数0()n n u x ∞=∑或1()n n u x ∞=∑(如202!n n n x n ∞=∑或0(1)2nn n x n ∞=-∑),方法如下:令1()lim1()n n n u x u x +→∞<,得到x 的范围,然后再求x 的两个边界值所对应的常数项级数的敛散性即可.(三)幂级数的和函数1.幂级数和函数的性质 性质1 幂级数0n n n a x ∞=∑的和函数()s x 在其收敛域I 上连续. 性质2 幂级数n n n a x ∞=∑的和函数()s x 在其收敛域I 上可积,并有逐项积分公式 10000()1xxx n nn n n n n n n a s x dx a x dx a x dx x n ∞∞∞+===⎡⎤===⎢⎥+⎣⎦∑∑∑⎰⎰⎰ (x I ∈), 逐项积分后所得到的幂级数和原来的幂级数有相同的收敛半径. 性质3 幂级数0nn n a x ∞=∑的和函数()s x 在其收敛区间(,)R R -内可导,并有逐项求导公式()1001()n n n n n n n n n s x a x a x na x ∞∞∞-==='⎛⎫''=== ⎪⎝⎭∑∑∑ (x R <),逐项求导后所得到的幂级数和原来的幂级数有相同的收敛半径.2.幂级数和函数的求法(“先导后积”或“先积后导”)当幂级数的一般项形如(1)nx n n +时,可用先求导后求积分的方法求其和函数;当幂级数的一般项形如2(21)nn x +、1n nx-等形式,可用先求积分后求导的方法求其和函数.3.常用的幂级数展开式(1)20111n n n x x x x x ∞===+++++-∑,11x -<<;(2)201(1)1(1)1n n n n n x x x x x ∞==-=-+-+-++∑,11x -<<.【典型例题】【例10-1】用比较法或其极限形式判别下列级数的敛散性. 1.1n ∞= .解:因1lim 2n n n→∞→∞==,而调和级数11n n ∞=∑发散,故原级数发散. 2.1n ∞=.解:因223n n n →∞→∞==,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.3.1352nnnn ∞=-∑ .解:因 33552lim lim 152335nn n n n n n n nn n →∞→∞-=⋅=-⎛⎫⎪⎝⎭,而级数135n n ∞=⎛⎫ ⎪⎝⎭∑是收敛的等比级数,故原级数收敛.4.11sin n n ∞=∑ .解:因 1sinlim 11n n n→∞=,而调和级数11n n∞=∑发散,故原级数发散.5.11(1cos )n n ∞=-∑ . 解:因211cos1lim12n n n→∞-=,而级数211n n ∞=∑是收敛的p 级数,故原级数收敛.6.32tan n nn π∞=∑ . 解:因 2222tan lim lim 211n n n n n n n n πππ→∞→∞⋅==,而级数211n n∞=∑是收敛的p 级数,故原级数收敛.7.312(1)n n n n ∞=++∑ .解:因 333322(1)limlim 11(1)n n n n n n n n n n →∞→∞+++=⋅=+,而级数311n n∞=∑是收敛的p 级数,故原级数收敛. 8.111nn a∞=+∑ (0a >). 解:当1a=时, 111limlim 0122n n n a →∞→∞==≠+,故原级数发散;当01a <<时,11limlim 10110n n n a →∞→∞==≠++,故原级数发散;当1a >时,因11lim lim 111n n n n n na a a a →∞→∞+==+,而级数11n n a∞=∑是收敛的等比级数,故原级数收敛.【例10-2】利用比值审敛法判别下列级数的敛散性. 1.1(1)!2nn n ∞=+∑ . 解:因11(2)!(2)!222lim lim lim (1)!2(1)!22n n n n n n n n n n n n ++→∞→∞→∞+++=⋅==∞++,故原级数发散.2.213nn n ∞=∑ .解:因221212(1)(1)313lim lim 1333n n n n n nn n n n ++→∞→∞++=⋅=<,故原级数收敛. 3.1135(21)3!nn n n ∞=⋅⋅⋅⋅-⋅∑ . 解:因1135(21)(21)2123(1)!lim lim 1135(21)3(1)33!n n n n n n n n n n n +→∞→∞⋅⋅⋅⋅-⋅++⋅+==<⋅⋅⋅⋅-+⋅,故原级数收敛.4.110!nn n ∞=∑ .解:因111010!(1)!lim lim 0110(1)!10!n n n n n n n n n n ++→∞→∞+=⋅=<+,故原级数收敛.5.1212nn n ∞=-∑ . 解:因112121212lim lim 12122122n n n n n nn n n n ++→∞→∞++=⋅=<--,故原级数收敛.6.21sin2nn nπ∞=∑ .解:因22sin22lim lim 1122n nn n nnn n πππ→∞→∞==⋅,故原级数与级数212n n n ∞=∑敛散性相同. 对于级数212n n n ∞=∑,因221212(1)(1)212lim lim 1222n n n n n nn n n n ++→∞→∞++=⋅=<,故级数212n n n ∞=∑收敛,所以原级数也收敛.【例10-3】利用根值审敛法判别下列级数的敛散性.1.12(1)2nn n ∞=+-∑.解:1ln[2(1)]11lim 122n nn n n e+-→∞→∞→∞===<,故原级数收敛. 2.11[ln(1)]n n n ∞=+∑ .解:1lim 01ln(1)n n n n →∞→∞→∞===<+,故原级数收敛. 【例10-4】判定下列级数的敛散性,如果是收敛的,判定是绝对收敛还是条件收敛. 1.11(1)n n ∞-=-∑.解:因级数111(1)n n n ∞∞-==-=∑发散,但由莱布尼茨定理可知,原级数满足1n n u u +=>=,且0n →∞=,所以原级数收敛且为条件收敛.2.1211(1)n n n∞-=-∑ . 解:因级数1221111(1)n n n n n∞∞-==-=∑∑收敛,所以原级数绝对收敛.3.11(1)1n n nn ∞+=-+∑ . 解:因1lim(1)1n n nn +→∞-+不存在,故原级数发散. 4.11sin27n n n π∞=∑ .解:11sin 272n n n π≤,而级数112n n ∞=∑是收敛的等比级数,故根据比较审敛法可知,级数11sin 27n n n π∞=∑收敛,故原级数绝对收敛.【例10-5】求下列幂级数的收敛半径和收敛域. 1.11(1)nn n x n∞-=-∑ . 解:因111limlim 11n n n na n a nρ+→∞→∞+===,所以收敛半径11R ρ==,故收敛区间为(1,1)-.又当1x =-时,原级数即为11()n n ∞=-∑,发散;当1x =时,原级数即为111(1)n n n∞-=-∑,收敛,故原级数的收敛域为(1,1]-. 2.0!nn x n ∞=∑ .解:因111(1)!limlim lim 011!n n n n na n a n n ρ+→∞→∞→∞+====+,所以收敛半径R =+∞,故级数的收敛域为(,)-∞+∞.3.0!n n n x ∞=∑ . 解:因1(1)!limlim !n n n n a n a n ρ+→∞→∞+===+∞,所以收敛半径0R =,即级数仅在点0x =处收敛. 4.2121n nn x n ∞=+∑ . 解:因12212222(1)(1)1limlim lim 22(1)11n n n n n n na n n a n n ρ++→∞→∞→∞+++====+++,所以收敛半径112R ρ==,故收敛区间为11(,)22-.又当12x =-时,原级数即为21(1)1n n n ∞=-+∑,收敛;当12x =时,原级数即为2111n n ∞=+∑,收敛,故原级数的收敛域为11[,]22-.【例10-6】求下列幂级数的收敛域.1.1(1)2nnn x n ∞=-⋅∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 11(1)1(1)2lim 1(1)22n n n n nx x n x n ++→∞--+⋅=<-⋅,则12x -<,故当13x -<<时级数收敛,当1x <-或3x >时级数发散.当1x =-时,原级数即为1(1)nn n ∞=-∑,收敛;当3x =时,原级数即为11n n∞=∑,发散.因此原级数的收敛域为[1,3)-. 2.211(1)21n nn x n +∞=-+∑ .解:这是非标准形式的幂级数,我们用比值审敛法.令 231221(1)23lim 1(1)21n n n n nxn x xn +++→∞-+=<-+,则当11x -<<时级数收敛,当1x <-或1x >时级数发散.当1x =-时,原级数即为111(1)21n n n ∞+=-+∑,收敛;当1x =时,原级数即为11(1)21nn n ∞=-+∑,也收敛.因此原级数的收敛域为[1,1]-.【例10-7】求下列幂级数的和函数. 1.11n n nx∞-=∑ .解:先求幂级数的收敛域. 令1(1)lim 1nn n n x x nx-→∞+=<,可得收敛区间为(1,1)-.当1x =-时,原级数即为1(1)nn n ∞=-∑,发散;当1x =时,原级数即为1n n ∞=∑,也发散.因此原级数的收敛域为(1,1)-.再求和函数.设和函数11()n n s x nx ∞-==∑,则2111()()()()1(1)nnn n x s x x x x x ∞∞=='''====--∑∑, (1,1)x ∈-.2.2111(1)21n n n x n -∞-=--∑ .解:先求幂级数的收敛域.令 212211(1)21lim 1(1)21n nn n n x n x xn +-→∞--+=<--,可得收敛区间为(1,1)-.当1x =-时,原级数即为11(1)21nn n ∞=--∑,收敛;当1x =时,原级数即为111(1)21n n n ∞-=--∑,也收敛.因此原级数的收敛域为[1,1]-.再求和函数.设和函数2111()(1)21n n n x s x n -∞-==--∑,则12224122211()(1)1(1)1n n n n n s x xx x xx ∞----='=-=-+-+-+=+∑,故[]2001()arctan arctan 1xxs x dx x x x ===+⎰, [1,1]x ∈-.3.111(1)n n x n n ∞+=+∑. 解:先求幂级数的收敛域.令 211(1)(2)lim 11(1)n n n x n n x x n n +→∞+++=<+,可得收敛区间为(1,1)-.当1x =-时,原级数即为111(1)(1)n n n n ∞+=-+∑,收敛;当1x =时,原级数即为11(1)n n n ∞=+∑,也收敛.因此原级数的收敛域为[1,1]-.再求和函数.设和函数111()(1)n n s x x n n ∞+==+∑,(1,1)x ∈-,则11111111()(1)(1)n n n n n n s x x x x n n n n n∞∞∞++===''⎡⎤⎡⎤'===⎢⎥⎢⎥++⎣⎦⎣⎦∑∑∑,1111111()()()1n n n n n n s x x x x n n x ∞∞∞-===''''====-∑∑∑, 故[]001()ln(1)ln(1)1x xs x dx x x x'==--=---⎰,[]0()ln(1)(1)ln(1)x s x x dx x x x =--=--+⎰,[1,1)x ∈-. 当1x =时,原级数即为11(1)n n n ∞=+∑,令 1111223(1)n s n n =+++⋅⋅+, 则11111111112233411n s n n n =-+-+-+-=-++, 所以1(1)lim lim(1)11n n n s s n →∞→∞==-=+,故原幂级数的和函数为 1,1()(1)ln(1),11x s x x x x x =⎧=⎨--+-<<⎩ . 4.1(1)nn n n x∞=+∑ .解:先求幂级数的收敛域.令 1(1)(2)lim 1(1)n n n n n x x n n x+→∞++=<+,可得收敛区间为(1,1)-.当1x =-时,原级数即为1(1)(1)nn n n ∞=-+∑,发散;当1x =时,原级数即为1(1)n n n ∞=+∑,也发散.因此原级数的收敛域为(1,1)-.再求和函数.设和函数1()(1)n n s x n n x ∞==+∑,则1111111()(1)(1)()()()n nn n n n n n s x x n n xx n x x x x x ∞∞∞∞-++===='''''=+=+==∑∑∑∑222322()[]1(1)(1)x x x x x x x x x -'''===---,(1,1)x ∈-.【例10-8】将下列函数展开成相应的幂级数. 1.将函数21()32f x x x =-+展开成关于x 的幂级数. 解:11111()()(1)(2)1212(1)2f x x x x x x x ==--=-------, 而 011nn x x ∞==-∑(1x <),01()212n n x x ∞==-∑(12x <,即2x <), 所以1000111()(1)222nn n n n n n n f x x x x ∞∞∞+====-=-∑∑∑,1x <.2.将函数21()32f x x x =++展开成关于(4)x +的幂级数. 解:11111()(1)(2)123(4)2(4)f x x x x x x x ==-=-++++-++-++ 111144321132x x =-⋅+++--. 因 011n n x x ∞==-∑(11x -<<), 故 011(4)4313nnn x x ∞==++-∑ (4113x +-<< 即 71x -<<-), 011(4)4212n n n x x ∞==++-∑ (4112x +-<< 即 62x -<<-), 从而001111()(4)(4)3322nn n n n n f x x x ∞∞===-+++∑∑11011()(4)23nn n n x ∞++==-+∑, 62x -<<-.【历年真题】一、选择题1.(2010年,1分)lim 0nn u →∞=是级数1n n u ∞=∑收敛的 条件( )(A )必要 (B )充分 (C )充分必要 (D )不确定 解:根据收敛级数的性质,lim 0nn u →∞=是级数1n n u ∞=∑收敛的必要条件.选项(A )正确.2.(2009年,1分)幂级数13(1)3n nnn x ∞=+-∑的收敛半径是( ) (A )6 (B )32(C )3 (D )13解:原幂级数即为1333n n n x x ∞=⎡⎤⎛⎫⎛⎫+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑,由13x ≤及13x-≤可得,3x ≤,故级数的收敛半径为3,选项(C )正确.3.(2008年,3分)数项级数21sin n an n∞=∑(a 为常数)是( )级数 (A )发散的(B )条件收敛(C )绝对收敛(D )敛散性由a 确定 解:因22sin a an n n ≤,而级数 21n a n∞=∑收敛,故原级数绝对收敛.选项(C )正确.4.(2007年,3分)数项级数1(1)[1cos ]nn a n ∞=--∑(其中a 为常数)是( ) (A )发散的 (B )条件收敛(C )收敛性根据a 确定 (D )绝对收敛解:级数1(1)[1cos ]nn a n ∞=--∑加绝对值后的级数为1(1cos )n an ∞=-∑,对于此正项级数,由于2222211cos 2limlim 112n n a a a n n n n →∞→∞-⋅==为常数,而级数211n n∞=∑收敛,故级数1(1cos )n an ∞=-∑也收敛,所以原级数绝对收敛.选项(D )正确. 5.(2005年,3分)幂级数1(1)(1)nnn x n ∞=--∑的收敛区间是( )(A )(0,2](B )(1,1]- (C )[2,0]- (D )(,)-∞+∞解:令111(1)(1)()1lim lim 11(1)()(1)n n n n n n n nx u x n x x u x n+++→∞→∞--+==-<-- 可得,02x <<,故级数的收敛区间为(0,2).又当0x =时,原级数即为11n n∞=∑,发散;当2x =时,原级数即为11(1)nn n∞=-∑,收敛,故原级数的收敛域为(0,2].选项(A )正确. 二、填空题1.(2010年,2分)幂级数1!nn x n ∞=∑的收敛区间为 .解:因111(1)!limlim lim 011!n n n n na n a n n ρ+→∞→∞→∞+====+,故1R ρ==+∞,所以原幂级数的收敛区间为(,)-∞+∞.2.(2006年,2分)函数1()12f x x=+在1x =处展开的泰勒级数是 .解:因01(1)1n n n x x ∞==-+∑,故1111()21232(1)31(1)3f x x x x ===⋅++-+- 10012(2)(1)[(1)](1)333n n n n n n n x x ∞∞+==-=--=-∑∑.其中,21(1)13x -<-<,即1522x -<<.3.(2006年,2分)幂级数11(1)(2)12nnnn x ∞=--+∑在0.6x =处的敛散性是 . 解:令 11111(1)(2)()112lim lim 211()2(1)(2)12n n n n n n n n n nx u x x u x x ++++→∞→∞--+==-<--+,可得04x <<,即收敛区间为(0,4),故幂级数在0.6x =处是收敛的.说明:此题也可将0.6x =代入原幂级数,判定对应的常数项级数的敛散性.三、计算题1.(2009年,5分)求幂级数231(1)23nn x x x x n--+-+-+的收敛半径和收敛域.解:原级数即为11(1)n n n x n ∞-=-∑.因111(1)1limlim 11(1)nn n n n n a n a n ρ+→∞→∞--+===-,故收敛半径11R ρ==,收敛区间为(1,1)-.又当1x =-时,原级数即为11()n n ∞=-∑,发散;当1x=时,原级数即为111(1)n n n∞-=-∑,收敛.故原级数的收敛域为(1,1]-. 2.(2008年,7分)将函数1()3f x x=-展开成(2)x -的幂级数. 解:因011nn x x ∞==-∑,故011()(2)31(2)n n f x x x x ∞====----∑. 其中,121x -<-<,即13x <<.3.(2007年,7分)求幂级数1(1)n n n x ∞=-∑的收敛区间与和函数. 解:令11()(1)(1)lim lim 11()(1)n n n n n nu x n x x u x n x ++→∞→∞+-==-<-,可得02x <<,故幂级数的收敛区间为(0,2).21设 1()(1)n n s x n x ∞==-∑,则 111()(1)(1)(1)n n n n s x n x x n x ∞∞-===-=--∑∑ 101(1)(1)(1)(1)(1)n n n n x x x x x x x ∞∞==''-⎡⎤⎛⎫'⎡⎤=--=--=- ⎪⎣⎦⎢⎥-⎝⎭⎣⎦∑∑ 22(1)(1)1(1)x x x x x x---⋅--=-⋅=, 02x <<. 4.(2006年,4分)判定级数21(1)(1)nn n n ∞=-+∑的敛散性. 解:此级数为交错级数,其中2(1)n n u n =+. 由于3322123221(1)331(2)1(2)44(1)n n n u n n n n n n u n n n n nn +++++++===<++++,即1n n u u +<,且2lim lim 0(1)n n n n u n →∞→∞==+,故此交错级数符合莱布尼茨定理的条件,故该级数收敛.。
无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。
一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。
无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。
如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。
二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。
下面我们将详细介绍无穷级数的一些重要性质。
1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。
即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。
2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。
3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。
第一节 数项级数一.无穷级数∑∞=0n n a 收敛的充分条件:数列{}n a 的前n 项和数列{}n S 收敛; 必要条件:0lim =n a . 例1:证明级数∑∞=121n n收敛. 证:①教材第二页的证明方法(利用cauchy 判则).②取数列⎭⎬⎫⎩⎨⎧21n 的前n 项和n S .当2≥n 时,n n n n n 111)1(112--=-≤∴n S =+++222312111 (2)1n + +-+-+≤312121111…n n 111--+=2n 1- ∴n S 单调递增且有界,数列{}n S 收敛,所以级数∑∞=121n n收敛.例2:研究级数∑∞=1001.0n n 的敛散性.解:∵lim 01001.0≠=n,∴级数∑∞=1001.0n n 发散.小结:一般来说,cauchy 判则没有多大的实用价值,在证明数列收敛时一般不用此法;无穷级数∑∞=0n n a 收敛的必要条件的逆否命题也是可以利用.二.收敛级数的性质⒈若级数∑∞=1n n a 与∑∞=1n n b 都收敛,βα,是常数,则级数)(1∑∞=+n n n b a βα也是收敛的.⒉在级数∑∞=1n n a 中改变有限项的值,并不改变级数的敛散性.三.正项级数若n a 0≥,则称∑∞=1n n a 是正项级数.⒈正项级数∑∞=1n n a 收敛的充要条件是它的部分和数列{}n S 有界.(例题参见例1)⒉设∑∞=1n n a 与∑∞=1n n b 都是正项级数,若从某项开始有b n b a ≤恒成立,则⑴.若∑∞=1n n a 发散,则∑∞=1n n b 发散;⑵.若∑∞=1n n b 收敛,则∑∞=1n n a 收敛.(比较判别法) 例3:∑∞=11n pn称为p 级数,讨论它的敛散性. 解:证明结果:当1≤p 时,∑∞=11n p n 发散; 当1>p 时,∑∞=11n pn收敛. (详细证明方法参见书本第六页) 例4:级数∑∞=2ln 1n n 发散. 例5:∑∞=+111n n n 收敛.(利用p 级数)小结:一般在应用比较判别法时,要用到p 级数.p 级数的应用价值很大,请记住它的敛散性.⒊设∑∞=1n n a 与∑∞=1n n b 都是正项级数,A b a bn=lim. ⑴.若+∞<<A 0,则∑∞=1n n a 与∑∞=1n n b 同敛散;⑵.若0=A ,则当∑∞=1n n b 收敛时,∑∞=1n n a 也收敛;⑶.若+∞=A ,则当∑∞=1n n b 发散时,∑∞=1n n a 也发散.例6:∑∞=145ln n nn收敛.证明:∵对于∑∞=145ln n n n,有818945ln 1ln n n n n n=,且l i m 0ln 81=n n ,由∑∞=1891n n 收敛,知∑∞=145ln n n n收敛. 小结:一般在应用这一定理时,也要介入p 级数来做比值判别.⒋(cauchy 判别法)设∑∞=1n n a 是正项级数.⑴.若从某项起,,1<≤q a nn 则∑∞=1n n a 收敛;⑵.若有无穷多个n ,使得0>≥αn a ,则∑∞=1n n a 发散.⒌(cauchy 判别法的极限形式)设∑∞=1n n a 是正项级数,q a n n =lim .⑴.当10<≤q 时,∑∞=1n n a 收敛;⑵.当1>q 时,∑∞=1n n a 发散.⒍(d ’Alembert 判别法)设∑∞=1n n a 是正项级数.⑴.若从某项起 11<≤+q a a n n ,则∑∞=1n n a 收敛; ⑵. 若从某项起有11≥+n n a a ,则∑∞=1n n a 发散. ⒎(d ’Alembert 判别法)设∑∞=1n n a 是正项级数,q a a nn =+1lim. ⑴.当10<≤q 时,∑∞=1n n a 收敛;⑵.当1>q 时,∑∞=1n n a 发散.例7:2)11(211n n nn +∑∞=发散. 例8:∑∞=12)!2()!(n n n 收敛.小结:一般极限形式更容易解决问题.⒐(cauchy 积分判别法的极限形式)设)(x f 在],1[+∞上有定义,非负且单调递减,则∑∞=1)(n n f 与⎰+∞1)(dx x f 同敛散.四.交错级数设0≥n a ,称级数∑∞=-1)1(n n n a 为交错级数.1.设}{n a 单调递减趋于0,则级数∑∞=--11)1(n n n a 收敛,且和不大于1a .例9:∑∞=--11ln )1(n n nn收敛. 五.条件收敛与绝对收敛 称||1∑∞=n n a 为∑∞=1n n a 的绝对值级数1.若||1∑∞=n n a 收敛,则∑∞=1n n a 收敛.若||1∑∞=n n a 收敛,则称∑∞=1n n a 绝对收敛;若∑∞=1n n a 收敛,||1∑∞=n n a 发散,则称∑∞=1n n a 条件收敛.(这是条件收敛与绝对收敛的定义,同时可以作为判别方法)例10:()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n n n n 绝对收敛.证:分析只需证明∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n收敛即可.由柯西积分判别法,∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n 与广义积分⎰∞+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-111ln 1dx x x同敛散.而广义积分⎰∞+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-111ln 1dx x x 是收敛的(收敛于12ln 2-). ))0(1ln )1(11ln 10(>+++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+->⎰x C x x x dx x xx 时,附:所以∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n 收敛.所以()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n n n n 绝对收敛.注意:∑∑∞=∞=+1n 1)11ln(1n n n 与都是发散的,但∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n收敛.()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n nn n 绝对收敛,但是n n n 1)1(1∑∞=-与)11ln()1(1n n n +-∑∞= 都是条件收敛的,那我能否说用两个条件收敛的级数的线性组合一定可以表示出一个绝对收敛的级数?第二节 幂级数和Taylor 展式类似于数项级数,可以定义函数项级数.形如nn nx x a )(01-∑∞=的函数项级数称为幂级数.在此我们重点讨论00=x 时的情况(n n n x a ∑∞=1). 一.幂级数的收敛半径⒈(Abel 引理)如果幂级数nn n x a ∑∞=1在0x )0(0≠x 处收敛,则当||||0x x <时,nn n x a ∑∞=1绝对收敛;如果幂级数nn n x a ∑∞=1在0x )0(0≠x 处发散,则当||||0x x >时,n n n x a ∑∞=1发散.下面两个定理用来确定幂级数的收敛半径:⒉如果L a a n n =+||lim 1(+∞≤≤L 0),则幂级数n n n x a ∑∞=1的收敛半径L R 1=. ⒊如果L a n n =||lim ,则幂级数n n n x a ∑∞=1的收敛半径LR 1=. 例11:求幂级数nn nx n ∑∞=1和n n x n ∑∞=1的收敛半径.解:∵1|1|lim =+n n ,∴n n x n ∑∞=1的收敛半径为1;∵+∞→=n n nnlim ,∴n n n x n ∑∞=1的收敛半径为0.二.幂级数的性质⒈设幂级数nn n x a ∑∞=1和n n n x b ∑∞=1的收敛半径分别为1R 和2R ,取{}21,m in R R R =,则nn n nx b a)(1βα+∑∞==αnn n xa ∑∞=1+βnn n xb ∑∞=1在()R R ,-中成立.⒉n n n x a ∑∞=1的收敛半径为R ,则和函数)(x S 在收敛区间()R R ,-上连续.⒊对幂级数n n n x a ∑∞=1逐项积分或微分,不改变收敛半径,但有可能该变收敛区域.例12:求幂级数121!)!12(1-∞=∑-n n x n 的收敛域和和函数.解:显然0!)!12(1!)!12(1lim =-+nn n ,则幂级数121!)!12(1-∞=∑-n n x n 的收敛半径+∞=R ,收敛域为全体实数.令)(x S =121!)!12(1-∞=∑-n n x n ,则)(1!)!32(1)(232x xS n x x x S n n +=-+='∑∞=-, 即)(1)(x xS x S +=',解得)(x S =dt eext x ⎰-0222。
无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。
级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。
无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。
2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。
3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。
无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。
无穷级数的收敛性可以通过不同的收敛判别法来进行判断。
1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。
2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。
⽆穷级数第九章⽆穷级数⽆穷级数是函数逼近与近似计算的重要⼯具。
本章主要讨论--???---和函数展开收敛性傅⽴叶级数和函数展开收敛性幂级数函数项级数条件收敛绝对收敛任意项级数莱布尼兹审敛法交错级数根值法⽐值法⽐较法正项级数常数项级数级数,,,,,,,基本概念基本性质收敛域和函数§1、数项级数的基本概念与性质⼀、基本概念定义1(级数)设有⽆穷数列,称形式和{}∞1n u++++n u u u 21为⽆穷级数,简称级数,记为,即∑∞=1n n u ,211++++=∑∞=n n nu u u u其中每个数均称为级数的项,数称为级数的⼀般项或通项,级数的前n 项和n unnk k n u u u u s +++==∑= 211称为级数的部分和数列。
研究级数的基本问题:1、判定级数是否收敛——⽆穷个数相加是否等于⼀个有限数(级数的和);2、当级数收敛时,如何求其和。
,其部分和为,则n s ∑∞=1n nu∑∞=1n nu1、级数收敛此时,称s 为级数的和,并记,lim s s n n =?∞→?;1s un n=∑∞=2、级数发散不存在。
∑∞=1n nun n s ∞→?lim 显然,收敛级数才有和,发散级数⽆和;任何级数要不收敛,要不发散,两者不可兼得。
利⽤敛散性定义可以判定⼀些级数的敛散性,并求出收敛级数的和。
【例1】判定级数的敛散性。
∑∞=+1)1(1n n n 〖解〗由分项分式11)1(1 =+-=+k k k k k 得级数部分和为)1(1431321211+++?+?+?=n n s n )111()4131()3121()211(+-++-+-+-=n n111+-=n s n 故n n s ∞→lim )111(lim +-=∞→n n 1=于是,原级数收敛,且和为1,即.1)1(11=+∑∞=n n n □练习:判定下列级数∑∞=-+1)1(n n n 的敛散性。
⼀般,对形如∑∞=+-1)]1()([n n f n f 的级数均可利⽤敛散性定义判定其敛散性。
第七讲 无穷级数一、主要知识点(一)常数项级数1.数项级数的概念(1)无穷级数定义:121n n n u u u u ∞==++++∑ .(2)敛散性定义: 若S S n n =∞→lim (有限),则级数∑∞=1n n u 收敛,其和为∑∞==1n nuS .若n n S ∞→lim 不存在,则∑∞=1n n u 发散,没有和.2.数项级数的性质(1)级数∑∞=1n n u 与∑∞=1n n ku 有相同的敛散性)0(≠k .(2)设级数∑∞=1n n u 及∑∞=1n n v ,则若S u n n =∑∞=1,σ=∑∞=1n n v ,则σ±=±∑∞=S v u n n n )(1;若∑∞=1n n u 收敛,∑∞=1n n v 发散,则)(1∑∞=±n n n v u 发散;若∑∞=1n n u ,∑∞=1n n v 均发散,则)(1∑∞=±n n n v u 敛散性不能确定.(3)在级数∑∞=1n n u 中添加、去掉或改变有限项不影响级数∑∞=1n n u 的敛散性.(4)设级数∑∞=1n n u 收敛,则对其各项任意加括号后所得新级数仍收敛于原级数的和.(5)级数∑∞=1n n u 收敛的必要条件:0lim =∞→n n u .3.正项级数∑∞=1n n u )0(≥n u 判敛法(1)收敛的基本定理:正项级数∑∞=1n n u 收敛的充分必要条件是部分和数列}{n S 有上界.(2)比较判别法1:设级数∑∞=1n n u ,∑∞=1n n v 均为正项级数,若存在N ,当N n >时,有n n v u ≤≤0成立,则1)若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛.2)若级数∑∞=1n n u 发散,则级数∑∞=1n n v 发散.(3)比较法的极限形式2:设级数∑∞=1n n u ,∑∞=1n n v 均为正项级数,且limn n nu A v →∞=(0)n v ≠,则1)当+∞<<A 0,则级数∑∞=1n n u 与级数∑∞=1n n v 敛散性相同.2)当0=A ,若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 收敛.3)当+∞=A ,若级数∑∞=1n n v 发散,则级数∑∞=1n n u 发散.常用作比较的级数:几何级数⎪⎩⎪⎨⎧-=∑∞=发散,10q aaqn n1||1||≥<q q ; -p 级数⎩⎨⎧=∑∞=发散收敛11n pn11≤>p p ;调和级数+++=∑∞=3121111n n是发散的.注意:若级数的分母、分子关于n 的最高次数分别为p 和q ,即1qpn n n αβ∞=++∑(其中,αβ为含n 的次数分别低于,p q 的多项式),则当1p q ->时级数收敛,当1p q -≤时级数发散. (4)比值判别法(达朗贝尔判别法)(适用于n u 中含有!n ,nn 及na 等因子):设级数∑∞=1n n u (0≥n u ),若ρ=+∞→nn n u u 1lim,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数发散若,则级数收敛若,方法失效.(5)根值判别法(柯西判别法)(适用于n u 含有以n 为指数幂的因子):设级数∑∞=1n n u (0≥n u ),若ρ=∞→nnn u lim,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数发散若,则级数收敛若,方法失效.注意:根值法,比值法条件是充分条件而非必要条件. (6)拉阿伯判别法:设级数∑∞=1n n u (0n u >),若1lim (1)n n n u n u ρ→∞+-=,则11111n n n n u u ρρρ∞=∞=⎧>⎪⎪⎪<⎨⎪⎪=⎪⎩∑∑若,则级数收敛若,则级数发散若,方法失效.(7)柯西积分判别法:若函数()(0)f x x >是非负的不增函数,则级数1()n f n ∞=∑与广义积分1()f x dx +∞⎰同时收敛或同时发散.例如:级数11pn n∞=∑;21(l n )pn n n ∞=∑;21l n (l n )pn n n n ∞=∑与广义积分1pdx x+∞⎰;2(l n )pdx x x +∞⎰;2l n (l n)pdx x x x +∞⎰当1p >时同时收敛,当1p ≤时同时发散.4.一般项级数判敛法(1)交错级数)0()1(11≥-∑∞=-n n n n u u 莱布尼兹判敛法:若交错级数∑∞=--11)1(n n n u ,满足条件1)1,(1,2,)n n u u n +≤= ;2)0lim =∞→n n u ,则交错级数∑∞=--11)1(n n n u 收敛,且其和1u s ≤,余项1+≤n n u R .注意:证明比较n u 与1+n u 大小的方法有三种:1)比值法:考查11<+nn u u ;2)差值法:考查01<-+n n u u ;3)由一般项n u 找出连续可导函数)(x f ,使)(n f u n =,考查导数0)(<'x f ,函数)(x f 就是单调减少,则有n n u u <+1.(2)亚伯耳判敛法:级数1nn n uv ∞=∑(其中,n n u v 为实数)满足条件1)级数1n n u ∞=∑收敛,2){}n v 为单调有界数列,则级数1n n n u v ∞=∑收敛.(3)狄里克利判敛法:级数1nn n uv ∞=∑(其中,n n u v 为实数)满足条件1)部分和数列1nn ii S u==∑有界,2)当n →∞时,n v 为单调趋向于零,则级数1n n n u v ∞=∑收敛.(4)绝对收敛与条件收敛判别:绝对收敛:若级数∑∞=1||n n u 收敛,则称级数∑∞=1n n u 为绝对收敛.条件收敛:若级数∑∞=1||n n u 发散,而级数∑∞=1n n u 收敛,则称级数∑∞=1n n u 为条件收敛.若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛,反之不一定成立.如∑∞=-1)1(n nn.注意:若用比值法(或根植法)判定级数∑∞=1||n n u 发散,则级数∑∞=1n n u 一定发散.(二)幂级数1.幂级数的收敛区间设幂级数∑∞=0n n n x a ,若1lim ||n n na a ρ+→∞=(或limn ρ→∞=,则收敛半径1,0,00,R ρρρρ⎧≠⎪⎪⎪=+∞=⎨⎪=+∞⎪⎪⎩当时当时当时.收敛区间[],R R -、(,)R R -、[,)R R -、(,]R R -四种情况之一.注意:若幂级数为∑∞=022n nn xa 或∑∞=++01212n n n x a (即缺少项的幂级数)时,应如何求收敛半径?2.幂级数的和函数(1)幂级数和函数的性质:设幂级数∑∞=0n n n x a 的和函数()S x 在区间收敛区间(,)R R -内连续、可导、可积,且可逐项求导、逐项积分,即11()(),(,)n n nn n n S x ax na xx R R ∞∞-==''==∈-∑∑,1(),(,)1x x nn n n n n a S x dx a x dx xx R R n ∞∞+====∈-+∑∑⎰⎰.(2)幂级数和函数的求法: 1)求出给定幂级数的收敛域;2)通过加、减、逐项积分或微分、变量代换(如:以x -代替x ,以2x 代替x )等运算,将给定的幂级数化为常见函数展开式的形式,如:① 当所给的幂级数系数的分母出现!n 时,常常转化到xe 的展开式;② 当所给的幂级数系数出现)!2()1(n n-或1(1)(21)!n n +-+时,常常转化到x cos 或x sin 的展开式;③ 当系数是n 的多项式时,常常通过幂级数的加、减、逐项积分或微分运算,转化到等比级数xx n n -=∑∞=110,从而得到新的幂级数的和函数.3)对于得到的和函数再做相反的分析运算,便得原幂级数的和函数.3.函数的幂级数展开(1)泰勒级数:nn n x x n x f)(!)(000)(-∑∞=;(2)麦克劳林级数:()(0)!n nn fx n ∞=∑.(3)函数展开成幂级数1)展开式的唯一性:无论用什么方法将函数展为幂级数的展开式是唯一的; 2)展开的条件:函数在某点0x 的邻域内有任意阶导数;3)展开的方法:直接展开法与间接展开法.(4)直接展开法:利用泰勒级数nn n x x n x f)(!)(000)(-∑∞=,按下列步骤将函数)(x f 在点0x 展开.1)先求出函数)(x f 的各阶导数在0x x =处的值)(0x f ,0()f x '()00()()n f x fx ''再写出级数nn n x x n x f)(!)(000)(-∑∞=;2)写出拉格朗日余项)!1())(()(10)1(+-=++n x x fx R n n n ξ ,证明lim ()n n R x →∞是否趋于零,若lim ()0n n R x →∞=,则nn n x x n x fx f )(!)()(000)(-=∑∞=,即函数)(x f 在0x 处能展开成泰勒级数.3)求出收敛区间.(5)间接展开法:利用下面已知的6个函数的展开式,通过适当的变量代替,四则运算,复合及逐项积分、微分运算将一个函数展开成幂级数——间接展开法. 常用的函数展开式1)23011,(1,1)1nnn x x x x x x x ∞==++++++=∈--∑;2)23011(1)(1),(1,1)1n nnnn x x x x x x x∞==-+-++-+=-∈-+∑ ;3)231111,(,)2!3!!!nxnn xe x x x x x n n ∞==++++++=∈-∞+∞∑;4)212135011sin (1)(1),(,)3!5!(21)!(21)!n n nnn xxx x x x x n n ++∞==-+-+-+=-∈-∞+∞++∑ ;5)2224011cos 1(1)(1),(,)2!4!(2)!(2)!nnnnn xxx x x x n n ∞==-+-+-+=-∈-∞+∞∑ ;6)1231111(1)ln(1)(1),(1,1]23nn nn n xxx x x x x nn-∞-=-+=-+-+-+=∈-∑;7)2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++1(1)(1)1,(1,1)!nn n x x n ααα∞=--+=+∈-∑.(三)傅里叶级数1.周期函数的傅立叶级数(1)以2π为周期函数:设)(x f 在区间],[ππ-上是可积函数, ⎰-==πππ),2,1,0(,c o s )(1n n x d x x f a n ⎰-==πππ),2,1(,sin )(1n nxdx x f b n则称级数∑∞=++10)sin cos (2n n nnx b nx aa为函数)(x f 的傅里叶级数,称n n b a ,为傅里叶系数. (2)以2l 为周期函数:设)(x f 在区间],[l l -上是可积函数, ⎰-==l l n n dx l x n x f l a ),2,1,0(,cos )(1 π ⎰-==l ln n dx lx n x f lb ),2,1(,sin)(1 π则称级数∑∞=++10)sincos(2n n n lx n b lx n a a ππ为函数)(x f 的傅里叶级数,称n n b a ,为傅里叶系数.2.傅立叶级数收敛定理设函数)(x f 满足狄里克雷条件1)在区间],[l l -上连续或只有有限个第一类间断点; 2)在区间],[l l -上只有有限个极值点, 则傅里叶级数∑∞=++10)sincos(2n n n lx n b lx n a a ππ在区间],[l l -上收敛,并且其和函数)(x f 有1)当x 为)(x f 连续点时,∑∞=++10)sincos(2n n n lx n b lx n a a ππ)(x f =;2)当x 为)(x f 间断点时,∑∞=++10)sincos(2n n n l x n b l x n a a ππ2)0()0(++-=x f x f ;3)当x 为)(x f 端点时,∑∞=++10)sincos (2n n n lx n b lx n a a ππ2)0()0(-++-=l f l f .3.奇偶函数展开为傅立叶级数正弦级数:nx b n n sin 1∑∞=,其中⎰=ππsin )(2nxdx x f b n ,1,2,n = ;余弦级数:nx a a n n cos 210∑∞=+,其中⎰=ππcos )(2nxdx x f a n ,1,2,n = .二.例题分析1. 判别常数项级数敛散性例1.设∞=∞→n n a lim ,且0≠n a ,判别级数∑∞=+⎪⎪⎭⎫⎝⎛-1111n n na a 的敛散性. 解: 令111+-=n n n a a u ,则前n 项的部分和111322111)11()11()11(++-=-++-+-=n n nn a a a a a a a a S ,因为01lim1=+∞→n n a ,所以11lim a S n n =∞→,即原级数收敛且其和11a S =.例2.判别级数下列级数敛散性(1)∑∞=-1)cos1(n nπ; (2)11n ∞=∑(3)若级数)0(1≥∑∞=n n n a a 收敛,则级数∑∞=1n n na 收敛.解:(1)因为nn2sin2cos12ππ=-,所以将其与级数∑∑∞=∞==222212)2(2n n nn ππ比较,又因为 1)2(22s i n2lim222=∞→n nn ππ,所以级数nn 2sin221π∑∞=收敛,从而级数∑∞=-1)cos1(n nπ收敛.(2)将级数1n ∞=∑211n n∞=∑进行比较,即求极限222l i ml i m1(!)n n n n u nn n→∞→∞=,令22(!)n nny n =,则21ln 2ln 2ln !2[ln ln !]n y n n n n nn=-=-12[(l n l n 1)(l nl n 2)(l n l n)]nn nn n=-+-+-112l nni i n n==-∑,于是 1011l i m l n 2l i ml n 2l n l n 2nn n n i i y xdx n n→∞→∞==-=-=∑⎰, 所以 2l i m n n y e →∞=,因此由级数∑∞=121n n收敛得到级数1n ∞=∑(3)由于)1(21122na na na n n n +≤⋅=,而且级数∑∞=1n n a 与级数∑∞=121n n均收敛,所以级数∑∞=1n n na 收敛.练习题:判别级数的敛散性(1))0,0(1>>∑∞=s a na n sn ;当1<a 时,级数收敛,当1>a 时,级数发散,当1=a 时,级数为∑∞=11n sn,这是p 级数,当1>s 时收敛,当1≤s 时发散.(2)∑∞=1!3n nnnn ;(发散) (3))0(111>+∑∞=a an n;(1>a 收敛,1≤a 发散) (4)∑∞=1233cosn nn n π;(收敛) (5)∑∞=+-+111)1(n n n n n.(收敛)例3.判别下列级数敛散性,若收敛是绝对收敛还是条件收敛?(1)1)1ln()1(1++-∑∞=n n n n; (2)1!(1)nnnn e n n∞=-∑;(3)当k 为何值时,级数221(1)(ln )nkn n n ∞=-∑收敛,是绝对收敛,还是条件收敛?解:(1)先考虑正项级数1)1ln(1++∑∞=n n n .将级数1)1ln(1++∑∞=n n n 与级数111+∑∞=n n 进行比较,因为)2(,1)1l n (11>++<+n n n n ,由级数111+∑∞=n n 的发散,即可得级数1)1ln(1++∑∞=n n n 发散,但是交错级数1)1ln()1(1++-∑∞=n n n n,满足条件:1)ln(1)ln(1)1limlimlim0111n x x n x n x x →∞→+∞→+∞++===+++,2)n n u u <+1,证明之, 令 1)1l n ()()(++===x x x f n f u n ,因为导数1ln(1)()0,(3)1x f x x x -+'=<≥+,所以函数)(x f 当3≥x 时,是单调减少的,从而 n n u u ≤+1,),4,3( =n ,于是,由莱布尼兹判别法知级数1)1ln()1(1++-∑∞=n n n n条件收敛.(2)先考虑正项级数1!nnn e n n∞=∑,因为111(1)!(1)1!(1)n n n nnnnen u e n e n u nn+++++==+,而1(1)ne n+<,所以11(1,2,)n nu u +> ,于是11n n u u u e ->>>= ,则lim 0n n u →∞≠,从而lim (1)0n n n u →∞-≠,故原级数1!(1)nnnn e n n∞=-∑发散.(3)当1k ≥时,22110ln ln kn nn n<≤,由级数221ln n n n∞=∑收敛得到级数221ln kn n n∞=∑收敛,所以当1k ≥时,级数221ln kn n n ∞=∑绝对收敛;当01k ≤<时,由于211ln k n nn>,由级数21n n∞=∑发散得到级数221ln kn n n∞=∑发散,由因为21ln n ku n n=单调减少,且21lim0ln kn n n→∞=,2莱布尼茨判别法知级数221(1)(ln )nkn n n ∞=-∑收敛,于是级数221(1)(ln )nkn n n ∞=-∑条件收敛;当0k <时,由于21lim0ln kn n n→∞=∞≠,则级数221(1)(ln )nkn n n ∞=-∑发散.练习题:判断下列级数的敛散性,若收敛则说明是绝对收敛还是条件收敛?(1)1ln (1)nn n n∞=-∑;(条件收敛)(2)11(1)(1)!n nn nn +∞=-+∑.(发散)例4.设1211211212345632313n u n n n=+-++-+++--- ,111123n v n n n=++++ ,求(1)1010u v ;(2)lim n n u →∞.解:因为1211211212345632313n u n n n=+-++-+++---11111111234532313n n n =++++++++-- 21212121[()()()()]33669933n n -++++++++111111111(1)2345323n n =++++++-++++ , 所以(1)10111111121330u =++++,10111111121330v =++++,于是10101u v =; (2)由于当n →∞时,1111ln 23n C n++++-→ (0.577216C ≈称欧拉常数),则有1111ln 23n C n nε++++=++ ,(其中n ε为无穷小) 于是 111111111(1)2345323n u n n=++++++-++++ l n 3(l n )n n C n C n τε=++-++,(其中,n n τε为无穷小) 3lnn n n nτε=+-,故3lim lim [ln]ln 3n n n n n n u nτε→∞→∞=+-=.2.求幂级数收敛域、收敛区间例5.求下列幂级数的收敛域(1)nn x n n ∑∞=12)!2()!(; (2)nn n xn n 212)1(∑∞=-+;(3)∑∞=--1)21(2)1(n nnnx n; (4)∑∞=+⨯+1129)13(n nn n x .解:(1)因为4121)12(1lim)!2()!()!22(])!1[(limlim221=++=++==∞→∞→+∞→n n n n n n a a n n nn n ρ,所以收敛半径为4=R .当4=x 时,原级数为∑∞=124)!2()!(n nn n ,令nn n n b 4)!2()!(2=,因为112221>++=+n n b b nn ,则0211>=>>>-b b b n n ,所以0lim ≠∞→n n b ,因此级数发散;当4-=x 时,原级数为∑∞=-12)4()!2()!(n nn n ,由于0lim ≠∞→n n b ,所以0)1(lim ≠-∞→n nn b ,因此级数发散,于是级数nn x n n ∑∞=12)!2()!(收敛域为)4,4(-.(2)令t x =2,则nn n t n n 2)1(1∑∞=-+=nn t nn ∑∞=++112,因为 221121111lim22121lim1=+++++=+++++=∞→+∞→nnn n n n n n nn n ρ,所以级数nn t nn ∑∞=++112的收敛半径为12R '=,从而级数nn n xn n 212)1(∑∞=-+的收敛半径为21=R ,当21±=x 时,级数∑∑∞=∞=++=++1111)21(12n nn nnn n n 发散,因此原幂级数的收敛域为)21,21(-.(3)令t x =-21,则=--∑∞=1)21(2)1(n nnnx n∑∞=-12)1(n nnnt n,因为 2112lim212lim1=+=+=∞→+∞→nnn n nn n ρ,所以幂级数12(1)nnnn ∞=-∑的收敛半径为12R '=,从而原级数∑∞=--1)21(2)1(n nnnx n的收敛半径为21=R ,当21-=x 时,级数∑∑∞=∞==--111)21(2)1(n n nnnnn 发散;当21=x 时,级数∑∑∞=∞=-=-11)1()21(2)1(n nn nnnnn 收敛,因此幂级数1(1)nnnn ∞=-∑的收敛域为]21,21(-. 又因为t x =-21,则212121≤-<-x ,从中解出10≤<x ,于是原级数∑∞=--1)21(2)1(n nnnx n的收敛域为]1,0(.(4)设nn n n x x u 9)13()(12++=,因为由比值法211232|13|919)1(|13|9|13|lim)()(lim)(+=+++==+++∞→+∞→x n x n x x u x u x n n n n n n n n ρ,所以,当1|13|91)(2<+=x x ρ,即3234<<-x 时,原级数绝对收敛;当1|13|91)(2<+=x x ρ,即34-<x 或32>x 时,原级数发散;又当34-=x 时,原级数为∑∞=-13n n发散;当32=x 时,原级数为∑∞=13n n发散,因此该幂级数的收敛域为)32,34(-. 练习题:求下列幂级数的收敛半径及收敛域1.11(3(2))nnnn x n ∞=+-∑;([,3)-) 2.12141-∞=∑n n nxn ;()2,2(-)3.∑∞=-⨯--1215)2()1(n nnn n x .(]52,52[,5+-=R )例6.设111123n u n=++++,求幂级数1nn nxu ∞=∑的收敛半径、收敛区间及收敛域. 解:因为1111111123limlimlim11111231n n n n n nn u n u u u n ρ→∞→∞→∞++++++====+++++ ,所以收敛半径为1R =,收敛区间为收敛区间(-1,1). 当1x =-时,级数1(1)nn nu ∞=-∑为交错级数,且1111lim0,n nnn u u u →∞+=>,由莱布尼茨判别法知级数1(1)nn nu ∞=-∑收敛;当1x =时,由于2n u n <,即有112nu n>,所以级数11n nu ∞=∑,于是幂级数1nn nxu ∞=∑的收敛域为[1,1)-.3.幂级数的求和(1)求出给定幂级数的收敛域;(2)通过加、减、逐项积分或微分、变量代换(如:以x -代替x ,以2x 代替x )等等运算,将给定的幂级数化为常见函数展开式的形式,如:① 当所给的幂级数系数的分母出现!n 时,常常转化到x e 的展开式;② 当所给的幂级数系数出现)!2()1(n n-或)!12()1(1---n n 时,常常转化到x cos 或x sin 的展开式;③ 当系数是n 的多项式时,常常通过幂级数的加、减、逐项积分或微分运算,转化到等比级数xx n n -=∑∞=110,从而得到新的幂级数的和函数;(3)对于得到的和函数再做相反的分析运算,便得原幂级数的和函数. 例7.求下列幂级数的和函数(1))1(21212-∞=∑-n n nxn ; (2)∑∞=+1)1(n nn n x; (3)20(2)!nn xn ∞=∑;(4)求nn x n n ∑∞=+1!1的和函数,并由此求nn n n 8!11∑∞=+之值.解:(1)先求收敛域因为2222211211212lim21)12(2212limlimx xn n xn xn u u n n nnn n nn n =-+=-+==∞→-+∞→+∞→ρ,当1212<=xρ,即2||<x 时,幂级数)1(21212-∞=∑-n n nxn 收敛;当1212>=xρ,即2||>x 时,幂级数)1(21212-∞=∑-n n nxn 发散;当2||±=x 时,幂级数∑∑∞=-∞=-=-1112122212n n n nn n 发散,因此该级数)1(21212-∞=∑-n n nxn 的收敛域为)2,2(-.再求其和函数,当0≠x 时=)(x S )1(21212-∞=∑-n n nxn 211()2n nn x-∞='=∑2112n nn x -∞='⎛⎫= ⎪⎝⎭∑ 2221112()212n n x x xx x ∞='⎛⎫'⎪⎛⎫==⋅ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭∑ 222222(2)xx xx '+⎛⎫== ⎪--⎝⎭,)0(≠x 当0=x 时,21)0(=S .于是该幂级数的和函数为⎪⎪⎩⎪⎪⎨⎧=≠-+=0,210,)2(2)(222x x x x x S . (2)显然幂级数∑∞=+1)1(n nn n x的收敛区间为]1,1[-,求和函数)(x S :当0=x 时,0)0(=S ;当0≠x 时,因为 ()1n 1n 1()(1)n nx xxS x n n n +∞∞=='⎛⎫'==⎪+⎝⎭∑∑,且 ()11n 1n111()()(1)1n n n n xxxS x xn n nx+∞∞∞-===''⎛⎫'''====⎪+-⎝⎭∑∑∑,两边积分得 ()01()l n (1)1x x S x d x x x'==---⎰, 两边再积分一次得 0()l n (1)(1)l n (1)x x S x x d x x x x=--=---⎰, 因此 )1l n ()11(1)(x xx S ---=,于是该幂级数的和函数为⎪⎩⎪⎨⎧=⋃-∈---=0,0)1,0()0,1(),1ln()11(1)(x x x xx S .(3)级数的收敛域为(,)-∞+∞,令22421()1(2)!2!4!(2)!nnn xxxxs x n n ∞===+++++∑ ,两边求导,得213211()(21)!1!3!(21)!n n n xxxxs x n n --∞='==++++--∑于是有 234212()()1!2!3!4!(21)!(2)!n nx xxxxxs x s x n n -'+=++++++-而23421211!2!3!4!(21)!(2)!n nxx xxxxxe n n -=+++++++-所以()()xs x s x e '+= 这为一阶非齐次线性微分方程,可解得通解为1()2xxs x C ee -=+,由初始条件(0)1s =,得12C =,故 201()(2)!2nx xn xe en ∞-==+∑.(4)先求幂级数nn x n n ∑∞=+1!1的收敛域, 因为0)!1(2lim1!)!1(2limlim1=++=+++==∞→∞→+∞→n n n n n n u u n n nn n ρ,所以收敛半径为+∞=R ,收敛区间为),(+∞-∞.再求和函数,因为该幂级数的系数带有!n ,所以它的和函数与指数函数x e 有关.于是 =)(x S nn xn n ∑∞=+1!11111(1)!!nnn n x xn n ∞∞===+-∑∑11111(1)!!n nn n x xx n n ∞∞-===+--∑∑1)1(1-+=-+=xxxe x e xe,),(+∞-∞∈x ,最后取8=x ,得118!nn n n ∞=+=∑198-e .练习题:求下列幂级数的和函数(1)∑∞=+0)1(n n x n ;()1,1(,)1(1)(2-∈-=x x x S )(2)∑∞=+11n nx n n.(⎪⎩⎪⎨⎧=⋃-∈-+-=0,0)1,0()0,1(),1ln(111)(x x x x x x S )例8.计算下列各题:(1)设幂级数0n n n a x ∞=∑的系数满足012,1,(1,2,)n n a na a n n -==+-= ,求此幂级数的和函数.(2)设12211,1,23,(1)n n n a a a a a n ++===+≥,求幂级数0n n n a x ∞=∑的收敛半径、收敛域及和函数.(3)求级数31()n n x ∞=∑中20x 的系数.解:(1)据题意知1(1)1n n n a a --=-,因此 120111111(1)(1)(1)1!!n n n a a a a nn n n n ---=-=-==-=- ,所以 11!n a n =+,于是为11()(1)!!nnnnnn n n n s x ax xx xn n ∞∞∞∞======+=+∑∑∑∑1||11x e x x=+<-. (2)因为2123n n n a a a ++=+为差分方程,则特征方程为 2230r r --=, 其根为123,1r r ==-,所以11123(1)n n n a c c --=+-,由121,1a a ==得12121,31c c c c +=-=,求出1212c c ==,所以111(3(1))2n n n a --=+-.下面讨论级数11111(3(1))2nn n nn n n a x x ∞∞--===+-∑∑,因为 11111(1)33(1)3limlimlim 313(1)1()3nn n n n n n n n n n nu u ρ-+--→∞→∞→∞--++-====+-+-,所以幂级数12(1)nnnn ∞=-∑的收敛半径为12R '=,从而原级数1111(3(1))2n n nn x ∞--=+-∑的收敛半径为13R =,当13x =-时,级数11111(1)1(3(1))()[()]333nn n nnn n ∞∞--==-+--=-∑∑发散; 当13x =时,级数111111(1)(3(1))()[]333nn n nnn n ∞∞--==-+-=-∑∑发散,因此幂级数1111(3(1))2n n nn x ∞--=+-∑的收敛域为11(,)33-. 设111111111()(3(1))[(3)(1)]223n n nnn nn n n s x x x x ∞∞∞---====+-=+-∑∑∑131(1)61321(13)(1)xxx x xxx x -=+=-+-+,11(,)33x ∈-.(3)因为333311()()()11n n x x x xx∞===--∑,因为230111nnn xx x x x x∞===++++++-∑ ,该式两边两阶导数,得23223243(2)(1)(1)nx x n n x x =+⋅+⋅+++++- 0(2)(1)nn nn x ∞==++∑,于是31(2)(1)(1)2nn n n x x ∞=++=-∑,则3333311(2)(1)()()()112n n n n xn n x x xxx∞∞+==++===--∑∑,故级数31()n n x ∞=∑中20x 的系数为19181712⨯=.4.求数项级数的和方法:1)利用级数收敛的定义:先求出部分和n S ,再求其极限S S n n =∞→lim 为所求;2)引入相应的幂级数:① 找一个幂级数n n n x a ∑∞=1,使n nn u x a =0;② 求幂级数nn n x a ∑∞=1的收敛区间(,)R R -,若当0(,)x R R ∈-时,幂级数01nn n a x ∞=∑收敛,则∑∞=1n n u 也收敛;③ 求出幂级数n n n x a ∑∞=1的和函数)(x S ,再让x 在收敛区间内取个特定的值0x x =,即可求出其和.例9.求下列数项级数的和:(1)1n S ∞==∑;(2)∑∞==12n nnS ;(3)∑∞=12!n n n; (4)01(1)(21)!nn n n ∞=+-+∑.解:(1)因为)1()12(+-++-+=n n n n u n ,所以+-+-+-+-=+++=)]32()34[()]21()23[(21n n u u u S+--+-+++-+-+)]1()1[()]43()45[(n n n n)]1()12[(+-++-++n n n n)12(21+-++-=n n12121++++-=n n .因此该级数的和∑∞=++-+=1)122(n n n n S 21lim -==∞→n n S .(2)解:设幂级数nn x n ∑∞=1,只要求出幂级数n n x n ∑∞=1在点210=x 收敛,且其和即为数项级数∑∞==12n nnS 的和.显然级数n n x n ∑∞=1的收敛区间为)1,1(-,和函数1111()()nn nn n n S x nxx nxx x ∞∞∞-==='===∑∑∑211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫===⎪ ⎪--⎝⎭⎝⎭∑. 当21=x 时,∑∞==12)21(n nn S 2)211(212=-=, 即所求的数项级数的和为221==∑∞=n nn S .或用另一方法如下:该级数的部分和nn n S 223222132++++=,且1432223222121+++++=n n n S ,上两式相减得11322211))21(1(2122121212121++---=-++++=n nn nn n n S ,从而n n n nS 2))21(1(2--=,于是 2]2))21(1(2[lim lim =--==∞→∞→n n n n n nS S .(3)根据该数项级数的特点,先考虑指数函数xe 的幂级数12012!(1)!(2)!n n n xn n n xxxe n n n --∞∞∞======--∑∑∑,取1=x 得,012111!(1)!(2)!n n n e n n n ∞∞∞======--∑∑∑,因此级数的和∑∞=12!n n n1111(1)!(1)!n n n n n n ∞∞==-+===--∑∑21112(2)!(1)!n n e n n ∞∞==+=--∑∑.(4)因为)!12(1)1(0++-∑∞=n n n n)!12(22)1(210++-=∑∞=n n n n⎥⎦⎤⎢⎣⎡++++-=∑∞=)!12(1)!12(12)1(210n n n n n 01111(1)(1)2(2)!2(21)!nnn n n n ∞∞===-+-+∑∑又由于正弦函数)!12()1(sin 120+-=+∞=∑n xx n n n,余弦函数)!2()1(cos 20n xx nn n∑∞=-=,取1=x ,得)!12(1)1(1sin 0+-=∑∞=n n n,)!2(1)1(1cos 0n n n∑∞=-=,于是)!12(1)1(0++-∑∞=n n n n1(c o s 1s i n 1)2=+. 练习题 求下列数项级数的和(1)1121211()n n n aa∞+-=-∑;(1a -)(2)1312nn n ∞=-∑.(提示:考虑1(31)n n n x ∞=-∑,结果为5)例10.求极限])2....(842[lim 312719131nnn ∞→.解: 因为该级数的一般项为23111231113339273333[248 (2)]22ninni n i n=++++∑== ,所以若求出级数∑∞=13n nn 的和,则∑=∞=∞→133127191312])2....(842[lim n nnn nn .先求出幂级数∑∞=1n nnx 的和,再取31=x 即得数项级数∑∞=13n nn 的和.因为 1111()()nn nn n n S x n x x n x x x∞∞∞-==='===∑∑∑21()()1(1)nn x x x x x xx ∞=''===--∑,所以 43)311(313)31(20=-==∑∞=n nnS , 从而 211121113l i m ()3339273334l i m [248 (2)]222nnnn n nn nn ∞→∞=+++→∞∑=== . 5.函数展为幂级数(用间接法展开)例11.将下列函数展为x 的幂级数 (1) )1ln()(2++=x x x f ;(2)将)1()(xe dxd x f x-=展开为x 的幂级数,并求数项级数∑∞=+1)!1(n n n 的和;(3)已知61212π=∑∞=n n,求定积分dx xx ⎰-101ln .解:(1)因为=)(x f )1ln(2++x x 的导数为122()(1)f x x -'=+,),21(2x u m =-=,又导函数122()(1)f x x -'=+的展开式为122()(1)f x x -'=+++-----++---+-+=nxn n x x 242)121()121)(21(!1)121)(21(!21)21(1+--+++-=nnxn n x x 242!)!2(!)!12()1(!!4!!3211∑∞=--+=12!)!2(!)!12()1(1n nnxn n ,上式两边从0到x 积分,得)11(,12!)!2(!)!12()1()(112≤≤-+--+=∑∞=+x n x n n x x f n n n.(2)因为 ),(,!!1!31!211032+∞-∞∈=++++++=∑∞=x n xx n x x x e n nnx,所以xe x1-+∞<<=++++++=∑∞=--||0,!!1413121111132x n xxn x x x n n n上式两边对x 求导,得 )1()(xe dx d xf x-=1122)!1(!1433221-∞=-∑+=+-++++=n n n xn nxn n x x ,当1=x ,即可得11)1()1()!1(1211=+-=-==+==∞=∑x xxx xn xe xexe dxd f n n.(3)因为)1,1(,110-∈=-∑∞=x x x n n,所以111ln ln ()(ln )1nnn n xdx x x dx x xdx x∞∞====-∑∑⎰⎰⎰11112000ln 1(1)n n n x x x n n +∞+=⎡⎤=-⎢⎥++⎢⎥⎣⎦∑ 1200ln 1lim 1(1)n x n x x n n ∞+→+=⎡⎤=-⎢⎥++⎣⎦∑。
第七章 无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在 上的傅里叶级数 函数在 上的正弦级数和余弦级数 考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与 级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5。
了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握 sin x ,cos x ,ln(1)x +及arctan x 的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开成幂级数。
11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在 上的函数展开为傅里叶级数,会将定义在 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。
一.无穷级数概论1.无穷级数定义设{}n a 为一个数列,称1231............n n a a a a +∞==++++∑为无穷级数.注记1:但1n n a +∞=∑只是一种形式上的记法.只有讨论了收敛性,才有意义.2.无穷级数收敛的定义(1)部分和、部分和数列的定义对任意n N +∈,称数列{}n a 前n 项和1nn k k S a ==∑为级数1k k a +∞=∑的部分和.称数列{}n S 为级数1k k a +∞=∑的部分和数列.(2)无穷级数收敛的定义若级数1k k a +∞=∑的部分和数列{}n S 是收敛的,则称级数1k k a +∞=∑是收敛的,并且记1lim kn n k aS +∞→+∞==∑.3.无穷级数收敛的性质(1)无穷级数收敛的必要条件I若无穷级数1n n a +∞=∑收敛,则其部分和数列{}n S 有界.反之不然.事实上,由于1n n a +∞=∑收敛,因此,其部分和数列{}n S 收敛,于是,{}n S 有界.但{}n S 有界,{}n S 却未必收敛.例如,级数()111n n +∞-=-∑部分和数列为11(1)2n n S -+-=,{}n S 有界,但()111n n +∞-=-∑不收敛.例1.11n n+∞=∑不收敛.事实上,[][][][][][][]222222log 1log log log log 12log 11111......2341111111111111 (2345678212122112421111)1......1......1log 24822222n n n n n n n S nn n --=+++++⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++++++ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭>+++++=++++=+→+∞ ()n →+∞于是,{}n S 不收敛,即11n n+∞=∑不收敛.(2)无穷级数收敛的必要条件II 若1n n a +∞=∑收敛,则lim 0n n a →∞=.事实上,假设1n n a +∞=∑部分和为n S ,则{}n S 收敛,记lim n n S S →∞=,于是,()11lim lim lim lim 0n n n n n n n n n a S S S S S S --→∞→∞→∞→∞=-=-=-=.但反之结论不成立.例如,虽然1lim 0n n →∞=,但无穷级数11n n+∞=∑不收敛.(3)无穷级数收敛的必要条件III若无穷级数1n n a +∞=∑收敛,则对其任意加括号都收敛,而且级数和不变.假设加括号后的级数写为()()()()111222311121212121..............................n n ni i i i i i i i i i n a aa a a a a a a a a a --+∞++++++=++++++++++++=+++∑这里,00i =.则其部分和为n ni S S '=.由于1n n a +∞=∑收敛,于是,{}n S 收敛,于是,其任意子列{}n i S 收敛,且收敛值与{}n S 的一样,即级数()11121......n n ni i i n a a a --+∞++=+++∑收敛,且()111211......n n n i i i n n n a a a a --+∞+∞++==+++=∑∑.(4)无穷级数收敛的充分必要条件I无穷级数1n n a +∞=∑收敛当且仅当lim 0n n a →∞=且{}2n S (或{}21n S -)收敛.必要性是显然的.至于充分性,我们利用了这样一个事实:数列{}n a 收敛当且仅当221lim lim n n n n a a -→∞→∞=.现在,{}2n S 收敛了,而2122n n n S S a -=-,而()20n a n →→=∞,于是,212lim lim n n n n S S -→+∞→+∞=.故{}n S 也收敛.若{}21n S -收敛,也是同理的.(5)无穷级数收敛的充分必要条件II无穷级数1n n a +∞=∑收敛当且仅当lim 0n n a →∞=且()2121n n n a a +∞-=+∑收敛.或者说()2211n n n a a +∞+=+∑也可以.必要性是显然的.至于充分性,若()2121n n n a a +∞-=+∑收敛,则其部分和数列()2121n k k k a a -=⎧⎫+⎨⎬⎩⎭∑是收敛的,但()21221nk k n k a a S -=+=∑,因此,{}2n S 收敛.又lim 0n n a →∞=,因此,由(4)的结论,无穷级数1n n a +∞=∑收敛.若()2211n n n a a +∞+=+∑收敛,则其部分和数列()2211n k k k a a +=⎧⎫+⎨⎬⎩⎭∑也收敛.又()21221121111n n k k k n k k a a a a S a +++==+=-=-∑∑,因此,{}21n S +也收敛.又由于lim 0n n a →∞=,因此,由(4),无穷级数1n n a +∞=∑收敛.4.无穷级数的运算性质(1)若无穷级数1n n a +∞=∑和1n n b +∞=∑收敛,则()1n n n a b +∞=+∑也收敛,且()111nn n n n n n ab a b +∞+∞+∞===+=+∑∑∑.事实上,假设1n n a +∞=∑的部分和为n A ,1n n b +∞=∑的部分和为n B ,()1nn n ab +∞=+∑部分和为n C ,则显然有n n n C A B =+.由于1n n a +∞=∑收敛,因此,lim n n A →∞,lim n n B →∞存在.于是,lim nn C →∞存在,且lim lim lim n n n n n n C A B →∞→∞→∞=+,即()1n n n a b +∞=+∑收敛,且()111n n n n n n n a b a b +∞+∞+∞===+=+∑∑∑.(2)设常数0c ≠,则1n n ca +∞=∑收敛性与1n n a +∞=∑相同,且若1n n a +∞=∑收敛,则11n n n n ca c a +∞+∞===∑∑.二.正项级数1.正项级数的定义每一项都非负的级数称为正项级数. 2.正项级数收敛的基本定理正项级数收敛当且仅当其部分和数列有界.事实上,若1n n a +∞=∑收敛,则其部分和{}n S 收敛,因此,{}n S 有界,这是容易知道的。
数列的极限与无穷级数详细解析与归纳数列(Sequences)是数学中非常重要的一个概念,它在各个数学分支如微积分、线性代数和实分析等中都扮演了重要的角色。
数列的极限以及与之相关的无穷级数(Infinite Series)也是数学学习过程中不可或缺的内容。
本文将详细解析数列的极限和无穷级数,并进行归纳总结。
一、数列的极限数列的极限是指随着项数的增加,数列中的数值逐渐接近于某个固定的值。
数列的极限可以分为有界数列的极限和无界数列的极限两种情况。
1. 有界数列的极限对于有界数列,存在一个实数M,使得数列中的所有项都小于等于M。
有界数列的极限可以通过一些基本的定理判断。
(1)夹逼定理(Squeeze Theorem)对于数列{an}、{bn}和{cn},如果对于所有的n,有an ≤ bn ≤ cn,且lim(an) = lim(cn) = L,那么lim(bn) = L。
(2)单调有界数列的极限单调有界数列指的是数列满足单调性并且有界。
如果一个数列既是递增的又是有上界的,或者既是递减的又是有下界的,那么它一定有极限。
2. 无界数列的极限对于无界数列,其项数随着增大而无限增大或无限减小。
无界数列的极限可以通过数列的增长趋势来判断。
(1)正无穷大和负无穷大的极限当数列中的项数趋向于无穷大时,如果数列的值无限增大,我们称之为正无穷大,记作lim(an) = +∞;如果数列的值无限减小,我们称之为负无穷大,记作lim(an) = -∞。
(2)无界变号数列的极限当数列中的项数趋向于无穷大时,如果数列的值在正值和负值之间变换,且无限接近于无穷大或无穷小的极限,我们称之为无界变号数列,并且它没有极限。
二、无穷级数无穷级数是指数列的所有项之和,而不是有限项之和。
无穷级数可以表示为S = a1 + a2 + a3 + ... + an + ...,其中an为数列的第n项。
对于无穷级数,有以下几个重要的概念和定理:1. 部分和(Partial Sum)无穷级数的部分和指的是前n项的和,记作Sn = a1 + a2 + a3 + ... + an。
第一节 数项级数 一.无穷级数∑∞=0n n a 收敛的充分条件:数列{}n a 的前n 项和数列{}n S 收敛; 必要条件:0lim =n a . 例1:证明级数∑∞=121n n收敛. 证:①教材第二页的证明方法(利用cauchy 判则).②取数列⎭⎬⎫⎩⎨⎧21n 的前n 项和n S .当2≥n 时,n n n n n 111)1(112--=-≤∴n S =+++222312111 (2)1n + +-+-+≤312121111…nn 111--+=2n 1- ∴n S 单调递增且有界,数列{}n S 收敛,所以级数∑∞=121n n收敛.例2:研究级数∑∞=1001.0n n 的敛散性.解:∵lim 01001.0≠=n,∴级数∑∞=1001.0n n 发散.小结:一般来说,cauchy 判则没有多大的实用价值,在证明数列收敛时一般不用此法;无穷级数∑∞=0n n a 收敛的必要条件的逆否命题也是可以利用.二.收敛级数的性质⒈若级数∑∞=1n n a 与∑∞=1n n b 都收敛,βα,是常数,则级数)(1∑∞=+n n n b a βα也是收敛的.⒉在级数∑∞=1n n a 中改变有限项的值,并不改变级数的敛散性.三.正项级数若n a 0≥,则称∑∞=1n n a 是正项级数.⒈正项级数∑∞=1n n a 收敛的充要条件是它的部分和数列{}n S 有界.(例题参见例1)⒉设∑∞=1n n a 与∑∞=1n n b 都是正项级数,若从某项开始有b n b a ≤恒成立,则⑴.若∑∞=1n n a 发散,则∑∞=1n n b 发散;⑵.若∑∞=1n n b 收敛,则∑∞=1n n a 收敛.(比较判别法) 例3:∑∞=11n pn称为p 级数,讨论它的敛散性. 解:证明结果:当1≤p 时,∑∞=11n p n 发散; 当1>p 时,∑∞=11n pn收敛. (详细证明方法参见书本第六页) 例4:级数∑∞=2ln 1n n 发散. 例5:∑∞=+111n n n 收敛.(利用p 级数)小结:一般在应用比较判别法时,要用到p 级数.p 级数的应用价值很大,请记住它的敛散性.⒊设∑∞=1n n a 与∑∞=1n n b 都是正项级数,A b a bn=lim. ⑴.若+∞<<A 0,则∑∞=1n n a 与∑∞=1n n b 同敛散;⑵.若0=A ,则当∑∞=1n n b 收敛时,∑∞=1n n a 也收敛;⑶.若+∞=A ,则当∑∞=1n n b 发散时,∑∞=1n n a 也发散.例6:∑∞=145ln n nn收敛.证明:∵对于∑∞=145ln n n n,有818945ln 1ln n n n n n=,且l i m 0ln 81=n n ,由∑∞=1891n n收敛,知∑∞=145ln n n n 收敛. 小结:一般在应用这一定理时,也要介入p 级数来做比值判别.⒋(cauchy 判别法)设∑∞=1n n a 是正项级数.⑴.若从某项起,,1<≤q a n n 则∑∞=1n n a 收敛;⑵.若有无穷多个n ,使得0>≥αn a ,则∑∞=1n n a 发散.⒌(cauchy 判别法的极限形式)设∑∞=1n n a 是正项级数,q a n n =lim .⑴.当10<≤q 时,∑∞=1n n a 收敛;⑵.当1>q 时,∑∞=1n n a 发散.⒍(d ’Alembert 判别法)设∑∞=1n n a 是正项级数.⑴.若从某项起 11<≤+q a a n n ,则∑∞=1n n a 收敛; ⑵. 若从某项起有11≥+n n a a ,则∑∞=1n n a 发散. ⒎(d ’Alembert 判别法)设∑∞=1n n a 是正项级数,q a a nn =+1lim.⑴.当10<≤q 时,∑∞=1n n a 收敛;⑵.当1>q 时,∑∞=1n n a 发散.例7:2)11(211n n nn +∑∞=发散. 例8:∑∞=12)!2()!(n n n 收敛.小结:一般极限形式更容易解决问题.⒐(cauchy 积分判别法的极限形式)设)(x f 在],1[+∞上有定义,非负且单调递减,则∑∞=1)(n n f 与⎰+∞1)(dx x f 同敛散.四.交错级数设0≥n a ,称级数∑∞=-1)1(n n n a 为交错级数.1.设}{n a 单调递减趋于0,则级数∑∞=--11)1(n n n a 收敛,且和不大于1a .例9:∑∞=--11ln )1(n n nn收敛. 五.条件收敛与绝对收敛 称||1∑∞=n n a 为∑∞=1n n a 的绝对值级数1.若||1∑∞=n n a 收敛,则∑∞=1n n a 收敛.若||1∑∞=n n a 收敛,则称∑∞=1n n a 绝对收敛;若∑∞=1n n a 收敛,||1∑∞=n n a 发散,则称∑∞=1n n a 条件收敛.(这是条件收敛与绝对收敛的定义,同时可以作为判别方法)例10:()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n n n n 绝对收敛.证:分析只需证明∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n收敛即可.由柯西积分判别法,∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n 与广义积分⎰∞+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-111ln 1dx x x同敛散.而广义积分⎰∞+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-111ln 1dx x x是收敛的(收敛于12ln 2-).))0(1ln )1(11ln 10(>+++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+->⎰x C x x x dx x xx 时,附:所以∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n 收敛.所以()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n n n n 绝对收敛.注意:∑∑∞=∞=+1n 1)11ln(1n n n 与都是发散的,但∑∞=⎥⎦⎤⎢⎣⎡+-1)11ln(1n n n 收敛.()∑∞=⎥⎦⎤⎢⎣⎡+--1)11ln(11n nn n 绝对收敛,但是n n n 1)1(1∑∞=-与)11ln()1(1n n n +-∑∞= 都是条件收敛的,那我能否说用两个条件收敛的级数的线性组合一定可以表示出一个绝对收敛的级数?第二节 幂级数和Taylor 展式类似于数项级数,可以定义函数项级数.形如nn nx x a )(01-∑∞=的函数项级数称为幂级数.在此我们重点讨论00=x 时的情况(n n n x a ∑∞=1). 一.幂级数的收敛半径⒈(Abel 引理)如果幂级数nn n x a ∑∞=1在0x )0(0≠x 处收敛,则当||||0x x <时,nn n x a ∑∞=1绝对收敛;如果幂级数nn n x a ∑∞=1在0x )0(0≠x 处发散,则当||||0x x >时,n n n x a ∑∞=1发散.下面两个定理用来确定幂级数的收敛半径:⒉如果L a a n n =+||lim 1(+∞≤≤L 0),则幂级数n n n x a ∑∞=1的收敛半径L R 1=.⒊如果L a nn =||lim ,则幂级数n n n x a ∑∞=1的收敛半径LR 1=. 例11:求幂级数nn nx n ∑∞=1和n n x n ∑∞=1的收敛半径.解:∵1|1|lim =+n n ,∴n n x n ∑∞=1的收敛半径为1;∵+∞→=n n nnlim ,∴n n n x n ∑∞=1的收敛半径为0.二.幂级数的性质⒈设幂级数nn n x a ∑∞=1和n n n x b ∑∞=1的收敛半径分别为1R 和2R ,取{}21,min R R R =,则nn n nx b a)(1βα+∑∞==αnn n xa ∑∞=1+βnn n xb ∑∞=1在()R R ,-中成立.⒉n n n x a ∑∞=1的收敛半径为R ,则和函数)(x S 在收敛区间()R R ,-上连续.⒊对幂级数n n n x a ∑∞=1逐项积分或微分,不改变收敛半径,但有可能该变收敛区域.例12:求幂级数121!)!12(1-∞=∑-n n x n 的收敛域和和函数.解:显然0!)!12(1!)!12(1lim =-+nn n ,则幂级数121!)!12(1-∞=∑-n n x n 的收敛半径+∞=R ,收敛域为全体实数.令)(x S =121!)!12(1-∞=∑-n n x n ,则)(1!)!32(1)(232x xS n x x x S n n +=-+='∑∞=-, 即)(1)(x xS x S +=',解得)(x S =dt eext x ⎰-0222。
无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
无穷级数 知识点总复习本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设{}n u 是一个数列,则称表达式121nn n uu u u ∞==++++∑L L为一个数项级数,简称级数,其中第n 项n u 称为级数的通项或一般项,1nn kk S u==∑称为级数的前n 项部分和. 2.级数收敛的定义 定义:若数项级数1nn u∞=∑的部分和数列{}n S 有极限,则称级数1nn u∞=∑收敛,极限值lim n n S →∞称为此级数的和.当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.利用级数收敛的定义,易知当1q <时,几何级数1nn q∞=∑收敛,和为11q-;当1q ≥,几何级数发散.[例1.1] 判断下列级数的敛散性⑴11(1)n n n ∞=+∑ ⑵1(1)n n n ∞=+-∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+L 111111(1)()()122311n n n =-+-++-=-++L 所以 1lim lim(1)11n n n S n →∞→∞=-=+,故级数11(1)n n n ∞=+∑收敛.⑵ 由于(21)(32)(1)11n S n n n =-+-+++-=+-L所以lim n n S →∞=+∞,故级数1(1)n n n ∞=+-∑发散.二、级数的基本性质及收敛的必要条件1.设11,n nn n u v∞∞==∑∑都收敛,和分别为,a b ,则1()nn n uv ∞=±∑必收敛,且1()n n n u v a b ∞=±=±∑;评注:若1nn u∞=∑收敛,1nn v∞=∑发散,则1()nn n uv ∞=±∑必发散;若11,n n n n u v ∞∞==∑∑都发散,则1()nn n uv ∞=±∑可能发散也可能收敛.2.设k 为非零常数,则级数1nn u∞=∑与1nn ku∞=∑有相同的敛散性;3.改变级数的前有限项,不影响级数的敛散性; 4.级数收敛的必要条件:如果1nn u∞=∑收敛,则lim 0n n u →∞=;5.收敛的级数在不改变各项次序前提下任意加括号得到的新级数仍然收敛且和不变.评注:若某级数添加括号后所成的级数发散,则原级数亦发散. [例1.2] 判断下列级数的敛散性⑴111111210420210n n +++++++L L ⑵ 1(21)(1)(2)n n n n n ∞=+++∑解:⑴由于112n n ∞=∑收敛,1110n n ∞=∑发散,所以 111()210n n n ∞=+∑发散, 由性质5的“注”可知级数111111210420210n n+++++++L L 发散; ⑵ 由于(21)lim20(1)(2)n n n n n →∞+=≠++,不满足级数收敛的必要条件,所以级数1(21)(1)(2)n n n n n ∞=+++∑发散. 三、正项级数及其敛散性判别法各项为非负(0n u ≥)的级数1nn u∞=∑称为正项级数.1.正项级数收敛的基本定理 定理:设{}n S 是正项级数1nn u∞=∑的部分和数列,则正项级数1nn u∞=∑收敛的充要条件是数列{}n S 有界.当1p >时,p 级数11pn n∞=∑收敛;当1p ≤时,p 级数发散.(1p =时的p 级数也叫调和级数)2.正项级数的比较判别法 定理:(正项级数比较判别法的非极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设0,()n n u v n N ≤≥,则⑴ 若1nn v∞=∑收敛,则1nn u∞=∑收敛;⑵ 若1nn u∞=∑发散,则1nn v∞=∑发散.定理:(正项级数比较判别法的极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设limnn nu v ρ→∞=或为+∞,则⑴ 当ρ为非零常数时,级数11,n nn n u v∞∞==∑∑有相同的敛散性;⑵ 当0ρ=时,若1nn v∞=∑收敛,则必有1nn u∞=∑收敛;⑶ 当ρ=+∞时,若1nn v∞=∑发散,则必有1nn u∞=∑发散.评注:用比较判别法的比较对象常取p -级数与等比级数及211ln 1pn p n n p ∞=>⎧⎨≤⎩∑时,收敛时,发散. 3.正项级数的比值判别法定理:设1n n u ∞=∑是正项级数,若1limn n nu u ρ+→∞=或为+∞,则级数1n n u ∞=∑有 ⑴ 当1ρ<时,收敛; ⑵ 当1ρ>或∞时,发散; ⑶ 当1ρ=时,敛散性不确定.评注:⑴ 若11n n u u +≥(1,2,)n =L ,则级数1n n u ∞=∑必发散; ⑵ 如果正项级数通项中含有阶乘,一般用比值判别法判定该级数的敛散性; ⑶ 当1limn n nu u +→∞=1或不存在(但不为∞),则比值判别法失效.4.正项级数的根值判别法将比值判别法中的1n nu u +改成n n u ,其它文字叙述、结论均不改动,即为根值判别法. 5.利用通项关于无穷小1n的阶判定正项级数的敛散性 定理:设1n n u ∞=∑是正项级数,n u 为1()n n →∞的k 阶无穷小,则当1k >时,正项级数1nn u ∞=∑收敛;当1k ≤时,正项级数1nn u∞=∑发散.[例1.3] 判断下列级数的敛散性 ⑴1111n nn∞+=∑⑵213n n n ∞=∑ ⑶11(ln(1))n n n ∞=+∑ ⑷21(1)n n n n ∞=+∑ 解:⑴ 由于1111lim lim 11nn n n nn n+→∞→∞==,而级数11n n ∞=∑发散,故原级数发散; ⑵ 由于2112(1)31lim lim 133n n n n n nu n u n ++→∞→∞+=⨯=<,所以由比值判别法可得,原级数收敛;⑶ 由于11lim lim 01(ln(1))ln(1)nn n n n n →∞→∞==<++,所以由根值判别法可知,原级数收敛;⑷ 由于2(1)n n n +为1()n n→∞的32阶无穷小,所以原级数收敛. 四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑L的级数,称为交错级数.2.交错级数的莱布尼兹判别法 定理:若交错级数11(1),(0)n n n n u u ∞-=->∑满足条件⑴ 1(1,2,)n n u u n +≥=L ; ⑵ lim 0n n u →∞=,则交错级数11(1),(0)n n n n u u ∞-=->∑收敛,其和1S u ≤其余项n S S -满足1n n S S u +-≤.五、任意项级数及其绝对收敛若级数1nn u∞=∑的各项为任意实数,则称它为任意项级数.1.条件收敛、绝对收敛 若1nn u∞=∑收敛,则称1nn u∞=∑绝对收敛;若1nn u∞=∑发散但1nn u∞=∑收敛,则称1nn u∞=∑条件收敛.评注:绝对收敛的级数不因改变各项的位置而改变其敛散性与其和. 2.任意项级数的判别法 定理:若级数1nn u∞=∑收敛,则级数1nn u∞=∑收敛.即绝对收敛的级数一定收敛.[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴111(1)3n n n n ∞--=-∑ ⑵111(1)ln(1)n n n ∞-=-+∑ 解:⑴ 记11(1)3n n n nu --=- 因为 11131lim lim 133n n n n n nu n u n -+→∞→∞+=⨯=<所以级数1nn u∞=∑收敛,故原级数收敛且为绝对收敛;⑵ 记11(1)ln(1)n n u n -=-+由于1n u n >,而11n n ∞=∑发散,所以级数1n n u ∞=∑发散又1nn u∞=∑是一交错级数,10()ln(1)n u n n =→→∞+,且1n n u u +>,由莱布尼兹定理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑的和等于__________.解:由于11(1)2n n n a ∞-=-=∑,所以根据级数的性质可得 21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n aa a a ∞∞--===-=--=∑∑因此21211()538n n n n n a aa ∞∞-===+=+=∑∑.[例7.1.2] 设10n u n≤≤,则下列级数中肯定收敛的是 (A )1nn u∞=∑; (B )1(1)nnn u∞=-∑; (C )1n n u ∞=∑; (D )21(1)nnn u∞=-∑解:取11n u n =+,则10n u n ≤≤,此时(A )1n n u ∞=∑与(C )1n n u ∞=∑都发散;若取1(1)2n n u n +-=,则10n u n ≤≤,此时(B )111(1)2nn n n u n∞∞==-=∑∑发散;由排除法可得应选(D ).事实上,若10n u n ≤≤,则2210n u n≤≤,根据“比较判别法”得21nn u∞=∑收敛.从而21(1)nnn u∞=-∑收敛,故应选(D ).[例7.1.3] 已知级数2121()n n n uu ∞-=+∑发散,则(A )1nn u∞=∑一定收敛, (B )1nn u∞=∑一定发散(C )1nn u=∑不一定收敛 (D )lim 0n n u →∞≠解:假设1nn u∞=∑收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数仍然收敛,即2121()n n n uu ∞-=+∑也收敛.这与已知矛盾,故1n n u ∞=∑一定发散.应选(B ).[例7.1.4] 设正项级数1n n u ∞=∑的部分和为n S ,又1n nv S =,已知级数1n n v ∞=∑收敛,则级数1nn u ∞=∑必(A )收敛 (B )发散 (C )敛散性不定 (D )可能收敛也可能发散 解:由于级数1n n v ∞=∑收敛,所以根据收敛的必要条件可得lim 0n n v →∞=,又1n nv S =,所以lim n n S →∞=∞,故级数1n n u ∞=∑发散,故应选(B ). [例7.1.5] 设有命题 (1) 若1nn a∞=∑收敛,则21nn a∞=∑收敛;(2)若1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,则1n n a ∞=∑收敛; (3)若存在极限lim 0nn nu l v →∞=≠,且1n n v ∞=∑收敛,则1n n u ∞=∑收敛; (4)若(1,2,3,)n n n w u v n <<=L ,又1nn v∞=∑与1nn w∞=∑都收敛,则1nn u∞=∑收敛.则上述命题中正确的个数为(A )1 (B )2 (C )3 (D )4解:关于命题(1),令(1)n n a n -=,则1n n a ∞=∑收敛,但21112n n n a n ∞∞===∑∑发散,所以不正确;关于命题(2),令1n a n =,则1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,但1n n a ∞=∑发散,所以不正确;关于命题(3),令1(1)(1),nnn n u v n nn --=+=,则在极限lim0n n n u l v →∞=≠,且1n n v ∞=∑收敛,但1nn u=∑发散,所以不正确;关于命题(4),因为(1,2,3,)n n n w u v n <<=L ,所以0n n n n u w v w <-<-,因为1nn v∞=∑与1nn w∞=∑都收敛,所以由“比较判别法”知1()nn n uw ∞=-∑收敛,故1n n u ∞=∑收敛.故应选(A ).二、正项级数敛散性的判定正项级数1nn u∞=∑判别敛散的思路:①首先考察lim n n u →∞(若不为零,则级数发散;若等于零,需进一步判定);②根据一般项的特点选择相应的判别法判定.评注:⑴ 若一般项中含有阶乘或者n 的乘积形式,通常选用比值判别法: ⑵ 若一般项中含有以n 为指数幂的因式,通常采用根值判别法:⑶ 若一般项中含有形如n α(α为实数)的因式,通常采用比较判别法.⑷ 如果以上方法还行不通时,则可考虑用敛散的定义判定. [例7.1.6] 判断下列级数的敛散性(1)21sin 2n n n π∞=∑ (2)1!2n n n n n∞=∑ (3)221(1)2n n n n n n ∞=+∑ (4)312ln n n n∞=∑(5)2111n n n∞=++∑(6)321(1)n nn n∞=+∑ 解:(1)用比值法.221122(1)sin(1)122limlim12sin22n n n n nn n n n n ππππ++→∞→∞++⋅==<⋅,所以原级数收敛. (2)用比值法.11(1)!22(1)lim2lim 1!2(1)n n n n n n n nn n n n n en ++→∞→∞++==<+, 所以原级数收敛. (3)用根值法.22(1)1(1)lim lim 1222n n nn nn n n n n e n n→∞→∞++==>,所以原级数发散. (4)用比较法.取541n v n =,因为14ln lim lim 0n n n nu n v n →∞→∞==,而5141n n ∞=∑收敛,所以原级数收敛.(5)用比较法.取1n v n =,因为2lim lim 11n n n nu n v n n →∞→∞==++,而11n n ∞=∑发散, 所以原级数发散. (6)由于32lim10(1)n nn n→∞=≠+,故由级数收敛的必要条件知原级数发散.评注:在考研题中遇到该类问题应①先看当n →∞时,级数的通项n u 是否趋向于零(如果不易看出,可跳过这一步),若不趋于零,则级数发散;若趋于零,则②再看级数是否为几何级数或p 级数,因为这两种级数的敛散性已知.如果不是几何级数或p 级数,则③用比值判别法进行判定,如果比值判别法失效,则④再用比较判别法进行判定.常用来做比较的级数主要有几何级数、p 级数等. [例7.1.7] 判断下列级数的敛散性(1)1(sin )n nn ππ∞=-∑ (2)111(ln(1))n n n ∞=-+∑ 分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小1n的阶判定正项级数的敛散性. 解:(1)考查 sin lim 1()n k nn nππ→∞-换成连续变量x ,再用罗必达法则,2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kx πππππππ+++--→→→--== 取3k =,上述极限值为316π.所以原级数与311n n ∞=∑同敛散,故原级数收敛.(2)考查 11ln(1)lim 1()n k nn n→∞-+ 换成连续变量x ,再用罗必达法则,1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+ 取2k =,上述极限值为12. 所以原级数与211n n ∞=∑同敛散,故原级数收敛. [例7.1.8] 研究下列级数的敛散性(1)1!n n n a n n∞=∑(0a >是常数); (2)1nn n αβ∞=∑,这里α为任意实数,β为非负实数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记!n n n a n u n=,由比值判别法可得111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a au n a n e n+++→∞→∞→∞+=⋅==++ 显然,当a e <时,级数收敛;当a e >时,级数发散;当a e =时,由于111(1)!11(1)!(1)n n n n n nn u e n n eu n e n n++++=⋅=>++,所以lim 0n n u →∞≠,故级数发散. (2)记nn u n αβ=,由比值判别法可得11(1)1lim lim lim()n n n n n n nu n n u n n αααββββ++→∞→∞→∞++==⋅= 显然,当01β≤<,α为任意实数时,级数收敛;当1β>时,α为任意实数时,级数发散;当1β=时,比值判别法失效.这时n u n α=,由p 级数的敛散性知,当1α<-时,级数收敛;当1α≥-时,级数发散. [例7.1.9] 判别下列级数的敛散性(1)14011n n xdx x ∞=+∑⎰(2)11n x n n e dx ∞+-=∑⎰ 分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项. 解:(1)因为10x n <<时,411x x x n<<+,所以 132410()1n x dx x n<<+⎰由于级数3211()n n∞=∑收敛,所以原级数收敛.(2)因为函数xe-在区间[,1]n n +上单减,所以110n n x n n nne dx e dx e ++---<<=⎰⎰由于22limlim 01n n n n e n e n-→∞→∞==,又因为级数211n n∞=∑收敛,所以原级数收敛. 三、交错级数判定敛散判别交错级数1(1),(0)nnnn u u∞=->∑敛散性的方法:法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.评注:法二、法三和法四适应于{}n u 不单调减少或判定单调很困难的交错级数. [例7.1.10] 判定下列级数的敛散性 (1)111(1)ln n n n n ∞-=--∑ (2)2(1)(1)nnn n ∞=-+-∑ (3)11111112223334-+-+-+⨯⨯⨯L (4)2011sin 46(1)2n n n n n ∞-=-∑ 解:(1)该级数是交错级数,显然1lim0ln n n n→∞=-.令1()ln f x x x =-,则211()0,(1)(ln )x f x x x x -+'=<≥-,所以1ln n n ⎧⎫⎨⎬-⎩⎭单调减少. 由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列1(1)n n ⎧⎫⎨⎬+-⎩⎭不单调.而(1)(1)((1))1(1)111(1)n n n nnn n n n n n --+-==-+---+-, 显然,级数211n n ∞=-∑发散; 又级数2(1)1nn nn ∞=--∑是交错级数,显然满足lim01n n n →∞=-, 令2(),(2)1x f x x x =≥-,则2221()0(1)x f x x --'=<-,所以1n n ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭单调减少,由莱布尼兹判别法可得,级数2(1)1nn nn ∞=--∑收敛. 故由级数敛散的性质可得,原级数发散. (3)不难得到{}n u 不单调,但有1111111(1)()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑L即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列20sin 462n nn ⎧⎫⎨⎬⎩⎭的单调性很麻烦. 但 20sin 4622n nn n n ≤,而由比值判别法易得到级数12n n n ∞=∑收敛,所以级数201sin 462n n n n ∞=∑收敛.从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性对任意项级数1nn u∞=∑,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看当n →∞时,级数的通项n u 是否趋向于零,若不趋于零,则级数发散;若趋于零,则②按正项级数敛散性的判别法,判定1nn u∞=∑是否收敛,若收敛,则级数1nn u∞=∑绝对收敛;若发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定1nn u∞=∑是否收敛(若收敛则为条件收敛).[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)21sin,,n n n n αβπαβ∞=++∑为常数; (2)(1)1sin n n n x dx x ππ∞+=∑⎰; (3)111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++L . 解:(1)2sinsin[()](1)sin()n n n n u n n n nαβββππαπαπ++==++=-+,由于当n 充分大时,sin()nβαπ+保持定号,所以级数从某项起以后为一交错级数.当α不是整数时,不论β取何值,总有lim lim sin()sin 0n n n u nβαπαπ→∞→∞=+=≠,故级数发散;当α是整数时,有(1)sin nn u nαβπ+=-,因而sin n u n βπ=,由于lim1nn u nβπ→∞= 所以利用比较判别法的极限形式可得,当0β≠时级数1nn u∞=∑发散,又因为sinn u nβπ=总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数1nn u∞=∑收敛,且为条件收敛;当0β=时,级数显然收敛,且绝对收敛.(2)由于(1)00sin (1)sin sin (1)n x n t n nnx t t dx dt dt x n tn t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰的敛散性由于当0x π<<时,sin sin sin t t t n n t n ππππ≤≤++,所以 02sin 2t dt n n t n πππππ≤≤++⎰由于级数12n n ππ∞=+∑发散,所以级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰发散.因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛.(3)这是任意项级数.考虑每三项加一括号所成的级数1111()333231n a n a n a n ∞=+-+-+-+-∑22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是n 的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质. [例7.1.12] 证明:如果级数1nn a∞=∑与1nn b∞=∑收敛,且(1,2,)n n n a c b n ≤≤=L ,则级数1nn c∞=∑也收敛.证明:由n n n a c b ≤≤可得,0n n n n c a b a ≤-≤-; 由级数收敛的基本性质可得1()nn n ba ∞=-∑收敛,故由正项级数的比较判别法可得1()n n n c a ∞=-∑收敛.又由于11[()]n nn n n n c ca a ∞∞===-+∑∑,所以级数1n n c ∞=∑收敛.[例7.1.13] 设11112,()2n n na a a a +==+(1,2,)n =L ,证明 (Ⅰ)lim n n a →∞存在 ;(Ⅱ)级数11(1)nn n a a ∞=+-∑收敛. 证明:(Ⅰ)由于111()2n n n a a a +=+,所以根据均值不等式可得111()12n n na a a +=+≥ 故数列{}n a 有下界.又因为21111()()22n n n n n n na a a a a a a +=+≤+=,所以{}n a 单调不增,从而由单调有界准则可知,lim n n a →∞存在.(Ⅱ)由(Ⅰ)可知,101n n a a +≤-,所以级数11(1)n n n aa ∞=+-∑是正项级数. 又因为11111n n n n n n n a a a a a a a ++++--=≤-, 而正项级数11()nn n aa ∞+=-∑的前n 项和11111()lim nn kk n n n k S aa a a a a ++→∞==-=-→-∑所以正项级数11()nn n aa ∞+=-∑是收敛的,由比较判别法知,原级数收敛.[例7.1.14] 设()f x 在点0x =的某一邻域内有连续二阶导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 分析:已知条件中出现高阶导数,可考虑使用泰勒公式完成. 证明:由于()f x 在点0x =连续,且0()lim0x f x x→=,所以可得(0)0,(0)0f f '==. 将()f x 在点0x =展开成一阶泰勒公式,有 2211()(0)(0)()()2!2f x f f x f x f x ξξ'''''=++=. 由于()f x ''在点0x =的某一邻域内连续,故存在0M >,使得在0x =的某小邻域内()f x M ''≤,从而211()2M f n n≤⋅(当n 充分大时) 由比较判别法可知,级数11()n f n∞=∑绝对收敛. [例7.1.15] 若()f x 满足:⑴在区间[0,)+∞上单增;⑵lim ()x f x A →+∞=;⑶()f x ''存在,且()0f x ''≤.证明(Ⅰ)1[(1)()]n f n f n ∞=+-∑收敛 ;(Ⅱ)1()n f n ∞='∑收敛.证明:(Ⅰ)由于1[(1)()](1)(1)nn k S f k f k f n f ==+-=+-∑,所以lim lim (1)11n n n S f n A →∞→∞=+-=-,从而级数1[(1)()]n f n f n ∞=+-∑收敛.(Ⅱ)由于()f x ''存在,且()0f x ''≤,所以函数()f x '单调不增.又因为()f x 在区间[0,)+∞上单增,所以必有()0f x '≥,即级数1()n f n ∞='∑是正项级数.根据拉格朗日中值定理可得(1)()(),1n n f n f n f n n ξξ'+-=<<+,所以 (1)()()n f n f f n ξ'''+≤≤. 由(Ⅰ)可知1()nn f ξ∞='∑收敛,所以根据正项级数的比较判别法知,级数1(1)n f n ∞='+∑收敛,再根据级数收敛的性质可得级数1()n f n ∞='∑收敛.六、其它[例7.1.16] 设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,判定级数11()1nn na ∞=+∑的敛散性. 解:正项数列{}n a 单调减少,由单调有界准则可得,lim n n a →∞存在,记为a (0a ≥).因为级数1(1)nn n a ∞=-∑是交错级数,若lim 0n n a →∞=,由莱布尼兹判别法可知,该级数收敛.但题设该级数发散,所以必定有0a >,于是 111lim ()lim 1111n n n n n na a a →∞→∞==<+++.由根值判别法知,级数11()1nn na ∞=+∑收敛.[例7.1.17] 讨论级数11111123421(2)x x x n n -+-++-+-L L 在哪些x 处收敛?在哪些x 处发散?解:⑴ 当1x =时,原级数为11111123456-+-+-+L ,这是交错级数,且满足“莱布尼兹判别法”的条件,故收敛;⑵ 当1x >时,2111111(1)(1)321223n x x x x S n n=+++-++++-L L 当n →∞时,111321n +++→+∞-L , 当n →∞时,1111(1)223x x x x n++++L 趋向定常数,故2lim n n S →∞发散,从而原级数发散;⑶ 当1x <时,211111111()()()2345(2)21n x x x S n n +=-------+L 由于1x <,所以上式中第一项以后的各项都为负的. 考察级数111[](2)21x n n n ∞=-+∑,由于 111lim[]/1(2)21(2)x xn n n n →∞-=+, 所以根据正项级数的“比较判别法”的极限形式知,级数111[](2)21x n n n ∞=-+∑发散. 从而21lim n n S +→∞=-∞,即原级数发散.综上所述,当1x =时,级数收敛;当1x ≠时,级数发散. [例7.1.18] 已知111,cos n n a a a +==,判定级数1n n a ∞=∑的敛散性.分析:该级数的通项以递推公式给出,这给级数类型的判定以及通项n a 是否收敛于零带来困难.不妨先假设级数通项0()n a n →→∞,再看由递推公式两端取极限时能否导出矛盾.一旦产生矛盾,便可确定级数发散.解:若lim 0n n a →∞=,则1lim limcos 1n n n n a a +→∞→∞==.这与假设矛盾.因此lim 0n n a →∞≠,原级数发散.[例7.1.19] 设a 为常数,1a ≠-,讨论级数111nn a∞=+∑的敛散性.解:由于存在na ,因此想到分1,1,1a a a <=>讨论.当1a <时,由于lim 0nn a →∞=,所以1lim101n n a →∞=≠+,级数发散;当1a =时,11n a +=12,所以11lim 012n n a →∞=≠+,级数发散; 当1a >时,由于111111111limlim lim 11111n n n n n n n n na a a a a a aa---++--→∞→∞→∞+++===<+++,所以级数111n n a ∞=+∑收敛,故级数111nn a ∞=+∑收敛且绝对收敛. [例7.1.20] 已知11a =,对于1,2,n =L ,设曲线21y x=上点21(,)n n a a 处的切线与x 轴交点的横坐标是1n a +(Ⅰ)求,2,3,n a n =L ;(Ⅱ)设n S 是以(,0)n a ,21(,)n n a a 和1(,0)n a +为顶点的三角形的面积,求级数1n n S ∞=∑的和解:(Ⅰ)曲线21y x =上点21(,)n n a a 处的切线方程为 2312()n n nY X a a a -=-- 从而13(1,2,)2n n a a n +==L ,从而11133()()22n n n a a --== (Ⅱ)由题意11221111112()()222443n n n n n n n n a S a a a a a -+=⨯⨯-=⨯⨯== 所以11112113()2434413n n n n S ∞∞-====⨯=-∑∑.§7.2 幂级数本节重点是求幂级数的收敛域、求幂级数的和函数、将函数展开成幂级数.● 常考知识点精讲一、函数项级数的概念1.函数项级数的定义定义:设函数()(1,2,3)n u x n =L 都在D 上有定义,则称表达式121()()()nn u x u x u x ∞==++∑L为定义在D 上的一个函数项级数,()n u x 称为通项,1()()n k k S x u x ∞==∑称为部分和函数.2.收敛域 定义:设1()nn ux ∞=∑是定义在D 上的一个函数项级数,0x D ∈,若数项级数01()n n u x ∞=∑收敛,则称0x 是1()nn ux ∞=∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域.3.和函数 定义:设函数项级数1()nn ux ∞=∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得1()()n n S x u x ∞==∑成立.定义域为I 的函数()S x 称为级数1()n n u x ∞=∑的和函数.评注:求函数项级数收敛域时,主要利用收敛域的定义及有关的数项级数的判别法.二、幂级数1.幂级数的定义定义:设{}(0,1,2,)n a n =L 是一实数列,则称形如0()nnn a x x ∞=-∑的函数项级数为0x 处的幂级数.00x =时的幂级数为0n n n a x ∞=∑.2.阿贝尔定理 定理:对幂级数()nnn a x x ∞=-∑有如下的结论:⑴ 如果该幂级数在点1x 收敛,则对满足010x x x x -<-的一切的x 对应的级数()nnn a x x ∞=-∑都绝对收敛;⑵ 如果该幂级数在点2x 发散,则对满足020x x x x ->-的一切的x 对应的级数()nnn a x x ∞=-∑都发散.[例2.1] 若幂级数(2)nn n a x ∞=-∑在1x =-处收敛,问此级数在4x =处是否收敛,若收敛,是绝对收敛还是条件收敛? 解:由阿贝尔定理知,幂级数(2)nn n a x ∞=-∑在1x =-处收敛,则对一切适合不等式2123x -<--=(即15x -<<)的x 该级数都绝对收敛.故所给级数在4x =处收敛且绝对收敛.三、幂级数收敛半径、收敛区间如果幂级数()nnn a x x ∞=-∑不是仅在0x x =处收敛,也不是在整个数轴上收敛,则必定存在一个正数R ,它具有下述性质: ⑴ 当0x x R -<时,0()nnn a x x ∞=-∑绝对收敛;⑵ 当0x x R ->时,()nnn a x x ∞=-∑发散.如果幂级数()n n n a x x ∞=-∑仅在0x x =处收敛,定义0R =;如果幂级数()nnn a x x ∞=-∑在(,)-∞+∞内收敛,则定义R =+∞.则称上述R 为幂级数()nnn a x x ∞=-∑的收敛半径.称开区间00(,)x R x R -+为幂级数()nnn a x x ∞=-∑的收敛区间.四、幂级数收敛半径的求法求幂级数()nnn a x x ∞=-∑的收敛半径R法一:⑴ 求极限11000()()lim ()n n nn n a x x x x a x x ρ++→∞--=-⑵ 令00()1x x x x m ρ-<⇒-<则收敛半径为R m =;法二:若n a 满足0n a ≠,则1limnn n a R a →∞+=; 法三;⑴ 求极限00()lim ()nn n n x x a x x ρ→∞-=-⑵ 令00()1x x x x m ρ-<⇒-< 则收敛半径为R m =.[例2.2] 求下列幂级数的收敛域⑴12!nn n x n ∞=∑ ⑵1(5)n n x n ∞=-∑ ⑶221212n n n n x ∞-=-∑ 解:⑴ 收敛半径1112(1)!lim lim 2!1n n n n n n a n R a n +→∞→∞++==⨯=+∞,所以收敛域为(,)-∞+∞;⑵ 收敛半径11limlim 11n n n n a R n a n→∞→∞+==⨯+= 当51x -=-时,对应级数为1(1)nn n ∞=-∑这是收敛的交错级数,当51x -=时,对应级数为11n n∞=∑这是发散的P -级数, 于是该幂级数收敛域为[4,6);⑶ 由于22122212()lim 2(21)2nn n n n x n x x n x ρ+-→∞+=⨯=- 令()1x ρ<,可得2x <,所以收敛半径为2R =当2x =±时,对应的级数为1212n n ∞=-∑,此级数发散, 于是原幂级数的收敛域为(2,2)-.五、幂级数的性质设幂级数()nnn a x x ∞=-∑收敛半径为1R ;()nnn b x x ∞=-∑收敛半径为2R ,则1.000()()()()nnnnnn n n n n a x x b x x ab x x ∞∞∞===-±-=±-∑∑∑,收敛半径12min(,)R R R ≥; 2.00001[()][()]()()nnnn nn i n i n n n i a x x b x x a b x x ∞∞∞-====-⋅-=-∑∑∑∑,收敛半径12min(,)R R R ≥;3.幂级数()nnn a x x ∞=-∑的和函数()S x 在其收敛域I 上连续;4.幂级数在其收敛区间内可以逐项求导,且求导后所得到的幂级数的收敛半径仍为R .即有11()[()][()]()nnn nnnn n n S x a x x a x x na x x ∞∞∞-==='''=-=-=-∑∑∑.5.幂级数在其收敛区间内可以逐项积分,且积分后所得到的幂级数的收敛半径仍为R .即有1000001()[()][()]()1xxxnnn n n n x x x n n n S x dx a x x dx a x x dx a x x n ∞∞∞+====-=-=-+∑∑∑⎰⎰⎰[例2.3] 用逐项求导或逐项积分求下列幂级数在收敛区间内的和函数 ⑴11(11)n n nxx ∞-=-<<∑ ⑵411(11)41n n x x n +∞=-<<+∑解:⑴ 令11()(11)n n S x nxx ∞-==-<<∑,则111()()1xxn n n n x S x dx nxdx x x∞∞-=====-∑∑⎰⎰ 所以2211(),(11)(1)(1)x x S x x x x -+==-<<--;⑵ 令411()(11)41n n x S x x n +∞==-<<+∑,则 4144411()()411n nn n x x S x x n x +∞∞==''===+-∑∑ 所以4422001111()(1)12121xx x S x dx dx x x x==-+⋅+⋅-+-⎰⎰ 111ln arctan 412x x x x +=+--,(11)x -<<. 六、函数展开成幂级数1.函数展开成幂级数的定义定义:设函数()f x 在区间I 上有定义,0x I ∈,若存在幂级数()nnn a x x ∞=-∑,使得()(),nnn f x a x x x I ∞==-∀∈∑则称()f x 在区间I 上能展开成0x 处的幂级数. 2.展开形式的唯一性定理:若函数()f x 在区间I 上能展开成0x 处的幂级数 0()(),nnn f x a x x x I ∞==-∀∈∑则其展开式是唯一的,且()0()(0,1,2,)!n n f x a n n ==L .七、泰勒级数与麦克劳林级数1.泰勒级数与麦克劳林级数的定义定义:如果()f x 在0x 的某一邻域内具有任意阶导数,则称幂级数()()00000000()()()()()()()!1!!n n nn n f x f x f x x x f x x x x x n n ∞='-=+-++-+∑L L 为函数()f x 在0x 点的泰勒级数.当00x =时,称幂级数()()0(0)(0)(0)(0)!1!!n n n nn f f f x f x x n n ∞='=++++∑L L 为函数()f x 的麦克劳林级数. 2.函数展开成泰勒级数的充要条件定理:函数()f x 在0x I ∈处的泰勒级数在I 上收敛到()f x 的充分必要条件是:()f x 在0x 处的泰勒公式()000()()()()!k nk n k f x f x x x R x k ==-+∑的余项()n R x 在I 上收敛到零,即对任意的x I ∈,都有lim ()0n n R x →∞=.八、函数展开成幂级数的方法1.直接法利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法. 2.间接法通过一定的运算将函数转化为其它函数,进而利用新函数的幂级数展开将原来的函数展开成幂级数的方法.所用的运算主要是四则运算、(逐项)积分、(逐项)求导、变量代换.利用的幂级数展开式是下列一些常用函数的麦克劳林展开公式.幂级数常用的七个展开式0,(,)!nxn x e x n ∞==∈-∞+∞∑210sin (1),(,)(21)!n nn x x x n +∞==-∈-∞+∞+∑20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑1ln(1)(1),111n nn x x x n +∞=+=--<≤+∑2(1)(1)(2)(1)(1)1,(1,1)2!!n n x x x x x n αααααααα----++=+++++∈-L L L1,(1,1)1n n x x x ∞==∈--∑1(1),(1,1)1n n n x x x ∞==-∈-+∑.●● 常考题型及其解法与技巧一、阿贝尔定理的应用[例7.2.1] 设幂级数nn n a x∞=∑的收敛半径为2,则幂级数1(3)nn n a x ∞=-∑在下列点处必收敛(A ){}2,3,4,e (B )12,1,0,e ⎧⎫--⎨⎬⎩⎭(C ){}1,5 (D ){}1,2,3,4,5,e解:由于nn n a x∞=∑与1(3)nn n a x ∞=-∑有相同的收敛半径,所以当32x -<的时候对应的级数1(3)nn n a x ∞=-∑都绝对收敛,显然集合{}2,3,4,e 中的点都满足不等式32x -<,故选(A )[例7.2.2] 如级数nn n a x∞=∑在2x =处收敛,问级数1()2nn n a x ∞=-∑在2x =-处敛散性怎样?解:由阿贝尔定理,对一切2x <的x 值,级数0nn n a x ∞=∑绝对收敛,从而级数01()2nnn a x ∞=-∑满足:对一切122x -<的x 值,级数01()2nn n a x ∞=-∑绝对收敛.现2x =-显然不满足122x -<,故级数01()2n n n a x ∞=-∑在2x =-处敛散性不确定.[例7.2.3] 设1(1)2nnn n a ∞=-∑收敛,则1n n a ∞=∑(A )条件收敛 (B )绝对收敛 (C )发散 (D )不定 解:考查幂级数1nn n a x∞=∑,由于1(1)2nnn n a ∞=-∑收敛,所以幂级数1n n n a x ∞=∑在2x =-点收敛,根据阿贝尔定理当2x <-时,对应的幂级数都绝对收敛,所以当1x =时,对应的幂级数绝对收敛,而此时对应级数为1nn a∞=∑.所以应选(B )[例7.2.4] 设幂级数1(1)nn n a x ∞=+∑在3x =处条件收敛,则该幂级数的收敛半径为_______.解:由于1(1)nn n a x ∞=+∑在3x =处条件收敛,由阿贝尔定理得,当14x +<时级数1(1)nn n a x ∞=+∑绝对收敛.所以收敛半径4R ≥;假设4R >.由收敛半径的定义知1x R +<时,对应的级数都绝对收敛,所以级数在3x =处应绝对收敛,矛盾.所以4R ≤. 因此收敛半径4R =.二、收敛半径、收敛区间、收敛域求幂级数收敛半径的方法我们在常考知识点中介绍过,如果幂级数中的幂次是按自然数顺序依次递增的,这时幂级数()nnn a x x ∞=-∑的收敛半径的计算公式1limnn n a R a →∞+=如果幂级数中的幂次不是按自然数顺序依次递增的(如缺少奇数次幂或缺偶次幂等),这时不能用上面的公式计算收敛半径,而必须使用正项级数的比值判别法或根值判别法(即常考知识点中介绍的法一与法三)求出幂级数的收敛半径. 设幂级数()nnn a x x ∞=-∑的收敛半径为R .为了求幂级数的收敛域还需判别在x =0x R -与0x x R =+处级数00()n n n a x x ∞=-∑的敛散性.[例7.2.5] 求下列幂级数的收敛半径和收敛域(1)1!()n n x e n n ∞=-∑ (2)2311n n n x n ∞=+∑ (3)2111(1)3(21)n n n n x n +∞-=-+∑ (4)21(21)n n x n n ∞=-∑ (5)14(1)1(1)[4(1)]!n n n xn -∞-=--∑ 解:(1)此级数x e -的幂次是按自然数顺序依次递增的,其收敛半径可直接按公式计算:11!(1)1lim lim lim(1)(1)!n n n n n n n n a n n R e a n n n +→∞→∞→∞++==⨯=+=+在2x e e e =+=处,级数成为1!()nn en n ∞=∑,由[例7.1.8]中的(1)可知该级数发散;在0x e e =-=处,级数成为1!()nn e n n∞=-∑,可判定发散. 故原级数的收敛域为(0,2)e .(2)此级数的收敛半径也可按公式计算:23321(1)1lim lim 11(1)n n n n a n n R a n n →∞→∞+++==⋅=++ 在1x =-处,级数成为231(1)1nn n n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在1x =处,级数成为2311n n n ∞=+∑,由于23lim 111n n n n →∞⨯=+,而级数11n n ∞=∑发散,故级数2311n n n ∞=+∑发散.因此所给级数的收敛域为[1,1)-.(3)此级数缺少x 的偶次幂.故需利用比值判别法求收敛半径.2321121(1)3(21)1()lim 3(23)(1)3n n n n n n n x n x x n x ρ++-+→∞-+=⨯=+-令()1x ρ<可得,3x <,故收敛半径为3R =.在3x =-处,级数成为13(1)21nn n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛; 在3x =处,级数成为113(1)21n n n ∞-=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛.因此所给级数的收敛域为[3,3]-.(4)此级数缺少x 的奇次幂.故需利用比值判别法求收敛半径.2222(21)()lim (1)(21)n n n x n n x x n n xρ+→∞-=⋅=++ 令()1x ρ<可得,1x <,故收敛半径为1R =.在1x =-处,级数成为11(21)n n n ∞=-∑,该级数显然收敛; 在1x =处,级数成为11(21)n n n ∞=-∑,该级数收敛. 因此所给级数的收敛域为[1,1]-.(5)此级数中的x 的幂次不是按自然顺依次递增的.故需用比值判别法求收敛半径.4414(1)(1)[4(1)]!()lim 0(4)!(1)n n n n n x n x x n xρ--→∞--=⋅=⋅- 令()1x ρ<可得,(,)x ∈-∞+∞,故收敛半径为R =+∞. 于是幂级数的收敛域为(,)-∞+∞.[例7.2.6] 求幂级数21()(,0)n n nn a b x a b nn ∞=+>∑的收敛域.解:设幂级数1n n n a x n ∞=∑,21n nn b x n∞=∑的收敛半径分别为12,R R ,则11R a =,21R b =.因此幂级数的收敛半径为1211min(,)min(,)R R R a b==. (1) 若a b ≥,则1R a =.在1x a =-,级数为21111(1)(1)()n n n n n b n n a ∞∞==-+-∑∑收敛; 在1x a =,级数为21111()n n n b n na ∞∞==+∑∑发散,从而收敛域为11[,)a a -.(2)若a b <,则1R b=. 在1x b =-,级数为21111(1)()(1)n nn n n a n b n ∞∞==-+-∑∑收敛; 在1x b =,级数为21111()n n n a n b n∞∞==+∑∑收敛;,从而收敛域为11[,]b b -.[例7.2.7] 已知幂级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,求其收敛域.解:由于幂级数级数(3)nnn a x ∞=-∑在0x =处收敛,由阿贝尔定理可得,当3033x -<-=时,对应的幂级数绝对收敛,所以收敛半径3R ≥;假设收敛半径3R >,由收敛半径的定义可知,3x R -<时,对应的级数都绝对收敛,而633R -=<,所以级数(3)nn n a x ∞=-∑在6x =处绝对收敛,与已知矛盾.故3R ≤.综上可得,收敛半径3R =. 又因为级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,故收敛域为[0,6).三、函数项级数求收敛域函数项级数1()nn ux ∞=∑求收敛域的基本方法:⑴ 用正项级数比值判别法(或根值判别法)求1()()lim ()n n nu x x u x ρ+→∞=(或()lim ()n n n x u x ρ→∞=);⑵解不等式()1x ρ<,求出1()n n u x ∞=∑的收敛区间(,)αβ;⑶ 判定级数1()nn u α∞=∑与1()nn u β∞=∑的敛散性.评注:函数项级数1()nn ux ∞=∑求收敛域有时也利用变量代换化为幂级数,利用幂级数求收敛域的方法来完成,或者利用数项级数其它判别法、及性质完成.。
无穷级数 知识点总复习本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设{}n u 是一个数列,则称表达式121nn n uu u u ∞==++++∑为一个数项级数,简称级数,其中第n 项n u 称为级数的通项或一般项,1nn kk S u==∑称为级数的前n 项部分和. 2.级数收敛的定义 定义:若数项级数1nn u∞=∑的部分和数列{}n S 有极限,则称级数1nn u∞=∑收敛,极限值lim n n S →∞称为此级数的和.当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.利用级数收敛的定义,易知当1q <时,几何级数1n n q ∞=∑收敛,和为11q-;当1q ≥,几何级数发散.[例1.1] 判断下列级数的敛散性⑴11(1)n n n ∞=+∑ ⑵1(1)n n n ∞=+-∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+111111(1)()()122311n n n =-+-++-=-++ 所以 1lim lim(1)11n n n S n →∞→∞=-=+,故级数11(1)n n n ∞=+∑收敛.⑵ 由于(21)(32)(1)11n S n n n =-+-+++-=+-所以lim n n S →∞=+∞,故级数1(1)n n n ∞=+-∑发散.二、级数的基本性质及收敛的必要条件1.设11,n nn n u v∞∞==∑∑都收敛,和分别为,a b ,则1()nn n uv ∞=±∑必收敛,且1()n n n u v a b ∞=±=±∑;评注:若1nn u∞=∑收敛,1nn v∞=∑发散,则1()nn n uv ∞=±∑必发散;若11,n n n n u v ∞∞==∑∑都发散,则1()nn n uv ∞=±∑可能发散也可能收敛.2.设k 为非零常数,则级数1nn u∞=∑与1nn ku∞=∑有相同的敛散性;3.改变级数的前有限项,不影响级数的敛散性; 4.级数收敛的必要条件:如果1nn u∞=∑收敛,则lim 0n n u →∞=;5.收敛的级数在不改变各项次序前提下任意加括号得到的新级数仍然收敛且和不变.评注:若某级数添加括号后所成的级数发散,则原级数亦发散. [例1.2] 判断下列级数的敛散性⑴111111210420210n n+++++++ ⑵1(21)(1)(2)n n n n n ∞=+++∑ 解:⑴由于112n n ∞=∑收敛,1110n n ∞=∑发散,所以 111()210n n n ∞=+∑发散,由性质5的“注”可知级数111111210420210n n+++++++发散;⑵ 由于(21)lim20(1)(2)n n n n n →∞+=≠++,不满足级数收敛的必要条件,所以级数1(21)(1)(2)n n n n n ∞=+++∑发散. 三、正项级数及其敛散性判别法各项为非负(0n u ≥)的级数1nn u∞=∑称为正项级数.1.正项级数收敛的基本定理 定理:设{}n S 是正项级数1nn u∞=∑的部分和数列,则正项级数1nn u∞=∑收敛的充要条件是数列{}n S 有界.当1p >时,p 级数11pn n∞=∑收敛;当1p ≤时,p 级数发散.(1p =时的p 级数也叫调和级数)2.正项级数的比较判别法 定理:(正项级数比较判别法的非极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设0,()n n u v n N ≤≥,则⑴ 若1nn v∞=∑收敛,则1nn u∞=∑收敛;⑵ 若1nn u∞=∑发散,则1nn v∞=∑发散.定理:(正项级数比较判别法的极限形式) 设11,n n n n u v ∞∞==∑∑都是正项级数,并设limnn nu v ρ→∞=或为+∞,则⑴ 当ρ为非零常数时,级数11,nnn n u v∞∞==∑∑有相同的敛散性;⑵ 当0ρ=时,若1nn v∞=∑收敛,则必有1nn u∞=∑收敛;⑶ 当ρ=+∞时,若1nn v∞=∑发散,则必有1nn u∞=∑发散.评注:用比较判别法的比较对象常取p -级数与等比级数及211ln 1pn p n n p ∞=>⎧⎨≤⎩∑时,收敛时,发散. 3.正项级数的比值判别法定理:设1n n u ∞=∑是正项级数,若1limn n nu u ρ+→∞=或为+∞,则级数1n n u ∞=∑有 ⑴ 当1ρ<时,收敛; ⑵ 当1ρ>或∞时,发散; ⑶ 当1ρ=时,敛散性不确定.评注:⑴ 若11n n u u +≥(1,2,)n =,则级数1n n u ∞=∑必发散;⑵ 如果正项级数通项中含有阶乘,一般用比值判别法判定该级数的敛散性; ⑶ 当1limn n nu u +→∞=1或不存在(但不为∞),则比值判别法失效. 4.正项级数的根值判别法将比值判别法中的1n nu u +改成n n u ,其它文字叙述、结论均不改动,即为根值判别法. 5.利用通项关于无穷小1n的阶判定正项级数的敛散性 定理:设1n n u ∞=∑是正项级数,n u 为1()n n →∞的k 阶无穷小,则当1k >时,正项级数1nn u ∞=∑收敛;当1k ≤时,正项级数1nn u∞=∑发散.[例1.3] 判断下列级数的敛散性 ⑴1111n nn∞+=∑⑵213n n n ∞=∑ ⑶11(ln(1))n n n ∞=+∑ ⑷21(1)n n n n ∞=+∑ 解:⑴ 由于1111lim lim 11nn n n nn n+→∞→∞==,而级数11n n ∞=∑发散,故原级数发散; ⑵ 由于2112(1)31lim lim 133n n n n n nu n u n ++→∞→∞+=⨯=<,所以由比值判别法可得,原级数收敛;⑶ 由于11lim lim 01(ln(1))ln(1)nn n n n n →∞→∞==<++,所以由根值判别法可知,原级数收敛;⑷ 由于2(1)nn n +为1()n n→∞的32阶无穷小,所以原级数收敛. 四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑的级数,称为交错级数.2.交错级数的莱布尼兹判别法 定理:若交错级数11(1),(0)n n n n u u ∞-=->∑满足条件⑴ 1(1,2,)n n u u n +≥=;⑵ lim 0n n u →∞=,则交错级数11(1),(0)n n n n u u ∞-=->∑收敛,其和1S u ≤其余项n S S -满足1n n S S u +-≤.五、任意项级数及其绝对收敛若级数1nn u∞=∑的各项为任意实数,则称它为任意项级数.1.条件收敛、绝对收敛 若1nn u∞=∑收敛,则称1nn u∞=∑绝对收敛;若1nn u∞=∑发散但1nn u∞=∑收敛,则称1nn u∞=∑条件收敛.评注:绝对收敛的级数不因改变各项的位置而改变其敛散性与其和. 2.任意项级数的判别法 定理:若级数1nn u∞=∑收敛,则级数1nn u∞=∑收敛.即绝对收敛的级数一定收敛.[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴111(1)3n n n n ∞--=-∑ ⑵111(1)ln(1)n n n ∞-=-+∑ 解:⑴ 记11(1)3n n n nu --=- 因为 11131limlim 133n n n n n nu n u n -+→∞→∞+=⨯=< 所以级数1nn u∞=∑收敛,故原级数收敛且为绝对收敛;⑵ 记11(1)ln(1)n n u n -=-+由于1n u n >,而11n n ∞=∑发散,所以级数1n n u ∞=∑发散又1nn u∞=∑是一交错级数,10()ln(1)n u n n =→→∞+,且1n n u u +>,由莱布尼兹定理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑的和等于__________.解:由于11(1)2n n n a ∞-=-=∑,所以根据级数的性质可得 21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n aa a a ∞∞--===-=--=∑∑因此21211()538n n n n n a aa ∞∞-===+=+=∑∑.[例7.1.2] 设10n u n≤≤,则下列级数中肯定收敛的是 (A )1nn u∞=∑; (B )1(1)nnn u∞=-∑; (C )1n n u ∞=∑; (D )21(1)nnn u∞=-∑解:取11n u n =+,则10n u n ≤≤,此时(A )1n n u ∞=∑与(C )1n n u ∞=∑都发散;若取1(1)2n n u n +-=,则10n u n ≤≤,此时(B )111(1)2nn n n u n∞∞==-=∑∑发散;由排除法可得应选(D ).事实上,若10n u n ≤≤,则2210n u n≤≤,根据“比较判别法”得21nn u∞=∑收敛.从而21(1)nnn u∞=-∑收敛,故应选(D ).[例7.1.3] 已知级数2121()n n n uu ∞-=+∑发散,则(A )1nn u∞=∑一定收敛, (B )1nn u∞=∑一定发散(C )1nn u=∑不一定收敛 (D )lim 0n n u →∞≠解:假设1nn u∞=∑收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数仍然收敛,即2121()n n n uu ∞-=+∑也收敛.这与已知矛盾,故1n n u ∞=∑一定发散.应选(B ). [例7.1.4] 设正项级数1n n u ∞=∑的部分和为n S ,又1n nv S =,已知级数1n n v ∞=∑收敛,则级数1nn u ∞=∑必(A )收敛 (B )发散 (C )敛散性不定 (D )可能收敛也可能发散 解:由于级数1n n v ∞=∑收敛,所以根据收敛的必要条件可得lim 0n n v →∞=,又1n nv S =,所以lim n n S →∞=∞,故级数1n n u ∞=∑发散,故应选(B ).[例7.1.5] 设有命题 (1) 若1nn a∞=∑收敛,则21nn a∞=∑收敛;(2)若1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=,则1n n a ∞=∑收敛;(3)若存在极限lim 0nn nu l v →∞=≠,且1n n v ∞=∑收敛,则1n n u ∞=∑收敛;(4)若(1,2,3,)n n n w u v n <<=,又1n n v ∞=∑与1n n w ∞=∑都收敛,则1n n u ∞=∑收敛.则上述命题中正确的个数为(A )1 (B )2 (C )3 (D )4解:关于命题(1),令(1)n n a n -=,则1n n a ∞=∑收敛,但21112n n n a n ∞∞===∑∑发散,所以不正确;关于命题(2),令1n a n =,则1n n a ∞=∑为正项级数,且11(1,2,)n na n a +<=,但1n n a ∞=∑发散,所以不正确;关于命题(3),令1(1)(1),nnn n u v n n n --=+=,则在极限lim 0n n nu l v →∞=≠,且1n n v ∞=∑收敛,但1nn u=∑发散,所以不正确;关于命题(4),因为(1,2,3,)n n n w u v n <<=,所以0n n n n u w v w <-<-,因为1n n v ∞=∑与1nn w∞=∑都收敛,所以由“比较判别法”知1()nn n uw ∞=-∑收敛,故1n n u ∞=∑收敛.故应选(A ). 二、正项级数敛散性的判定正项级数1nn u∞=∑判别敛散的思路:①首先考察lim n n u →∞(若不为零,则级数发散;若等于零,需进一步判定);②根据一般项的特点选择相应的判别法判定.评注:⑴ 若一般项中含有阶乘或者n 的乘积形式,通常选用比值判别法: ⑵ 若一般项中含有以n 为指数幂的因式,通常采用根值判别法:⑶ 若一般项中含有形如n α(α为实数)的因式,通常采用比较判别法.⑷ 如果以上方法还行不通时,则可考虑用敛散的定义判定. [例7.1.6] 判断下列级数的敛散性(1)21sin 2n n n π∞=∑ (2)1!2n n n n n ∞=∑ (3)221(1)2n n n n n n∞=+∑(4)312ln n n n∞=∑(5)2111n n n∞=++∑(6)321(1)n nn n∞=+∑ 解:(1)用比值法.221122(1)sin(1)122limlim12sin22n n n n nn n n n n ππππ++→∞→∞++⋅==<⋅,所以原级数收敛. (2)用比值法.11(1)!22(1)lim2lim 1!2(1)n n n n n n n nn n n n n en ++→∞→∞++==<+, 所以原级数收敛. (3)用根值法.22(1)1(1)lim lim 1222n n nn n nn n n n e n n →∞→∞++==>,所以原级数发散. (4)用比较法.取541n v n =,因为14ln lim lim 0n n n n u n v n →∞→∞==,而5141n n∞=∑收敛, 所以原级数收敛.(5)用比较法.取1n v n =,因为2lim lim 11n n n nu n v n n →∞→∞==++,而11n n ∞=∑发散,所以原级数发散. (6)由于32lim10(1)n nn n→∞=≠+,故由级数收敛的必要条件知原级数发散.评注:在考研题中遇到该类问题应①先看当n →∞时,级数的通项n u 是否趋向于零(如果不易看出,可跳过这一步),若不趋于零,则级数发散;若趋于零,则②再看级数是否为几何级数或p 级数,因为这两种级数的敛散性已知.如果不是几何级数或p 级数,则③用比值判别法进行判定,如果比值判别法失效,则④再用比较判别法进行判定.常用来做比较的级数主要有几何级数、p 级数等. [例7.1.7] 判断下列级数的敛散性(1)1(sin )n n n ππ∞=-∑ (2)111(ln(1))n nn ∞=-+∑ 分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小1n的阶判定正项级数的敛散性. 解:(1)考查 sin lim 1()n k nn nππ→∞-换成连续变量x ,再用罗必达法则,2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kxπππππππ+++--→→→--== 取3k =,上述极限值为316π.所以原级数与311n n ∞=∑同敛散,故原级数收敛.(2)考查 11ln(1)lim 1()n k nn n→∞-+ 换成连续变量x ,再用罗必达法则,1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+ 取2k =,上述极限值为12. 所以原级数与211n n ∞=∑同敛散,故原级数收敛. [例7.1.8] 研究下列级数的敛散性(1)1!n n n a n n∞=∑(0a >是常数); (2)1nn n αβ∞=∑,这里α为任意实数,β为非负实数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记!n n n a n u n=,由比值判别法可得111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a au n a n e n+++→∞→∞→∞+=⋅==++ 显然,当a e <时,级数收敛;当a e >时,级数发散;当a e =时,由于111(1)!11(1)!(1)n n n n n nn u e n n eu n e n n++++=⋅=>++,所以lim 0n n u →∞≠,故级数发散. (2)记n n u n αβ=,由比值判别法可得11(1)1l i m l i m l i m ()n n n n n n nu n n u n nαααββββ++→∞→∞→∞++==⋅= 显然,当01β≤<,α为任意实数时,级数收敛;当1β>时,α为任意实数时,级数发散;当1β=时,比值判别法失效.这时n u n α=,由p 级数的敛散性知,当1α<-时,级数收敛;当1α≥-时,级数发散. [例7.1.9] 判别下列级数的敛散性(1)14011n n xdx x ∞=+∑⎰(2)11n x n n e dx ∞+-=∑⎰ 分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项. 解:(1)因为10x n <<时,411x x x n<<+,所以 132410()1n x dx x n<<+⎰由于级数3211()n n∞=∑收敛,所以原级数收敛.(2)因为函数xe-在区间[,1]n n +上单减,所以110n n x n n nne dx e dx e ++---<<=⎰⎰由于22limlim 01n n n n e n e n-→∞→∞==,又因为级数211n n∞=∑收敛,所以原级数收敛. 三、交错级数判定敛散判别交错级数1(1),(0)nnnn u u∞=->∑敛散性的方法:法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.评注:法二、法三和法四适应于{}n u 不单调减少或判定单调很困难的交错级数. [例7.1.10] 判定下列级数的敛散性 (1)111(1)ln n n n n ∞-=--∑ (2)2(1)(1)nnn n ∞=-+-∑ (3)11111112223334-+-+-+⨯⨯⨯ (4)2011sin 46(1)2n n nn n ∞-=-∑ 解:(1)该级数是交错级数,显然1lim0ln n n n→∞=-.令1()ln f x x x =-,则211()0,(1)(ln )x f x x x x -+'=<≥-,所以1ln n n ⎧⎫⎨⎬-⎩⎭单调减少. 由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列1(1)n n ⎧⎫⎨⎬+-⎩⎭不单调.而(1)(1)((1))1(1)111(1)n n n nnn n n n n n --+-==-+---+-, 显然,级数211n n ∞=-∑发散; 又级数2(1)1nn nn ∞=--∑是交错级数,显然满足lim 01n n n →∞=-,令2(),(2)1x f x x x =≥-,则2221()0(1)x f x x --'=<-,所以1n n ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭单调减少,由莱布尼兹判别法可得,级数2(1)1nn nn ∞=--∑收敛. 故由级数敛散的性质可得,原级数发散. (3)不难得到{}n u 不单调,但有1111111(1)()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列20sin 462n nn ⎧⎫⎨⎬⎩⎭的单调性很麻烦. 但 20sin 4622n nn n n ≤,而由比值判别法易得到级数12n n n ∞=∑收敛,所以级数201sin 462n n n n ∞=∑收敛.从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性对任意项级数1nn u∞=∑,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看当n →∞时,级数的通项n u 是否趋向于零,若不趋于零,则级数发散;若趋于零,则②按正项级数敛散性的判别法,判定1nn u∞=∑是否收敛,若收敛,则级数1nn u∞=∑绝对收敛;若发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定1nn u∞=∑是否收敛(若收敛则为条件收敛).[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)21sin ,,n n n n αβπαβ∞=++∑为常数; (2)(1)1sin n n n x dx x ππ∞+=∑⎰; (3)111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++.解:(1)2sinsin[()](1)sin()n n n n u n n n nαβββππαπαπ++==++=-+,由于当n 充分大时,sin()nβαπ+保持定号,所以级数从某项起以后为一交错级数.当α不是整数时,不论β取何值,总有lim lim sin()sin 0n n n u nβαπαπ→∞→∞=+=≠,故级数发散;当α是整数时,有(1)sin nn u n αβπ+=-,因而sin n u nβπ=,由于lim 1nn u nβπ→∞=所以利用比较判别法的极限形式可得,当0β≠时级数1nn u∞=∑发散,又因为sinn u nβπ=总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数1nn u∞=∑收敛,且为条件收敛;当0β=时,级数显然收敛,且绝对收敛.(2)由于(1)00sin (1)sin sin (1)n x n t n nnx t t dx dt dt x n tn t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰的敛散性由于当0x π<<时,sin sin sin t t t n n t n ππππ≤≤++,所以 02sin 2t dt n n t n πππππ≤≤++⎰由于级数12n n ππ∞=+∑发散,所以级数(1)011sin sin n n n n x t dx dt x n t ππππ∞∞+===+∑∑⎰⎰发散.因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛.(3)这是任意项级数.考虑每三项加一括号所成的级数1111()333231n a n a n a n ∞=+-+-+-+-∑22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是n 的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质. [例7.1.12] 证明:如果级数1nn a∞=∑与1nn b∞=∑收敛,且(1,2,)n n n a c b n ≤≤=,则级数1nn c ∞=∑也收敛.证明:由n n n a c b ≤≤可得,0n n n n c a b a ≤-≤-; 由级数收敛的基本性质可得1()nn n ba ∞=-∑收敛,故由正项级数的比较判别法可得1()n n n c a ∞=-∑收敛.又由于11[()]n nn n n n c ca a ∞∞===-+∑∑,所以级数1n n c ∞=∑收敛.[例7.1.13] 设11112,()2n n na a a a +==+(1,2,)n =,证明 (Ⅰ)lim n n a →∞存在 ;(Ⅱ)级数11(1)nn n a a ∞=+-∑收敛. 证明:(Ⅰ)由于111()2n n n a a a +=+,所以根据均值不等式可得111()12n n na a a +=+≥ 故数列{}n a 有下界.又因为21111()()22n n n n n n na a a a a a a +=+≤+=,所以{}n a 单调不增,从而由单调有界准则可知,lim n n a →∞存在.(Ⅱ)由(Ⅰ)可知,101n n a a +≤-,所以级数11(1)n n n aa ∞=+-∑是正项级数.又因为11111n n n n n n n a a aa a a a ++++--=≤-, 而正项级数11()nn n aa ∞+=-∑的前n 项和11111()lim nn kk n n n k S aa a a a a ++→∞==-=-→-∑所以正项级数11()nn n aa ∞+=-∑是收敛的,由比较判别法知,原级数收敛.[例7.1.14] 设()f x 在点0x =的某一邻域内有连续二阶导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 分析:已知条件中出现高阶导数,可考虑使用泰勒公式完成. 证明:由于()f x 在点0x =连续,且0()lim0x f x x→=,所以可得(0)0,(0)0f f '==. 将()f x 在点0x =展开成一阶泰勒公式,有 2211()(0)(0)()()2!2f x f f x f x f x ξξ'''''=++=. 由于()f x ''在点0x =的某一邻域内连续,故存在0M >,使得在0x =的某小邻域内()f x M ''≤,从而211()2M f n n≤⋅(当n 充分大时) 由比较判别法可知,级数11()n f n∞=∑绝对收敛. [例7.1.15] 若()f x 满足:⑴在区间[0,)+∞上单增;⑵lim ()x f x A →+∞=;⑶()f x ''存在,且()0f x ''≤.证明(Ⅰ)1[(1)()]n f n f n ∞=+-∑收敛 ;(Ⅱ)1()n f n ∞='∑收敛.证明:(Ⅰ)由于1[(1)()](1)(1)nn k S f k f k f n f ==+-=+-∑,所以lim lim (1)11n n n S f n A →∞→∞=+-=-,从而级数1[(1)()]n f n f n ∞=+-∑收敛.(Ⅱ)由于()f x ''存在,且()0f x ''≤,所以函数()f x '单调不增.又因为()f x 在区间[0,)+∞上单增,所以必有()0f x '≥,即级数1()n f n ∞='∑是正项级数.根据拉格朗日中值定理可得(1)()(),1n n f n f n f n n ξξ'+-=<<+,所以 (1)()()n f n f f n ξ'''+≤≤. 由(Ⅰ)可知1()nn f ξ∞='∑收敛,所以根据正项级数的比较判别法知,级数1(1)n f n ∞='+∑收敛,再根据级数收敛的性质可得级数1()n f n ∞='∑收敛.六、其它[例7.1.16] 设正项数列{}n a 单调减少,且1(1)nnn a ∞=-∑发散,判定级数11()1nn na ∞=+∑的敛散性. 解:正项数列{}n a 单调减少,由单调有界准则可得,lim n n a →∞存在,记为a (0a ≥). 因为级数1(1)nn n a ∞=-∑是交错级数,若lim 0n n a →∞=,由莱布尼兹判别法可知,该级数收敛.但题设该级数发散,所以必定有0a >,于是 111lim ()lim 1111n n n n n n a a a →∞→∞==<+++.由根值判别法知,级数11()1nn na ∞=+∑收敛.[例7.1.17] 讨论级数11111123421(2)xx xn n -+-++-+-在哪些x 处收敛?在哪些x处发散?解:⑴ 当1x =时,原级数为11111123456-+-+-+,这是交错级数,且满足“莱布尼兹判别法”的条件,故收敛;⑵ 当1x >时,2111111(1)(1)321223n x x x xS n n =+++-++++- 当n →∞时,111321n +++→+∞-, 当n →∞时,1111(1)223x x x x n++++趋向定常数,故2lim n n S →∞发散,从而原级数发散;⑶ 当1x <时,211111111()()()2345(2)21n x x x S n n +=-------+ 由于1x <,所以上式中第一项以后的各项都为负的. 考察级数111[](2)21x n n n ∞=-+∑,由于 111lim[]/1(2)21(2)x xn n n n →∞-=+, 所以根据正项级数的“比较判别法”的极限形式知,级数111[](2)21x n n n ∞=-+∑发散. 从而21lim n n S +→∞=-∞,即原级数发散.综上所述,当1x =时,级数收敛;当1x ≠时,级数发散. [例7.1.18] 已知111,cos n n a a a +==,判定级数1n n a ∞=∑的敛散性.分析:该级数的通项以递推公式给出,这给级数类型的判定以及通项n a 是否收敛于零带来困难.不妨先假设级数通项0()n a n →→∞,再看由递推公式两端取极限时能否导出矛盾.一旦产生矛盾,便可确定级数发散.解:若lim 0n n a →∞=,则1lim lim cos 1n n n n a a +→∞→∞==.这与假设矛盾.因此lim 0n n a →∞≠,原级数发散.[例7.1.19] 设a 为常数,1a ≠-,讨论级数111nn a∞=+∑的敛散性.解:由于存在na ,因此想到分1,1,1a a a <=>讨论.当1a <时,由于lim 0nn a →∞=,所以1lim101n n a →∞=≠+,级数发散;当1a =时,11n a +=12,所以11lim 012n n a →∞=≠+,级数发散; 当1a >时,由于111111111lim lim lim 11111n n n n n n n n na a a a a a aa ---++--→∞→∞→∞+++===<+++,所以级数111n n a ∞=+∑收敛,故级数111nn a ∞=+∑收敛且绝对收敛. [例7.1.20] 已知11a =,对于1,2,n =,设曲线21y x =上点21(,)n na a 处的切线与x 轴交点的横坐标是1n a + (Ⅰ)求,2,3,n a n =;(Ⅱ)设n S 是以(,0)n a ,21(,)n n a a 和1(,0)n a +为顶点的三角形的面积,求级数1n n S ∞=∑的和解:(Ⅰ)曲线21y x =上点21(,)n na a 处的切线方程为 2312()n n nY X a a a -=-- 从而13(1,2,)2n n a a n +==,从而11133()()22n n n a a --== (Ⅱ)由题意11221111112()()222443n n n n n n n n a S a a a a a -+=⨯⨯-=⨯⨯== 所以11112113()2434413n n n n S ∞∞-====⨯=-∑∑.§7.2 幂级数本节重点是求幂级数的收敛域、求幂级数的和函数、将函数展开成幂级数.● 常考知识点精讲一、函数项级数的概念1.函数项级数的定义 定义:设函数()(1,2,3)n u x n =都在D 上有定义,则称表达式121()()()nn u x u x u x ∞==++∑为定义在D 上的一个函数项级数,()n u x 称为通项,1()()n k k S x u x ∞==∑称为部分和函数.2.收敛域 定义:设1()n n u x ∞=∑是定义在D 上的一个函数项级数,0xD ∈,若数项级数01()n n u x ∞=∑收敛,则称0x 是1()nn u x ∞=∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域.3.和函数 定义:设函数项级数1()n n u x ∞=∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得1()()n n S x u x ∞==∑成立.定义域为I 的函数()S x 称为级数1()n n u x ∞=∑的和函数.评注:求函数项级数收敛域时,主要利用收敛域的定义及有关的数项级数的判别法.二、幂级数1.幂级数的定义 定义:设{}(0,1,2,)n a n =是一实数列,则称形如00()n n n a x x ∞=-∑的函数项级数为0x 处的幂级数.00x =时的幂级数为0n n n a x ∞=∑.2.阿贝尔定理 定理:对幂级数00()nn n a x x ∞=-∑有如下的结论: ⑴ 如果该幂级数在点1x 收敛,则对满足010x x x x -<-的一切的x 对应的级数()nnn a x x ∞=-∑都绝对收敛;⑵ 如果该幂级数在点2x 发散,则对满足020x x x x ->-的一切的x 对应的级数()nnn a x x ∞=-∑都发散.[例2.1] 若幂级数(2)nn n a x ∞=-∑在1x =-处收敛,问此级数在4x =处是否收敛,若收敛,是绝对收敛还是条件收敛? 解:由阿贝尔定理知,幂级数(2)nn n a x ∞=-∑在1x =-处收敛,则对一切适合不等式2123x -<--=(即15x -<<)的x 该级数都绝对收敛.故所给级数在4x =处收敛且绝对收敛.三、幂级数收敛半径、收敛区间如果幂级数()nnn a x x ∞=-∑不是仅在0x x =处收敛,也不是在整个数轴上收敛,则必定存在一个正数R ,它具有下述性质: ⑴ 当0x x R -<时,0()nnn a x x ∞=-∑绝对收敛;⑵ 当0x x R ->时,()nnn a x x ∞=-∑发散.如果幂级数()n n n a x x ∞=-∑仅在0x x =处收敛,定义0R =;如果幂级数()nnn a x x ∞=-∑在(,)-∞+∞内收敛,则定义R =+∞.则称上述R 为幂级数()nnn a x x ∞=-∑的收敛半径.称开区间00(,)x R x R -+为幂级数()nnn a x x ∞=-∑的收敛区间.四、幂级数收敛半径的求法求幂级数()nnn a x x ∞=-∑的收敛半径R法一:⑴ 求极限11000()()lim ()n n nn n a x x x x a x x ρ++→∞--=-⑵ 令00()1x x x x m ρ-<⇒-<则收敛半径为R m =;法二:若n a 满足0n a ≠,则1limnn n a R a →∞+=; 法三;⑴ 求极限00()lim ()nn n n x x a x x ρ→∞-=-⑵ 令00()1x x x x m ρ-<⇒-< 则收敛半径为R m =.[例2.2] 求下列幂级数的收敛域⑴12!n n n x n ∞=∑ ⑵1(5)nn x n ∞=-∑ ⑶221212n nn n x ∞-=-∑ 解:⑴ 收敛半径1112(1)!lim lim 2!1n n n n n n a n R a n +→∞→∞++==⨯=+∞,所以收敛域为(,)-∞+∞;⑵ 收敛半径11limlim 11n n n n a R n a n→∞→∞+==⨯+= 当51x -=-时,对应级数为1(1)nn n ∞=-∑这是收敛的交错级数,当51x -=时,对应级数为11n n∞=∑这是发散的P -级数, 于是该幂级数收敛域为[4,6);⑶ 由于22122212()lim 2(21)2nn n n n x n x x n x ρ+-→∞+=⨯=- 令()1x ρ<,可得2x <,所以收敛半径为2R =当2x =±时,对应的级数为1212n n ∞=-∑,此级数发散, 于是原幂级数的收敛域为(2,2)-.五、幂级数的性质设幂级数()nnn a x x ∞=-∑收敛半径为1R ;()nnn b x x ∞=-∑收敛半径为2R ,则1.000()()()()nnnnnn n n n n a x x b x x ab x x ∞∞∞===-±-=±-∑∑∑,收敛半径12min(,)R R R ≥; 2.0001[()][()]()()nnnn nni n in n n i a x x b x x a bx x ∞∞∞-====-⋅-=-∑∑∑∑,收敛半径12min(,)R R R ≥; 3.幂级数00()nn n a x x ∞=-∑的和函数()S x 在其收敛域I 上连续; 4.幂级数在其收敛区间内可以逐项求导,且求导后所得到的幂级数的收敛半径仍为R .即有11()[()][()]()nnn nnnn n n S x a x x a x x na x x ∞∞∞-==='''=-=-=-∑∑∑.5.幂级数在其收敛区间内可以逐项积分,且积分后所得到的幂级数的收敛半径仍为R .即有100001()[()][()]()1xxxnnn n n nx x x n n n S x d x a x x d x a x x d x a x xn ∞∞∞+====-=-=-+∑∑∑⎰⎰⎰[例2.3] 用逐项求导或逐项积分求下列幂级数在收敛区间内的和函数 ⑴11(11)n n nxx ∞-=-<<∑ ⑵411(11)41n n x x n +∞=-<<+∑解:⑴ 令11()(11)n n S x nxx ∞-==-<<∑,则111()()1xxn n n n x S x dx nxdx x x∞∞-=====-∑∑⎰⎰ 所以2211(),(11)(1)(1)x x S x x x x -+==-<<--;⑵ 令411()(11)41n n x S x x n +∞==-<<+∑,则4144411()()411n nn n x x S x x n x +∞∞==''===+-∑∑ 所以4422001111()(1)12121xx x S x dx dx x x x==-+⋅+⋅-+-⎰⎰ 111ln arctan 412x x x x +=+--,(11)x -<<. 六、函数展开成幂级数1.函数展开成幂级数的定义定义:设函数()f x 在区间I 上有定义,0x I ∈,若存在幂级数()nnn a x x ∞=-∑,使得()(),nnn f x a x x x I ∞==-∀∈∑则称()f x 在区间I 上能展开成0x 处的幂级数. 2.展开形式的唯一性定理:若函数()f x 在区间I 上能展开成0x 处的幂级数 0()(),nnn f x a x x x I ∞==-∀∈∑则其展开式是唯一的,且()0()(0,1,2,)!n n f x a n n ==.七、泰勒级数与麦克劳林级数1.泰勒级数与麦克劳林级数的定义定义:如果()f x 在0x 的某一邻域内具有任意阶导数,则称幂级数()()00000000()()()()()()()!1!!n n n n n f x f x f x x x f x x x x x n n ∞='-=+-++-+∑为函数()f x 在0x 点的泰勒级数.当00x =时,称幂级数()()0(0)(0)(0)(0)!1!!n n n nn f f f x f x x n n ∞='=++++∑为函数()f x 的麦克劳林级数. 2.函数展开成泰勒级数的充要条件定理:函数()f x 在0x I ∈处的泰勒级数在I 上收敛到()f x 的充分必要条件是:()f x 在0x 处的泰勒公式()000()()()()!k nk n k f x f x x x R x k ==-+∑的余项()n R x 在I 上收敛到零,即对任意的x I ∈,都有lim ()0n n R x →∞=.八、函数展开成幂级数的方法1.直接法利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法. 2.间接法通过一定的运算将函数转化为其它函数,进而利用新函数的幂级数展开将原来的函数展开成幂级数的方法.所用的运算主要是四则运算、(逐项)积分、(逐项)求导、变量代换.利用的幂级数展开式是下列一些常用函数的麦克劳林展开公式.幂级数常用的七个展开式0,(,)!nxn x e x n ∞==∈-∞+∞∑210sin (1),(,)(21)!n nn x x x n +∞==-∈-∞+∞+∑20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑1ln(1)(1),111n nn x x x n +∞=+=--<≤+∑2(1)(1)(2)(1)(1)1,(1,1)2!!n n x x x x x n αααααααα----++=+++++∈-1,(1,1)1n n x x x ∞==∈--∑1(1),(1,1)1n n n x x x ∞==-∈-+∑.●● 常考题型及其解法与技巧一、阿贝尔定理的应用[例7.2.1] 设幂级数nn n a x∞=∑的收敛半径为2,则幂级数1(3)nn n a x ∞=-∑在下列点处必收敛(A ){}2,3,4,e (B )12,1,0,e ⎧⎫--⎨⎬⎩⎭(C ){}1,5 (D ){}1,2,3,4,5,e解:由于nn n a x∞=∑与1(3)nn n a x ∞=-∑有相同的收敛半径,所以当32x -<的时候对应的级数1(3)nn n a x ∞=-∑都绝对收敛,显然集合{}2,3,4,e 中的点都满足不等式32x -<,故选(A )[例7.2.2] 如级数nn n a x∞=∑在2x =处收敛,问级数1()2nn n a x ∞=-∑在2x =-处敛散性怎样?解:由阿贝尔定理,对一切2x <的x 值,级数0nn n a x ∞=∑绝对收敛,从而级数01()2nnn a x ∞=-∑满足:对一切122x -<的x 值,级数01()2n n n a x ∞=-∑绝对收敛.现2x =-显然不满足122x -<,故级数01()2n n n a x ∞=-∑在2x =-处敛散性不确定.[例7.2.3] 设1(1)2nnn n a ∞=-∑收敛,则1n n a ∞=∑(A )条件收敛 (B )绝对收敛 (C )发散 (D )不定 解:考查幂级数1nn n a x∞=∑,由于1(1)2nnn n a ∞=-∑收敛,所以幂级数1n n n a x ∞=∑在2x =-点收敛,根据阿贝尔定理当2x <-时,对应的幂级数都绝对收敛,所以当1x =时,对应的幂级数绝对收敛,而此时对应级数为1nn a∞=∑.所以应选(B )[例7.2.4] 设幂级数1(1)nn n a x ∞=+∑在3x =处条件收敛,则该幂级数的收敛半径为_______.解:由于1(1)nn n a x ∞=+∑在3x =处条件收敛,由阿贝尔定理得,当14x +<时级数1(1)nn n a x ∞=+∑绝对收敛.所以收敛半径4R ≥;假设4R >.由收敛半径的定义知1x R +<时,对应的级数都绝对收敛,所以级数在3x =处应绝对收敛,矛盾.所以4R ≤. 因此收敛半径4R =.二、收敛半径、收敛区间、收敛域求幂级数收敛半径的方法我们在常考知识点中介绍过,如果幂级数中的幂次是按自然数顺序依次递增的,这时幂级数()nnn a x x ∞=-∑的收敛半径的计算公式1limnn n a R a →∞+=如果幂级数中的幂次不是按自然数顺序依次递增的(如缺少奇数次幂或缺偶次幂等),这时不能用上面的公式计算收敛半径,而必须使用正项级数的比值判别法或根值判别法(即常考知识点中介绍的法一与法三)求出幂级数的收敛半径. 设幂级数()nnn a x x ∞=-∑的收敛半径为R .为了求幂级数的收敛域还需判别在x =0x R -与0x x R =+处级数00()n n n a x x ∞=-∑的敛散性.[例7.2.5] 求下列幂级数的收敛半径和收敛域(1)1!()n n x e n n ∞=-∑ (2)2311n n n x n ∞=+∑ (3)2111(1)3(21)n n nn x n +∞-=-+∑ (4)21(21)n n x n n ∞=-∑ (5)14(1)1(1)[4(1)]!n n n xn -∞-=--∑ 解:(1)此级数x e -的幂次是按自然数顺序依次递增的,其收敛半径可直接按公式计算:11!(1)1lim lim lim(1)(1)!n n n n n n n n a n n R e a n n n +→∞→∞→∞++==⨯=+=+在2x e e e =+=处,级数成为1!()nn en n ∞=∑,由[例7.1.8]中的(1)可知该级数发散;在0x e e =-=处,级数成为1!()nn e n n∞=-∑,可判定发散. 故原级数的收敛域为(0,2)e .(2)此级数的收敛半径也可按公式计算:23321(1)1lim lim 11(1)n n n n a n n R a n n →∞→∞+++==⋅=++ 在1x =-处,级数成为231(1)1n n n n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在1x =处,级数成为2311n n n ∞=+∑,由于23lim 111n n n n →∞⨯=+,而级数11n n ∞=∑发散,故级数2311n n n ∞=+∑发散.因此所给级数的收敛域为[1,1)-.(3)此级数缺少x 的偶次幂.故需利用比值判别法求收敛半径.2321121(1)3(21)1()lim 3(23)(1)3n n n n n n n x n x x n x ρ++-+→∞-+=⨯=+-令()1x ρ<可得,3x <,故收敛半径为3R =.在3x =-处,级数成为13(1)21nn n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在3x =处,级数成为113(1)21n n n ∞-=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛.因此所给级数的收敛域为[3,3]-.(4)此级数缺少x 的奇次幂.故需利用比值判别法求收敛半径.2222(21)()lim (1)(21)n n n x n n x x n n xρ+→∞-=⋅=++ 令()1x ρ<可得,1x <,故收敛半径为1R =.在1x =-处,级数成为11(21)n n n ∞=-∑,该级数显然收敛; 在1x =处,级数成为11(21)n n n ∞=-∑,该级数收敛. 因此所给级数的收敛域为[1,1]-.(5)此级数中的x 的幂次不是按自然顺依次递增的.故需用比值判别法求收敛半径.4414(1)(1)[4(1)]!()lim 0(4)!(1)n n n n n x n x x n xρ--→∞--=⋅=⋅- 令()1x ρ<可得,(,)x ∈-∞+∞,故收敛半径为R =+∞. 于是幂级数的收敛域为(,)-∞+∞.[例7.2.6] 求幂级数21()(,0)n n nn a b x a b nn ∞=+>∑的收敛域.解:设幂级数1n n n a x n ∞=∑,21n nn b x n∞=∑的收敛半径分别为12,R R ,则11R a =,21R b =.因此幂级数的收敛半径为1211min(,)min(,)R R R a b==. (1) 若a b ≥,则1R a =.在1x a =-,级数为21111(1)(1)()n n n n n b n n a ∞∞==-+-∑∑收敛; 在1x a =,级数为21111()nn n b n na ∞∞==+∑∑发散,从而收敛域为11[,)a a -.(2)若a b <,则1R b=. 在1x b =-,级数为21111(1)()(1)n nn n n a n b n ∞∞==-+-∑∑收敛;在1x b =,级数为21111()n n n a n b n∞∞==+∑∑收敛;,从而收敛域为11[,]b b -.[例7.2.7] 已知幂级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,求其收敛域.解:由于幂级数级数(3)nnn a x ∞=-∑在0x =处收敛,由阿贝尔定理可得,当3033x -<-=时,对应的幂级数绝对收敛,所以收敛半径3R ≥;假设收敛半径3R >,由收敛半径的定义可知,3x R -<时,对应的级数都绝对收敛,而633R -=<,所以级数(3)nn n a x ∞=-∑在6x =处绝对收敛,与已知矛盾.故3R ≤.综上可得,收敛半径3R =. 又因为级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,故收敛域为[0,6).三、函数项级数求收敛域函数项级数1()n n u x ∞=∑求收敛域的基本方法:⑴ 用正项级数比值判别法(或根值判别法)求1()()lim ()n n nu x x u x ρ+→∞=(或()lim ()n n n x u x ρ→∞=);⑵解不等式()1x ρ<,求出1()n n u x ∞=∑的收敛区间(,)αβ;⑶ 判定级数1()nn u α∞=∑与1()nn u β∞=∑的敛散性.评注:函数项级数1()n n u x ∞=∑求收敛域有时也利用变量代换化为幂级数,利用幂级数求收敛域的方法来完成,或者利用数项级数其它判别法、及性质完成.。
380 第十章 无穷级数在许多科学技术领域中,常常要求我们将无穷多个数或者函数相加,我们把这种和式叫做无穷级数.无穷级数是表示函数、研究函数性态以及进行数值计算的一种有效工具.无穷级数分为常数项级数和函数项级数,本章将先介绍常数项级数的概念及其敛散性的审敛法,然后讨论函数项级数,最后将着重讨论如何将函数展开成幂级数和三角级数的问题.第一节 常数项级数的概念与性质一、常数项级数的基本概念设给定一个数列1u ,2u ,n u ,,用加号把这些项连结起来所构成的和的表达式 1u +2u +n u +(1)称为(常数项)无穷级数,简称(常数项)级数,记作1n n u ∞=∑1u =+2u +n u ++,级数的第n 项u n 通常称为级数的一般项或通项.例如 111111!2!3!!n n n ∞==+++++∑,1(1)1111(1)nn n ∞=-=-+-+-+-+∑,1123n n n ∞==+++++∑ 都是常数项级数.上述级数的定义仅仅是一种形式上的定义,这种加法是否具有“和数”,这个“和数”的意义是什么?为了解决这个问题,我们先作(常数项)级数(1)的前n 项和n s =12n u u u +++1ni i u ==∑, (2)n s 称为级数(1)的部分和.当n 依次取1,2,3,…时,部分和又构成一个新的数列11s u =, 122s u u =+,3123,s u u u =++, n s =12n u u u +++,,即数列12,,,,n s s s .把这个数列{n s }称为级数1n n u ∞=∑的部分和数列(简称为部分和).当n 趋于无穷大时,如果级数1n n u ∞=∑的部分和数列{n s }有极限s ,即lim n n s s →∞=,则称无穷级数1n n u ∞=∑收敛,并称极限s 为级数的和,写成12n s u u u =+++.如果部分和数列{n s }没有极限,则称无穷级数1n n u ∞=∑发散.当级数1n n u ∞=∑收敛时,其部分和n s 是级数的和s 的近似值,它们之间的差值12n n n n r s s u u ++=-=++称为级数的余项.用近似值n s 代替和s 所产生的误差是这个余项的绝对值,即误差是n r .381●●例1 判别无穷级数1123n n n ∞==+++++∑的敛散性.解 由于 (1)122n n n s n +=+++=, 则 (1)lim lim 2n n n n n s →∞→∞+==∞,所以该级数发散.●●例2 讨论级数11111(1)n --+-++-+的敛散性. 解 部分和数列11s =,2110s =-=,31111s =-+=,,11111(1)n n s -=-+-++-.易知,当n 为奇数时,1n s =;当n 为偶数时,0n s =.所以没有极限,故原级数发散. ●●例3 无穷级数20nn n aqa aq aq aq ∞==+++++∑. (3)叫做等比级数(又称为几何级数),其中0a ≠,q 叫做级数的公比,试讨论级数(3)的敛散性.解 如果||1q ≠,级数的部分和1n n s a aq aq-=+++1n a aq q -==-11na aq q q---. 当||1q <时, lim n n s →∞=lim 111n n a aq a q q q →∞⎡⎤-=⎢⎥---⎣⎦, 此时级数(3)收敛,且其和为 1aq -; 当||1q >时,lim n n s →∞=∞,此时级数(3)发散.如果||1q =,则当1q =时,n s na =→∞,因此级数(3)发散;当1q =-时,级数(3)变为n s =a a a a -+-+1(1)n a -+-.显然,n s 随着n 为奇数或为偶数而等于a 或为零,因此n s 的极限不存在,此时级数(3)也发散.综上讨论可知,等比级数11n n aq ∞-=∑当||1q <时收敛,其和为1aq-,当||1q ≥时发散. 例如级数23422223333⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比213q =<,则该级数是收敛的.又例如级数23433332222⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比312q =>,故该级数是发散的. 二、收敛级数的基本性质由上面的讨论可知,级数的收敛问题,实际上也就是研究它的部分和数列的收敛问题,因此,我们可以应用数列极限的有关知识来研究无穷级数的收敛与发散.从而可以得到收敛级数的一些基本性质.性质1 如果级数123n u u u u ++++收敛于和s ,则它的各项同乘以一个常数a 所得的级数123n au au au au ++++也收敛,且其和为as . 证 设级数1n n u ∞=∑与级数1n n au ∞=∑的部分和分别为n s 和n σ,则n s =12n u u u +++,n σ12n au au au =+++n as =.382 由数列极限的性质知lim lim n n n n as as σ→∞→∞==.即级数1nn au∞=∑收敛于as .性质2 如果级数1n n u ∞=∑和1n n v ∞=∑都收敛,且其和分别为s 与σ,则级数1()nn n uv ∞=±∑1122()()()n n u v u v u v =±+±++±+.也收敛,并且有111()nn n n n n n uv u v ∞∞∞===±=±∑∑∑s σ=±.证 令1nn i i s v ==∑,1nn i i u σ==∑,1()nn i i i T u v ==±∑,则1()nn i i i T u v ==±=∑11n ni in n i i u vs σ==±=±∑∑,所以有lim lim()lim lim n n n n n n n n n T s s s σσσ→∞→∞→∞→∞=±=±=±.也就是说,1()n n n u v ∞=±∑收敛于s σ±.●●例4 判别级数212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的敛散性.若收敛时求出它的和.解 由于级数211111222n -+++++与 21213331444n n --+++++都是公比小于1的等比级数,所以它们都收敛,且其和分别为2和4,由性质2知所给级数收敛,其和为212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111222n -⎛⎫=+++++ ⎪⎝⎭21213331444n n --⎛⎫++++++ ⎪⎝⎭246=+=. 性质3 在级数的前面部分去掉或加上有限项,不改变级数的敛散性.证 设将级数121k k k n u u u u u +++++++++的前k 项去掉,则得级数12k k k n u u u +++++++.令新级数的部分和n T =12k k k n u u u ++++++.则12n k k k n T u u u +++=+++k n k s s +=-,其中k n s +为原级数的前k n +项的和,而k s 12k u u u =+++是常数,所以当n →∞时,n T 和n k s +或者同时具有极限,或者同时没有极限,当有极限时,k T s s =-.其中lim n n T T →∞=,lim k n n s s +→∞=.类似地,可以证明在级数的前面加上有限项,也不改变级数的敛散性. 性质4 收敛级数对其项任意加括弧后所成级数仍为收敛的级数,且其和不变. 应该注意,加括号后的级数收敛时,原来未加括弧的级数未必收敛,例如下面的级数(11)(11)(11)-+-+-+ 收敛于零,但级数111111-+-+-+却是发散的.由性质4可得: 如果加括弧后所成的级数发散,则原来级数也发散.383性质5 (级数收敛的必要条件)如果级数1n n u ∞=∑收敛,则当n 无限增大时,它的一般项n u 趋于零,即lim 0n n u →∞=.证 设级数1n n u ∞=∑的部分和数列为{}n s ,且lim n n s s →∞=.因为1n n n u s s -=-,所以1lim lim()n n n n n u s s -→∞→∞=-0s s =-=.性质5表明,若lim 0n n u →∞≠,则1n n u ∞=∑一定发散,但要注意,若lim 0n n u →∞=时,级数1n n u ∞=∑可能收敛,也可能发散. ●●例5 无穷级数111123n+++++ (4)称为调和级数.证明调和级数是发散的.证法1 顺序把级数(4)的两项、两项、四项、八项、2m 项、加括号得级数111111112345678⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111121222m mm +⎛⎫+++++ ⎪++⎝⎭ 因为 11122+>,1111134442+>+=,111111111,567888882+++>+++=11111111111212222222m m m m m m +++++++>+++=++, 所以这个加括号的级数的前1m +项的和大于12m +,从而可知加括号后的级数发散.由性质4所得的结论可知,调和级数(4)发散.证法2 由0x >时,ln(1)x x >+知,11ln 1n n ⎛⎫>+ ⎪⎝⎭,所以1111ln 1nn n i i s i i ==⎛⎫=>+ ⎪⎝⎭∑∑341ln 2ln ln ln 23n n +=++++341ln 223n n +⎛⎫=⋅⋅⋅⎪⎝⎭ln(1)n =+.由于lim limln(1)nn n s n →∞→∞≥+=∞,故调和级数发散.●●例6 -+-+11n n +-+-+的敛散性.解 对级数每两项加括号后所成的级数为2n ∞=∑221n n ∞==-∑2121n n ∞==-∑,而211n n ∞=-∑为调和级数,它是发散的,故知原级数发散. 习 题 10-11.写出下列级数的前5项:384 (1)21(2)n nn ∞=+∑; (2)113(21)24(2)n n n ∞=⋅⋅⋅⋅-⋅⋅⋅⋅∑;(3)11(1)10n n n -∞=-∑;(4)1!(1)nn n n ∞=+∑. 2.写出下列级数的一般项:(1)111246+++;(2)231153759711a a a ++++⋅⋅⋅⋅;(3)35791113149162536-+-+-+-;(42242468x x +⋅⋅⋅⋅ (0x >).3.判定下列级数的敛散性: (1)1n ∞=∑;(2)11(21)(21)n n n ∞=-+∑;(3)1111223(1)n n ++++⋅⋅+;(4)π2ππsin sin sin 666n ++++;(5)1n ∞=∑;(6)13++;(7)22111111323232n n ⎛⎫⎛⎫⎛⎫-+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(8)135721357921n n -+++++++;(9)221(n ∞=∑ (0a >);(10)23111111111111123nn +++++⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 4.证明下列级数收敛,并求其和:11111447710(32)(31)n n +++⋅⋅⋅++⋅⋅⋅⋅⋅⋅-+.5.若级数1n n u ∞=∑与1n n v ∞=∑都发散时,级数1()n n n u v ∞=±∑的敛散性如何?若其中一个收敛,一个发散,那么,级数1()n n n u v ∞=±∑散敛性又如何?第二节 常数项级数的审敛法一、正项级数及其审敛法在第一节中,我们介绍了判别一般常数项级数(即级数的各项可以是正数、负数或者零)是否收敛的方法.如果级数1n n u ∞=∑的每一项都是非负的,即0n u ≥(1n =,2,),则称级数1nn u∞=∑为正项级数. 在这一节,我们将对正项级数给出一些常用的审敛判别法.385设正项级数12n u u u ++++ (1) 的部分和为n s ,显然部分和数列{n s }是单调增加数列,也就是说12n s s s ≤≤≤≤根据单调有界数列必有极限的准则可得,如果部分和数列n s 有界,也就是说存在一正数M ,使得n s M ≤对所有的n 都成立,则级数(1)一定收敛;反之,如果正项级数收敛于s ,则数列{n s }一定有界. 由此可得下面的正项级数收敛的基本定理.正项级数1n n u ∞=∑收敛的充分必要条件是它的部分和数列{n s }有界.根据这一定理,我们可以得到正项级数收敛或发散的一些基本判别法则.(比较审敛法)设级数1n n u ∞=∑,1n n v ∞=∑为两个正项级数,且满足不等式n nu v ≤(1n =,2,)则下面的结论成立:(1)如果级数1n n v ∞=∑收敛, 则级数1n n u ∞=∑也收敛; (2)如果级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.证 (1)设1n n v ∞==∑σ,1n n k k s u ==∑,1nn k k v σ==∑,则由条件知n s =12n u u u +++12n v v v ≤+++n σ=≤1nn vσ∞==∑,即部分和数列{n s }有界,由定理1知级数1n n u ∞=∑收敛.(2)反证法,若正项级数1n n v ∞=∑收敛,则根据(1)知级数1n n u ∞=∑收敛,与1n n u ∞=∑发散矛盾,故级数1n n v ∞=∑发散.由第一节的性质1和性质3可知,级数的每一项同乘以不为零的常数k ,以及去掉级数前面部分的有限项不会影响级数的收敛性,于是可得如下推论:推论 设1n n u ∞=∑和1n n v ∞=∑是两个正项级数.如果从某项开始(比如从第N 项开始),满足不等式n n u kv ≤(n N ≥,0k >),则(1)若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑发散.为了便于应用,我们下面接着给出比较审敛法的极限形式.(比较审敛法的极限形式) 设1n n u ∞=∑和1n n v ∞=∑为给定的两个正项级数,(1) 如果lim nn nu l v →∞=(0l ≤<+∞),且级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;386 (2) 如果lim 0n n n u l v →∞=>或lim nn nu v →∞=+∞,且级数1n n v ∞=∑发散,则级数1n n u ∞=∑发散.证 (1) 根据极限的定义,对1ε=,存在自然数N ,使得当n N >时,有不等式1nnu l v <+, 即 (1)n n u l v <+ 而级数1n n v ∞=∑收敛,再由比较审敛法的推论,便可知1n n u ∞=∑收敛.(2) 反证法,如果级数1n n u ∞=∑收敛,则由结论(1)得级数1n n v ∞=∑收敛,但已知级数1n n v ∞=∑发散,矛盾.因此,级数1n n u ∞=∑发散.●●例1 证明级数1131nn ∞=+∑是收敛的. 证 因为11313n n ≤+,而且几何级数113n n ∞=∑收敛,故由比较判别法知,1131nn ∞=+∑是收敛的. ●●例2 判别级数11(0)1nn a a ∞=>+∑的收敛性. 解 (1)当01a <<时,11lim 10110n n a →∞==≠++,所以级数111n n a ∞=+∑发散. (2)当1a =时,11lim 012n n a →∞=≠+,所以级数111n n a ∞=+∑发散. (3)当1a >时,111nn a a ⎛⎫< ⎪+⎝⎭. 由于级数11nn a ∞=⎛⎫⎪⎝⎭∑收敛,所以级数111nn a ∞=+∑收敛. 综上所述,当01a <≤时,原级数发散,当1a >时,原级数收敛. ●●例3 级数11111123pp p p n nn ∞==++++∑. (2) 称为p -级数,其中0p >是常数,试讨论p -级数的敛散性.解 (1)当1p ≤时,有 11p n n ≤,由于11n n ∞=∑发散,故由比较审敛法知,级数(2)发散.(2)当1p >时,由1k x k -≤≤知 11p p k x≤,所以111k p pk x k k -=≤⎰d 11k p k x x -⎰d ,(2,3,n =) 从而级数(2)的部分和1n s =+21n p k k =≤∑1+12n k p k k x x -=∑⎰d 11n p x x =+=⎰ d 111111p p n -⎛⎫+- ⎪-⎝⎭111p <+-(2,3,n =), 故数列{}n s 有界,所以级数(2)收 敛.综上所述可得p -级数11pn n∞=∑当1p >时收敛,当1p ≤时发散. ●●例4 判别下列级数的敛散性:387(1)3132n n n n ∞=+-∑; (2)1111n nn∞+=∑; (3)11n n ∞=⎛⎫+ ⎪⎝⎭; (4)21e n n n ∞-=∑.解 (1)因为 323323312lim lim 122n n n n n n n n n n →∞→∞++-==-,而211n n ∞=∑收敛,所以级数3132n n n n ∞=+-∑收敛. (2)因为111lim 11nn n nn+→∞==,又级数11n n ∞=∑发散,所以级数1111n nn∞+=∑发散. (3)因为321ln 1lim 11n n n nn →∞→∞⎛⎫+ ⎪⎝⎭==, 而级数3121n n∞=∑收敛,所以级数11n n ∞=⎛⎫+ ⎪⎝⎭收敛.(4)因为 242e lim lim 01e n n n n n n n -→∞→∞==,而级数211n n ∞=∑收敛,所以级数21e n n n ∞-=∑收敛. ●●例5 判别级数11ln 1p n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.(0p >,且为常数)解 因为1ln 1lim 1p n pn n→∞⎛⎫+ ⎪⎝⎭1lim ln 1p n p n n →∞⎛⎫=+ ⎪⎝⎭1ln lim 11p n p n n →∞⎡⎤⎛⎫⎢⎥=+= ⎪⎝⎭⎢⎥⎣⎦ 而p -级数11p n n ∞=∑当1p >时收敛,所以当1p >时原级数收敛;当1p ≤时11p n n∞=∑发散,故当1p ≤原级数发散.判别级数的敛散性,如果已知一些收敛级数和发散级数,则可以以它们为标准进行比较.常用于比较的级数有p -级数、等比级数与调和级数,因此必须记住它们.由比较审敛法的定理我们知道,它是通过与某个敛散性已知的级数的比较来判断给定级数的敛散性,但有时作为比较对象的级数不容易找到,那么能不能从给定的级数自身直接判别级数的敛散性?为此,下面我们将给出使用上很方便的比值审敛法和根值审敛法.(比值审敛法) 设级数1n n u ∞=∑是正项级数,且1lim n n nuu ρ+→∞=.则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或1lim n n nu u +→∞=∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.388 正项级数敛散性的这一判别法称为比值审敛法或达朗贝尔(D alembert ')审敛法.证(1)当1ρ<时,取一个适当小的正数ε,使得1r ρε+=<,由1lim n n nuu ρ+→∞=知,存在正整数N ,使得当n N >时,有不等式1n nur u ρε+<+=成立,即有1N N u ru +<, 221N N N u ru r u ++<<, 332N N N u ru r u ++<<,…而等比级数23N N N ru r u r u +++收敛(公比1r <),由比较审敛法可知123N N N u u u ++++++收敛.由于级数1n n u ∞=∑只是比级数1nn N u∞=+∑多了前N 项,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,取一个适当小的正数ε ,使得1ρε->,由极限的定义知,存在正整数N ,使得当n N >时,有不等式11n n uu ρε+>->成立,也就是1n n u u +>.所以,当n N >时,级数的一般项逐渐增大,因此lim 0n n u →∞≠,由级数收敛的必要条件可知,级数1n n u ∞=∑发散.类似地,可以证明,当1lim n n nu u +→∞=∞时,级数1n n u ∞=∑发散.(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.例如p -级数11p n n ∞=∑,不论0p >为何值,总有1lim n n nu u +→∞=1(1)lim11pn pn n →∞+=.但我们已经知道当1p >时p -级数收敛,而当1p ≤时p -级数发散.所以,仅根据ρ=1是不能判别级数的敛散性的.●●例6 判别级数2222231232222n n +++++的敛散性. 解 因为22n n n u =,22112(1)112lim lim lim 22n n n n n nnn u n n u n ++→∞→∞→∞++⎛⎫== ⎪⎝⎭112=<,根据比值审敛法,所以原级数是收敛的.●●例7 判别级数2132nn n n ∞=∑的敛散性.解 因为232nn n u n =,所以1limn n nu u +→∞=122212323lim lim (1)232(1)n n n nn n n nn n ++→∞→∞⋅=++2313lim 11221n n →∞⎛⎫⎪==> ⎪ ⎪+ ⎪⎝⎭, 所以级数2132nn n n ∞=∑发散.●●例8 判别级数1111123456(21)2n n+++++⋅⋅⋅-⋅的敛散性.389解 由于1(21)2n u n n =-⋅,所以1lim n n nu u +→∞=(21)2lim 1(21)(22)n n nn n →∞-⋅=++,比值审敛法此时失效.但注意到211(21)2n n n <-⋅,而级数211n n ∞=∑收敛,所以级数11(21)2n n n ∞=-⋅∑收敛. (根值审敛法)设级数1n n u ∞=∑是正项级数,且n ρ=,则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或n =+∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.正项级数敛散性的这一判别法称为根值审敛法或柯西审敛法.证 (1)当1ρ<时,由极限的定义,取一个适当小的0ε>,存在自然数N ,使得当n N >1r ρε<+=<成立,即nn u r <.由于等比级数1n n r ∞=∑(公比1r <)收敛,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,根据极限的定义,取一个适当小的0ε>,存在正整数N ,使n N >时,1ρε>->成立,即1n u >.由于lim 0n x u →∞≠,所以级数1n n u ∞=∑发散.(3)当1ρ=时,根值审敛法失效.仍以p -级数11pn n∞=∑为例,由根值审敛法=1p=→(n →∞). 即1ρ=,但p -级数当1p >时收敛;当1p ≤时发散.因此在1ρ=时级数的敛散性不能由根值审敛法判定. ●●例9 判别级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.解因为11e lim 1<155nn n n n →∞⎛⎫=+= ⎪⎝⎭所以由根值审敛法可知级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛. ●●例10 判别级数ln 123nn n ∞=∑的敛散性.解 因为=ln 23n n=,而当n →∞时,ln nn的极限为0,所以n ln 2lim 3n n n→∞=21=>,因此所给级数发散.390 二、交错级数及其审敛法如果级数的各项是正负交替出现的,也就是形如 1234u u u u -+-+1(1)n n u -+-+ (3) 或 1234u u u u -+-++(1)n n u +-+(3')(0n u >,1,2,n =)的级数称为交错级数.下面的定理说明了如何对于交错级数的敛散性进行判别.(莱布尼兹(Leibniz )审敛法) 如果交错级数11(1)n n n u ∞+=-∑(0,1,2,n u n >=)满足下面的条件:(1)1n n u u +≥(1,2,3,n =);(2)lim 0n n u →∞=则级数11(1)n n n u ∞+=-∑收敛,且其和1S u ≤,其误差1n n r u +≤.证 先证交错级数(3)的前2n 项和2n s 的极限存在,其和1s u ≤. 因为2n s 可表示为2n s =1234212()()()n n u u u u u u --+-++-,及 2n s =1234522212()()()n n n u u u u u u u u ----------所以由条件(1)知,括弧中的所有项都是非负的,因此由2n s 的第一种表达形式可知,2n s 单调增加,由2n s 的第二个表达式可知,21n s u <.于是,由单调有界数列必有极限的准则可知,当n 无限增大时,2n s 趋于一个极限s ,且s 不大于1u ,即21lim n n s s u →∞=≤.再证交错级数(3)的前21n +项的和21n s +的极限为s ,且1s u ≤. 因为 21221n n n s s u ++=+, 所以由条件(2)知21lim 0n n u +→∞=,所以21221lim lim lim n n n n n n s s u s ++→∞→∞→∞=+=.由于级数的前2n 项的和与前21n +的和趋于同一极限s ,故级数11(1)n n n u ∞+=-∑的部分和n s 当n →∞时具有极限s ,这就证明了交错级数11(1)n n n u ∞+=-∑收敛于和s ,并且1s u ≤.对于级数(3)的余项n r ,可写成如下的形式:12()n n n r u u ++=±-+.它的绝对值12||n n n r u u ++=-+.也是一个交错级数,也满足交错级数收敛的两个条件,因此其和不超过级数的第一项1n u +,也就是说 1|| n n r u +. ●●例11 判别级数111111(1)234n n+-+-++-+的敛散性,并求其和s 的近似值(精确到0.1).解 令1n u n =, 显然有 (1) 1111n n u u n n +=>=+, (1,2,n =), (2)1lim lim0n n n u n→∞→∞==. 由定理6知,原级数收敛.且11111(1)23n n s s n +≈=-+++-.其中11n rn ≤+.因为取9n =时,9110r ≤0.1=,所以111110.74562349s ≈-+-++≈.391●●例12判别级数1(1))πn n n ∞=-∑的敛散性.解 因为(1))πn n -(1)n =-.又s in n u =是单调减少数列,且lim 0n n n u →∞→∞==.由莱布尼兹审敛法可知,原级数收敛.三、绝对收敛与条件收敛上面我们讨论了正项级数和交错级数敛散性的判别法,如果级数1n n u ∞=∑中的项n u(1,2,)n =是任意实数,则把这种级数称为任意项级数.下面我们来讨论任意项级数的敛散性.如果对于任意项级数1n n u ∞=∑中的各项取绝对值所得的正项级数1||n n u ∞=∑收敛,则称级数1nn u∞=∑绝对收敛;如果级数1||n n u ∞=∑发散,而级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑条件收敛.由上述定义,容易得到结论:收敛的正项级数是绝对收敛的.绝对收敛级数和收敛级数之间有如下重要关系.如果级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.证 令1(||)2n n n v u u =+ (1,2,3,n =).则当0n u ≥时,n n v u =;当0n u <时,0n v =,所以0n v ≥,且||n n v v =11||||(||||)22n n n n u u u u =+≤+||n u =.因为级数1||n n u ∞=∑收敛,由比较审敛法知1n n v ∞=∑收敛,从而12n n v ∞=∑也收敛.又因为2||n n n u v u =-,所以级数1n n u ∞=∑是由两个收敛级数逐项相减而形成的, 即11(2||)nnnn n u v u∞∞===-∑∑.由级数的性质2可知,级数1n n u ∞=∑收敛.该定理表明,对于任意项级数1n n u ∞=∑,如果由正项级数审敛法判定级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.进而可知,一些任意项级数的敛散性可借助于正项级数的审敛法而得到判定.一般来说,如果1||n n u ∞=∑发散,我们不能断定1n n u ∞=∑发散,但是,如果我们用比值法或根值法,根据1ρ>判定1||n n u ∞=∑发散,则可断定1n n u ∞=∑发散.这是因为从1ρ>可推知lim 0n n u →∞≠,从而可392 知lim 0n n u →∞≠,因此级数1n n u ∞=∑发散.●●例13 证明级数11sin rn n n α∞+=∑(其中0r >)绝对收敛. 证 因为11sin 1r r n nn α++≤,而级数111r n n ∞+=∑收敛,所以由比较审敛法知,11sin r n n n α+∞+=∑收敛,因此所给级数绝对收敛.●●例14 判别级数2111(1)13n n nn n ∞=⎛⎫-+ ⎪⎝⎭∑的敛散性.解 1113nn ⎛⎫+ ⎪⎝⎭,而11lim 13nn n n →∞⎛⎫=+ ⎪⎝⎭e13=<.故由根值审敛法知所给级数收敛.由定理7,我们注意到每个绝对收敛的级数都是收敛的,但反过来不一定成立.也就是说,并不是每个收敛级数都是绝对收敛的.例如,级数111111(1)234n n+-+-++-+是收敛级数,但对各项取绝对值后得到的级数为11111234n++++++是调和级数,它是发散的.●●例15 判别级数1np n x n∞=∑的敛散性,若收敛,讨论其是绝对收敛还是条件收敛解 对级数11||n np p n n x x n n ∞∞===∑∑应用根值审敛法,因为||n x =,由此可知: 当||1x <时,p 为任意实数,级数收敛(绝对收敛);当||1x >时,p 为任意实数,级数发散;当1x =时,(1)1p >时,级数收敛(绝对收敛);(2)1p ≤时,级数发散; 当1x =-时,(1)1p >时,级数收敛(绝对收敛);(2)01p <≤时,级数收敛(条件收敛);(3)0p ≤时,级数发散.绝对收敛级数有一些很好的运算性质,我们不加证明地给出如下:绝对收敛级数不因改变项的位置而改变它的和.1n u 及1n n v ∞=∑都绝对收敛,其和分别为s 和σ,则它们的柯西乘积111221()u v u v u v ++++1211()n n n u v u v u v -+++也是绝对收敛的,且其和为s σ.习 题 10-21.用比较审敛法或其极限形式判定下列各级数的敛散性:(1)1111253647(1)(4)n n ++++⋅⋅⋅+⋅+;(2)1+111357+++;(3)2221111135(21)n +++++-;(4)2222(sin 2)(sin 4)(sin 2)666nn ++++;393(5)ππππsinsin sin sin 2482n +++++. 2.用比值审敛法判别下列级数的敛散性:(1)234521333n n ++++++; (2)232332!33!3!323n n n n ⋅⋅⋅+++++;(3)231111sin 2sin 3sin sin 2222n n +⋅+⋅+++;(4)21(!)(3)!n n n ∞=∑; (5)n ∞=; (6)1!n n n n ∞=∑; (7)213n n n ∞=∑. 3.用根值审敛法判定下列各级数的敛散性:(1)152n n n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)2111n n n ∞=⎛⎫+ ⎪⎝⎭∑; (3)2122n n n n n ∞=+⎛⎫ ⎪⎝⎭∑ ; (4)131ennn ∞=+∑; (5)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中(),,,n n a a n a b a →→∞均为正数;(6)1(0,lim ,0)nn n n n n x x a a a a ∞→∞=⎛⎫>=> ⎪⎝⎭∑.4.判别下列级数的敛散性:(1)23433332344444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)()11sin 2n n n n ∞=π+∑;(3)1111(1sin1)sin sin 22nn ⎛⎫⎛⎫-+-++-+ ⎪ ⎪⎝⎭⎝⎭;(4)222222ln 1ln 1ln 1123⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)222sin 2sin 2sin 333n n πππ⋅+⋅++⋅+;(6)21cos 32nn n n ∞=π∑; (7)111(e e 2)nn n ∞-=+-∑. 5.判别下列级数是否收敛?若收敛的话,是绝对收敛还是条件收敛? (1)1(1)n n ∞-=-∑ (2)111(1)8n n n n ∞-=-∑; (3)1311(1)sin n n n ∞-=-∑; (4)111(1)ln n n n n ∞-=+-∑;(5)11111234a a a a -+-+-++++(a 不为负整数);(6)1111ln 2ln3ln 4ln5-+-+;(7)234111sin sin sin 234πππ-+-πππ;394 (8)22221111sinsin sin sin 1234-+-+.第三节 幂级数一、函数项级数的概念在前两节内容中,我们讨论了常数项级数,这一节我们将研究应用更为广泛的函数项级数.如果1()u x ,2()u x ,, ()n u x ,,是定义在区间I 上的函数列,则由该函数列构成的和式12()()()n u x u x u x ++++(1)称为定义在区间I 上的(函数项)无穷级数,简称(函数项)级数, ()n u x 称为一般项或通项.当x 在区间I 中取某个确定的值0x 时,函数项级数1()n n u x ∞=∑成为常数项级数10200()()()n u x u x u x ++++,该级数可能收敛,也可能发散.如果常数项级数01()n n u x ∞=∑收敛,则称点0x 是函数项级数1()nn u x ∞=∑的收敛点;如果级数01()nn u x ∞=∑发散,则称点0x是函数项级数1()n n u x ∞=∑的发散点. 函数项级数1()n n u x ∞=∑的所有收敛点组成的集合称为它的收敛域,所有发散点组成的集合称为它的发散域.对应于收敛域内的任意一个数x ,函数项级数1()n n u x ∞=∑成为一收敛的常数项级数,因而有一确定的和s .因此,在收敛域上,函数项级数的和是x 的函数()s x ,我们把()s x 称为函数项级数的和函数,和函数的定义域就是级数的收敛域,并记为()s x =12()()()n u x u x u x ++++.类似于常数项级数,把函数项级数1()n n u x ∞=∑的前n 项的部分和记为()n s x ,则在收敛域内有lim ()()n n s x s x →∞=.把()()()n n r x s x s x =-仍然称为函数项级数的余项. 当然,只有在收敛域上()n r x 才有意义.于是当1()n n u x ∞=∑收敛时,有lim ()0n n r x →∞=.●●例1 级数12111n n n x x x x ∞--==+++++∑是定义在(,)-∞+∞上的函数项级数.它的前n 项和为()n s x =21111n n x x x xx --++++=-当||1x <时,该级数收敛,其和函数为11x-,且有21111n x x x x-=+++++- (2) 而当||1x ≥时该级数发散.该级数的收敛域为(1,1)-,而其发散域为(,1][1,)-∞-+∞.395二、幂级数及其收敛性在函数项级数中,简单且常见的一类级数就是幂级数.它的表达形式是2012n n a a x a x a x +++++, (3) 或2010200()()()n n a a x x a x x a x x +-+-++-+(4)其中,012,,,,,n a a a a 叫做幂级数的系数.由于在函数项级数00()n n n a x x ∞=-∑中,如果作变换0y x x =-,则级数(4)就变成级数0n n n a y ∞=∑,因此由级数(3)的性质可以推得级数(4)的性质,所以这里我们主要讨论幂级数(3).由例1 知道,幂级数0n n x ∞=∑的收敛域为(1, 1-),发散域为(,1][1,)-∞-+∞.对于一般的幂级数(3),显然至少有一个收敛点0x =,除此之外,它还有哪些收敛点,怎样得到像例1那样的收敛域呢?对此,下面的阿贝尔(Abel )定理给出了明确的回答.(阿贝尔定理) 如果幂级数0n n n a x ∞=∑在0x x =(00x ≠)处收敛,则对于满足0||||x x <的一切x ,幂级数0nn n a x ∞=∑绝对收敛;反之,如果幂级数0n n n a x ∞=∑在0x x =0(0)x ≠处发散,则对于满足0||||x x >的一切x ,幂级数0n n n a x ∞=∑发散.证 设0x 是幂级数(3)的收敛点,即级数2010200nn a a x a x a x +++++收敛.根据级数收敛的必要条件,有0lim 0nn n a x →∞=.于是,存在一个正数M ,使得nn a x ≤M (0,1,2,3,n =).从而有0000nnn n nn n n n x x a x a x a x x x =⋅=≤0nx M x . 因为当0x x <时,等比级数00nn xM x ∞=∑收敛(公比01x x <),所以级数0n n n a x ∞=∑收敛,故级数0nn n a x∞=∑绝对收敛.定理的第二部分可以用反证法证明.如果幂级数0n n n a x ∞=∑当0x x =(00x ≠)时发散,如果有一点1x 适合10||||x x >,10nn n a x ∞=∑收敛,则根据该定理的第一部分的证明可知,级数0nn n a x ∞=∑收敛,这与假设矛盾,定理得证.定理1说明,如果幂级数(3)在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数(3)都收敛;如果幂级数(3)在0x x =处发散,则对于闭区间00[||,||]x x -以外的任何x ,幂级数都发散.由此可知,如果幂级数(3)既有非零的收敛点,又有发散点,则收敛396 点和发散点不可能交错地落在同一区间内,也就是一定存在收敛区间和发散区间的分界点x R =与x R =-(0R >)使得当||x R <时,幂级数(3)绝对收敛;当||x R >时,幂级数(3)发散;当x R =与x R =-时,幂级数(3)可能收敛也可能发散.通常称正数R 为幂级数(3)的收敛半径;开区间(,)R R -称为幂级数(3)的收敛区间. 由幂级数(3)在x R =±处的收敛性可以决定它的收敛域,其收敛域是(,)R R -,[,)R R -(,]R R -,或[,]R R -中之一.如果幂级数(3)只在0x =处收敛,则规定其收敛半径为0R =;如果幂级数(3)对一切x 都收敛,则规定其收敛半径为R =+∞,此时的收敛域为(,-∞+∞).收敛半径的求法由下面的定理给出.设n a 与1n a +是幂级数0n n n a x ∞=∑的相邻两项的系数,且1limn n na a ρ+→∞=.如果 (1)0ρ≠,则1R ρ=;(2)0ρ=,则R =+∞;(3)ρ=+∞,则0R =.证 记nn n u a x =,则1lim n n n u u +→∞=111lim lim ||n n n n n n n na x a x a a x +++→∞→∞=||x ρ=.由比值审敛法知: (1) 当||1x ρ<,即1||x ρ<时,级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛;当||1x ρ>即1||x ρ>时,级数0n n n a x ∞=∑发散,因此收敛半径1R ρ=.(2)如果0ρ=,则对任何0x ≠,有||01x ρ=<,所以级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛,于是收敛半径R =+∞.(3)如果ρ=+∞,则对于除0x =以外的任何x ,有||1x ρ>,所以对任何0x ≠,幂级数(3)发散,即收敛半径0R =.●●例2 求幂级数231(1)23nn x x x x n +-+++-+的收敛半径、收敛区间和收敛域.解 根据定理2有1lim n n na a ρ+→∞==11lim 11n n n→∞+=,所以收敛半径11R ρ==.所给级数的收敛区间为(1,1)-.对于端点1x =,所给幂级数成为交错级数11111(1)23n n +-+-+-+,该级数收敛. 对于端点1x =-,所给幂级数成为111123n------,该级数发散.故所给级数的收敛域为(1,1]-.●●例3求幂级数212nn n x ∞=∑的收敛域.解 本题为缺项幂级数,由于幂级数相邻两项的系数有零,不能直接求收敛半径.可以397利用比值审敛法来处理,考虑幂级数211||2n n n x ∞=∑,因为2212221||112lim lim 122||2n n n n n n x x x x ++→∞→∞==,当2112x <,即||x <时,级数211||2n n n x ∞=∑收敛; 当2112x >,即||x >,级数211||2n n n x ∞=∑发散;收敛半径R =,收敛区间为(;当x =2111(12nn n n ∞∞===∑∑发散,所以幂级数212n n n x ∞=∑的收敛域为(.●●例4 求幂级数12112n n n x ∞--=∑的收敛半径.解 与标准幂级数(3)比较,级数缺少偶次幂项.因此定理2不能直接应用,但可用比值审敛法来求收敛半径.因1lim n n n u u +→∞=2121212lim 22n n n n n x x x +--→∞=.当221x <,即||x <时,级数收敛;当221x >,即||x >R =●●例5求幂级数n n ∞=的收敛域.解 令1t x =-,则1)n nn n x ∞∞==-=.因为1lim ||1n n n n a a +→∞==,所以收敛半径11R ρ==,收敛区间为(1,1)-.当1t =-时,1)nnn n ∞∞===-收敛;当1t =时,nn n ∞∞===所以n n ∞=的收敛域为[1,1)-,即11t -≤<,把1t x =-代入,得02x ≤<,故幂级数nn ∞=[0,2).三、幂级数的运算如果幂级数2012n n a a x a x a x +++++()s x = 的收敛半径为1R ,而幂级数2012n n b b x b x b x +++++()x σ=的收敛半径为2R ,则(1)幂级数的加法和减法:()nnn nnnn n n n a x b x ab x ∞∞∞===+=+∑∑∑()()s x x σ=+;398 0()nnn nnnn n n n a x b x ab x ∞∞∞===-=-∑∑∑()()s x x σ=-.收敛半径为12min{,}R R R =.(2)幂级数乘法:n nnnn n a x b x∞∞==⋅∑∑000110()a b a b a b x =++2021120()a b a b a b x ++++0110()n n n n a b a b a b x -+++++()()s x x σ=⋅.收敛半径为12min{,}R R R =.(3)幂级数除法:220120122012n n n n n n a a x a x a x c c x c x c x b b x b x b x +++++=++++++++++.这里假设00b ≠, 将0nn n b x ∞=∑与0nn n c x ∞=∑相乘,所得多项式的系数分别等于0n n n a x ∞=∑中同次幂的系数,从而可求出012,,,,,n c c c c . 相除后所得幂级数0n n n c x ∞=∑的收敛区间可能比原来的两级数0nn n a x ∞=∑与0n n n b x ∞=∑的收敛区间小得多.关于幂级数的和函数,有下面的重要性质:如果幂级数0nn n a x ∞=∑收敛半径为R (0R >),和函数为()s x ,即()s x 0n n n a x ∞==∑,则有(1)()s x 在收敛区间(,)R R -内连续,且如果级数0n n n a x ∞=∑在收敛区间的端点x R =(或x R =-)也收敛,则和函数()s x 在x R =处左连续(或在x R =-处右连续). (2)()s x 在收敛区间(,R R -)内可导,并且有逐项求导公式()()n n n s x a x ∞=''=∑0()n n n a x ∞='=∑11n n n na x ∞-==∑.逐项求导后所得到的新级数收敛半径仍为R .(3)()s x 在收敛区间(,R R -)内可积,并且有逐项积分公式1()d ()d d 1xxxnnn n n n n n n a s t t a t t a t t x n ∞∞∞+======+∑∑∑⎰⎰⎰. 逐项积分后所得到的新级数收敛半径仍为R .●●例6 求幂级数011nn x n ∞=+∑的收敛域及其和函数. 解 因为1limn n n a a ρ+→∞==1lim 12n n n →∞+=+,故所给级数的收敛半径11R ρ==,收敛区间为(1, 1)-.当1x =时,原级数成为011n n ∞=+∑,发散;当1x =-时,原级数成为0(1)1nn n ∞=-+∑,是交错级399数,收敛;因此原级数的收敛域为[1,1)-.设所求级数的和函数为()s x ,即() [1,1)1nn x s x x n ∞==∈-+∑,给上面的等式两端乘以x ,得1()1n n x xs x n +∞==+∑.等式两边求导,得11000[()]()()11n n n n n n x x xs x x n n ++∞∞∞==='''===++∑∑∑1 (||).<11x x =-对上式两端从0到x 积分,得0d ()ln(1)1x txs x x t ==---⎰ (||1)x <.故当0x ≠且[1,1)x ∈-时,1()ln(1)s x x x =--,当0x =时,由2() 1123n n x x x s x n ∞===++++∑,得(0)1s =.因此[)1ln(1), 1,0(0,1),()1, =0.x x s x x x ⎧--∈-⎪=⎨⎪⎩●●例7 求幂级数210(1)21n n n x n +∞=-+∑的和函数,并求01(1)21n n n ∞=-+∑的和.解 级数的收敛半径为1,收敛域为[1,1]-. 设级数的和函数为()s x ,即()s x 21(1)21n nn x n +∞==-+∑, 逐项求导,得()s x '210(1)()21n nn x n +∞='=-+∑20(1)n nn x ∞==-∑20()n n x ∞==-=∑211x +. 对上式从0到x 积分,得2001()d d arctan .1xxs t t t x t '==+⎰⎰即所求和函数为()(0)arctan ,s x s x -=又因为(0)0,s =所以()arctan ,[1,1].s x x x =∈-在原级数中,令1x =,得0(1)21n n n ∞=-+∑arctan1=4π=.习 题 10-31.求下列幂级数的收敛域:(1)2323x x x +++; (2)2342221234x x x x -+-+-;(3)23224246x x x +++⋅⋅⋅; (4)2323222222112131x x x ++++++;(5)23423421!22!23!24!x x x x ++++⋅⋅⋅⋅; (6)23423413233343x x x x ++++⋅⋅⋅⋅;400 (7)2111(1)(21)!n n n x n -∞+=--∑; (8)11(1)(1)n n n x n ∞-=--∑; (9)221212n n n n x ∞-=-∑; (10)nn ∞=.2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数: (1)231234x x x ++++; (2)111(1)n n n nx ∞--=-∑;(3)41141n n x n +∞=+∑;(4)3535x x x +++,并求11(21)2nn n ∞=-∑的和. 第四节 函数展开成幂级数一、泰勒级数第三节讨论了幂级数的收敛域及其和函数的性质,由此可知,一个幂级数()nnn a x x ∞=-∑在它的收敛域内收敛于和函数()s x ,即()s x 00()n n n a x x ∞==-∑.但是,在许多应用中,我们需要解决的是与此相反的问题,也就是对于给定的函数()f x ,它是否可以在某个区间上展开成为幂级数?即是否可以找到一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()f x ,如果可以的话,如何来确定这个幂级数.下面我们就来讨论这个问题.由第三章第二节的泰勒公式可知,如果函数()f x 在点0x 的某个邻域内具有直到(1)n +阶连续导数,则在该邻域内()f x 的n 阶泰勒公式为()f x =200000()()()()()2!f x f x f x x x x x '''+-+-+()00()()()!n n n f x x x R x n +-+ (1) 其中()n R x =(1)10()()(1)!n n f x x n ξ++-+ (ξ介于0x 与x 之间)为拉格朗日型余项. 这时在该邻域内()f x 可用n 次多项式()n P x =200000()()()()()2!f x f x f x x x x x '''+-+- ()00()()!n n f x x x n ++- (2) 来近似地表示,其误差等于余项的绝对值()n R x .如果()n R x 随着n 的增大而减小,那么我们就可以用增加多项式的项数的办法来提高精确度.如果()f x 在点0x 的某邻域内具有任意阶导数()f x ',()f x '',(),(),n f x ,则可以设想多项式(2)的项数趋向无穷而成为幂级数200000()()()()()2!f x f x f x x x x x '''+-+-++()00()()!n n f x x x n -+⋅⋅⋅ (3) 幂级数(3)称为函数()f x 在0x 处的泰勒级数.显然,当0x x =时,该级数收敛于0()f x ,但除了0x x =外,该级数是否还收敛?如果收敛的话,是否收敛于()f x ?关于这些问题,下。
无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。