21.2.1配方法解一元二次方程
- 格式:docx
- 大小:53.78 KB
- 文档页数:4
1
配方法解一元二次方程
学习过程 【自主学习】
(一)复习:知识回顾:完全平方公式: 和 1.解下列方程:
(1)2
430x -= (2)2
693x x -+=
2.填上适当的数,使下列等式成立:
(1) 212x x ++____ = 2
(6)x + (2) 2
4x x -+____ = (x -___)2
(3) 28x x ++____ = (x +____)2 (4)22
____)(_____4
5
+=++
x x x 由上面等式的左边可知,常数项和一次项系数的关系是:
(二)探索新知:请阅读教材第32页,解方程2
450x
x +-=,完成下面框图:
2450x x +-=
归纳总结:
1、通过配成_______形式来解一元二次
方程的方法,叫做配方法。
2、配方是为了降次..,把一个一元二次方程化为______________方程来解。
三.自学课本例题1: 1.观察方程(1)的解题过程,归纳用配方法
解二次项系数是1的一元二次方程的一般步骤是: ①、移项,把_____移到方程右边;
②、配方,在方程的两边各加上___________,使左边成为完全平方;
③、利用直接开平方法解之。
2.观察方程(2)(3)的解题过程,归纳:方程的二次项系数不是1时,可以让方程的各项除以____________,将方程的二次项系数化为____。
2。
21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。
21.2 解一元二次方程21.2.1 配方法教学目标:一、基本目标【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.2.理解并掌握直接开方法、配方法解一元二次方程的方法.【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程.【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】掌握直接开平方法和配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.教学过程:环节1 自学提纲,生成问题【5 min 阅读】阅读教材P5~P9的内容,完成下面练习.【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=,x 2=__.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__;(3)当p <0时,方程__无实数根__.2.用直接开平方法解下列方程:(1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6.3.(1)x 2+6x +__9__=(x +__3__)2;(2)x 2-x +__14__=(x -__12__)2; (3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有:(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=,x 2=;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __;(3)当p <0时,方程__无实数根__.环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】用配方法解下列关于x 的方程:(1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么?【解答】(1)移项,得2x 2-4x =8.二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5.由此可得x -1=±5,∴x 1=1+5,x 2=1- 5.(2)移项,得2x 2+3x =2.二次项系数化为1,得x 2+32x =1. 配方,得⎝⎛⎭⎫x +342=2516. 由此可得x +34=±54,∴x 1=12,x 2=-2. 【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B )A .p =4,q =2B .p =4,q =-2C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5;(3)9x 2+6x +1=4; (4)36x 2-1=0;(5)4x 2=81; (6)x 2+2x +1=4.(1)x 1=1+2,x 2=1- 2.(2)x 1=2+5,x 2=2- 5.(3)x 1=-1,x 2=13. (4)x 1=16,x 2=-16. (5)x 1=92,x 2=-92. (6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z 的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0, ∴x =2,y =-3,z =-2.∴(xy )z =[2×(-3)]-2=136. 【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0. 环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方练习设计:请完成本课时对应练习!。
课题21.2.解一元二次方程--配方法(1) 课型新授第3 课时目标课标要求:1、理解用配方法解一元二次方程的思路;2、会用配方法解一元二次方程。
1、会用配方法解简单的数字系数的一元二次方程。
2、了解用配方法解一元二次方程的基本步骤。
3、通过配方法的探究活动,培养学生勇于探索的良好学习习惯,体会在解决问题过程中所表现的数学方法和数学思想.重难点教学重点用配方法熟练的解一元二次方程.教学难点降次思想,配方.教法学法合作学习,自主探究教具学具准备多媒体教学过程教学设计二次备课一、查学诊断1、解一元二次方程的方法?2、方程x2+6x+9=2能够化成_________ ,实行降次,得________ ,方程的根X1 =______ , X2=_______ .二、示标导入问题:1、要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少m?解:设场地的宽为x m,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0。
2、方程 x2+6x+9=2和方程 x2+6x-16=0有何联系与区别呢?3、填一填(根据(a±b)2= a2±2ab+b2 )(1)x2+10x+ =(x+ )2(2)x2-12x+ =(x- )2(3)x2+5x+ =(x+ )2(4)x2 -2/3x+ =(x+ )2(5)x2+bx+ =(x+ )2三、导学施教:【探究】怎样解方程x2+6x-16=0?对比这个方程与前面讨论过的方程x2+6x+9=2,能够发现方程x2+6x+9=2的左边是含有x的完全平方形式,右边是非负数,能够直接降次解方程;而方程x2+6x-16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?小结:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。
21.2 .1 配方法解一元二次方程
【学习目标】
1.理解一元二次方程降次的转化思想和用配方法解数字系数的一元二次方程;
2.能利用直接开平方法对形如2()(0)x m n n +=
≥的一元二次方程求解; 3.发现不同方程的转化式,运用已有知识解决新问题体会化归思想。
【学习重点】判定一个数是否是方程的根;
【学习难点】:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确
定是实际问题的根.
【学习过程】
一、【创设情境,引入课题】
问题一:1.9的平方根是____,用符号表示为__________;
2.25的平方根是____,用符号表示为_________;
3.a 的平方根是________;2()____________a b ±=
二、【探究新知,练习巩固】
知识点1: 直接开平方法解一元二次方程
问题二:我们知道x 2=25,根据平方根的意义,直接开平方得x=±5,如果x 换元为2t+1,
即(2t+1)2=8,能否也用这种方法求解呢?这种方法叫做 计算:用直接开平方法解下列方程:
(1)x 2=8 (2)(2x-1)2=5 (3)x 2+6x+9=2
(4)4m 2-9=0 (5)x 2+4x+4=1 (6)3(x-1)2-9=108
议一议:
1.上述解一元二次方程的方法是什么?它的理论依据是是什么?
2.方程236x =-有实数解吗?为什么?
3.用直接开平方法解一元二次方程需要注意什么呢?
4.我们又如何检验我们所解得方程是否正确呢?
解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
归纳:如果方程能化成的形式,那么可得
知识点2:二次项系数为1时配方法解一元二次方程
问题三:填空:
(1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2
(3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2
思考?
1、以上解法中,为什么在方程x2+6x=16两边加9?加其他数行吗?
2、什么叫配方法?
3、配方法的目的是什么?这也是配方法的基本
4、配方法的关键是什么?
用配方法解下列方程:
(1)x2-6x-7=0;(2)x2+3x+1=0.
解(1)移项,得x2-6x=____.
方程左边配方,得x2-2·x·3+__2=7+___,
即(______)2=____.
所以x-3=____.
原方程的解是x1=_____,x2=_____.
(2)移项,得x2+3x=-1.
方程左边配方,得x2+3x+()2=-1+____,
即 _____________________
所以 ___________________
原方程的解是:x1=______________x2=___________
总结规律
用配方法解二次项系数是1的一元二次方程?有哪些步骤?
知识点3:二次项系数不为1时配方法解一元二次方程
问题四:用配方法解下列关于x的方程
(1)2x 2-4x-8=0 (2)x 2-4x+2=0
1. 上述解方程的方法里面蕴含着什么非常重要的数学思想?
2. 那你知道用这种方法解方程时最关键的一步是什么吗?你能说说你发现了什么没有?
3. 你能总结出来用这种方法解一元二次方程的步骤吗?
总结:用配方法解一元二次方程的步骤:
三、【合作探究,尝试求解】
独立思考·解决问题
1. 解方程:22(1)3
480;(2)(23)49x x -= -=
2.用配方法证明: (1)的值恒为正; (2)的值恒小于0
四、【概括提炼,课堂小结】
1.你今天学会了用怎样的方法解一元二次方程?有哪些步骤?
4. 今天所学解方程的方法里面蕴含着什么非常重要的数学思想?
五、【当堂达标,拓展延伸】
一、选择题
1.若x 2-4x+p=(x+q )2,那么p 、q 的值分别是( ).
A .p=4,q=2
B .p=4,q=-2
C .p=-4,q=2
D .p=-4,q=-2
2.已知x 2-8x+15=0,左边化成含有x 的完全平方式,其中正确的是( ).
A .x 2-8x+(-4)2=31
B .x 2-8x+(-4)2=1
C .x 2+8x+42=1
D .x 2-4x+4=-11
3.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).
21a a -+2982x x -+-
A .1
B .-1
C .1或9
D .-1或9
二、填空题
1.(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.代数式的值为0,则x 的值为________. 三、解方程:
(1)x 2+10x+16=0 (2)x 2-x-
4
3=0
(3)3x 2+6x-5=0 (4)4x 2-x-9=0
四、阅读理解题.
阅读材料:为解方程,我们可以将视为一个整体,然后设,则,原方程化为
①
解得,
当时,,,
当时,,,
原方程的解为,,,
解答问题:
(
1)填空:在由原方程得到方程①的过程中,利用
法达到了降次的目的,体现了
的数学思想.
(2)解方程.
2221
x x x
---222(1)5(1)40x x ---+=21x -21x y -=222(1)x y -=2540y y -+=11y =24y =1y =211x -=22x ∴=x =∴4y =214x -=25x =∴x =∴∴1x =2x =3x 4x =4260x x --=。