【真卷】2016-2017年内蒙古呼和浩特市实验教育集团八年级(上)数学期中试卷带答案
- 格式:doc
- 大小:292.00 KB
- 文档页数:18
内蒙古呼和浩特市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是()A . 轴对称图形B . 中心对称图形C . 既是轴对称图形,又是中心对称图形D . 既不是轴对称图形,又不是中心对称图形2. (2分) (2017八上·天津期末) 如果一个三角形的两边长分别为2和5,则此三角形的第三边长可能为()A . 2B . 3C . 6D . 73. (2分) (2019八上·瑞安期中) 下列语句是命题().A . 将27开立方B . 任意三角形的三条中线相交于一点吗?C . 锐角小于直角D . 做一条直线和已知直线垂直4. (2分)若△ABC的三边长分别为a、b、c,且满足(a-b)(a2+b2-c2)=0,则△ABC是()A . 等腰三角形B . 直角三角形C . 等腰直角三角形D . 等腰三角形或直角三角形5. (2分)下列命题其中真命题的个数是()(1 )长度相等的弧是等弧;(2 )圆是轴对称图形,它的对称轴是过圆心的弦(3 )相等的圆心角所所对的弦相等;(4 )在同圆或者等圆中,相等的两弦所对的弧相等.A . 0B . 1C . 2D . 36. (2分) (2016八上·绍兴期末) 在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A . AC=DFB . AB=DEC . ∠A=∠DD . ∠B=∠E7. (2分) (2017八上·确山期中) 下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A . ①B . ②C . ③D . ④8. (2分)如图,DE为△ABC的边BC的垂直平分线,交BC于E,交AB于D,且∠B=40°,∠A=60°,则∠ACD 的度数为()A . 40°B . 50°C . 30°D . 45°9. (2分)如图,∠1,∠2,∠3,∠4,恒满足的关系式是()A . ∠1+∠2=∠3+∠4B . ∠1+∠2=∠4-∠3C . ∠1+∠4=∠2+∠3D . ∠1+∠4=∠2-∠310. (2分) (2016九上·鄞州期末) 将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB= ,则四边形AB1ED的内切圆半径为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)“同旁内角互补”的逆命题是________.12. (1分) (2018八上·东台月考) 如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是________。
内蒙古初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.-的绝对值是()A.—B.—C.D.2.下列式子:①=-;②=5;③=-13;④=±6.其中正确的个数有()A.1个B.2个C.3个D.4个3.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是()12:01A.21:10B.10:21C.10:51D.12:014.如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.12cm或15cm D.15cm6.如图,直线a,b,c表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A.一处B.两处C.三处D.四处7.若使式子在实数范围内有意义,则x的取值范围是()A.B.C.D.8.在数据中,无理数的个数为()A.5B.4C.3D.29.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A.60°B.50°C.45°D.30°10.如图,AB="AC," ∠A=40°,AB的垂直平分线MN交AC于点D,交AB于点M,则∠2等于()A.20°B.25°C.30°D.40°二、填空题1.比较大小:-3-.(<或>、=)2.等腰三角形的一个角是80°,则它的底角是__。
3.点P关于x轴对称的点是(3,-4),则点P关于y轴对称的点的坐标是 .4.在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C的度数________.5.将一长方形纸条按如图折叠,则∠1= 度.6.AD是△ABC的角平分线,DE⊥AB于点E,且DE=3cm。
内蒙古呼和浩特市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·平凉期中) 下列命题中真命题是()A . 全等的两个图形是中心对称图形B . 中心对称图形都是轴对称图形C . 轴对称图形都是中心对称图形D . 关于中心对称的两个图形全等2. (2分) (2019七上·威海期末) 如果一个三角形的两边分别为2和4,则第三边长可能是()A . 8B . 6C . 4D . 23. (2分)下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A . 4个B . 3个C . 2个D . 1个4. (2分) (2020八下·黄石期中) 如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A . 2B . 3C . 1D . 1.55. (2分) (2020八下·宝安期中) 如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC 的度数是()A . 68°B . 112°C . 124°D . 146°6. (2分) (2017七下·水城期末) 将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A .B .C .D .7. (2分) (2020七下·莲湖期末) 如图,是的角平分线,,垂足为,,,,则的面积为()A . 4B . 6C . 8D . 108. (2分)已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A . 直角三角形B . 等边三角形C . 钝角三角形D . 等腰直角三角形9. (2分) (2017七下·岱岳期中) 如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A . 60°B . 120°C . 150°D . 180°10. (2分) (2017八上·马山期中) 等腰三角形的一个角是70°,则它的一个底角的度数是()A . 70°B . 70°或55°C . 80°D . 55°二、填空题 (共6题;共7分)11. (1分) (2017八上·云南月考) 若x2+bx+c=(x+5)(x-3),则点P(b,c)关于y轴对称点的坐标是________.12. (1分) (2020七下·沭阳期末) 如图,五边形ABCD中,∠1、∠2、∠3是它的三个外角,已知∠C=120°,∠E=90°,那么∠1+∠2+∠3=________.13. (1分)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是________.(只填一个即可)14. (1分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=________.15. (2分) (2016九上·宜城期中) 如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=2,则FM的长为________.16. (1分)如图所示,在⊿ABC中,∠C=90°,∠B=15°,AB的垂直平分线DE交BC于D,E为垂足,若BD=8cm,则AC=________ .三、解答题 (共9题;共60分)17. (6分)如图,在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1)(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△A1B1C1的面积.18. (2分)解决下面问题:如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且, BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题..19. (5分) (2019八上·和平期中) 如图,在△ABC中,∠C=80°,点D在边BC上,且∠ADB=100°,∠BAD =∠DAC , BE平分∠ABC ,交AD于点E .求∠BED的大小.20. (5分) (2018八上·洪山期中) 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.求∠BOC的度数.21. (2分) (2019八下·南县期中) 如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EBC.22. (5分)用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗?23. (10分)如图点P是∠ABC内一点画图:①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E,过点P作AB的平行线交BC于F.24. (10分) (2020七下·长春期末) 如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C ,过点A , B分别作AD⊥DE ,BE⊥DE ,垂足分别为点D和E , AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A ,点N以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A . M , N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE于点P ,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=________.25. (15分)(2020·湘潭) 如图,抛物线与x轴交于A,B两点.(1)若过点C的直线是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点B关于直线的对称点恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.(2)当,时,函数值y的最大值满足,求b的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共60分)17-1、17-2、17-3、18-1、19-1、20-1、21-1、21-2、22-1、23-1、24-1、24-2、25-1、25-2、。
呼和浩特市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·黔南期末) 下列4个图形中.是中心对称图形但不是轴对称的图形是()A .B .C .D .2. (2分) (2018八上·大同月考) 若现有长为3cm,4cm,7cm,9cm的四根木棒,任取其中三根组成一个三角形,则可以组成不同的三角形的个数是()A . 4个B . 3个C . 2个D . 1个3. (2分)等腰三角形一腰上的高与底边所成的角等于()A . 顶角B . 顶角的一半C . 顶角的2倍D . 底角的一半4. (2分) (2018八上·湖北月考) 已知△ABC的∠A=60°,剪去∠A后得到一个四边形,则∠1+∠2的度数为()A . 270°B . 240°C . 200°D . 180°5. (2分)在现实的生产、生活中有以下四种情况:①用“人”字梁建筑屋顶;②自行车车梁是三角形结构;③用窗钩来固定窗扇;④商店的推拉防盗铁门.其中用到三角形稳定性的是()A . ①②B . ②③C . ①②③D . ②③④6. (2分) (2017八上·杭州月考) 如图,N,C,A 三点在同一直线上,在△ ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN 等于()A . 1:2B . 1:3C . 2:3D . 1:47. (2分)(2017·延边模拟) 将一副三角板如图方式放置,则∠1的度数是()A . 15°B . 20°C . 25°D . 30°8. (2分)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE 全等的三角形(△ABE除外)有()A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·罗山模拟) 如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A .B .C .D .10. (2分) (2020八下·奉化期中) 如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A . 1B .C .D .11. (2分) (2020八下·成都期中) 等腰三角形一个角是50°,则它的底角的度数为()A . 50°B . 50°或80°C . 50°或65°D . 65°12. (2分) (2016八上·徐闻期中) 如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A . SASB . ASAC . AASD . HL二、填空题 (共6题;共7分)13. (1分) (2019八下·璧山期中) 一个直角三角形的两边长为3和5,则第三边为________.14. (1分) (2015八上·句容期末) 点P(﹣4,1)关于x轴对称的点的坐标是________15. (1分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=________.16. (1分) (2019八上·武汉月考) 如图,在△ABC中,∠B=90°,∠A=36°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是________.17. (1分)(2020·连山模拟) 如图,为的边上的中线,沿将折叠,点的对应点为,已知,则点与点之间的距离是________18. (2分)如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=________三、解答题 (共8题;共61分)19. (5分) (2020八上·相山期末) 已知:如图,AC,DB相交于点O,AB=DC,AC=DB,求证:OA=OD。
内蒙古呼和浩特市回民中学2016-2017学年八年级上学期期中考试数学试卷一、单选题(共10小题)1.如图,为估计池塘岸边两点的距离,小方在池塘的一侧选取一点,测得米,米,间的距离不可能是()A.米B.米C.米D.米2.若一个多边形的内角和与外角和相加是,则此多边形是()A.八边形B.十边形C.十二边形D.十四边形3.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交,于,再分别以点为圆心,以大于长为半径画弧,两弧交于点,作射线,由作法得的根据是()A.B.C.D.4.下面说法正确的是个数有()如果三角形三个内角的比是,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这个三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果,那么是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在中,若,则此三角形是直角三角形.A.个B.个C.个D.个5.如图,已知为直角三角形,,若沿图中虚线剪去,则()A.B.C.D.6.等腰三角形的一个角为,则其他两角的度数是()A.B.C.或D.7.下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.等边三角形C.正方形D.长方形8.如图,已知在中,,,,,为垂足,下列结论正确的是()A.B.C.D.9.如图所示,于点,且,,若,则()A.B.C.D.10.如图,纸片折叠,当点落在四边形内部时,则与之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.B.C.D.二、填空题(共7小题)11.在平面镜里看到背后墙上电子钟示数实际时间是:。
12.等腰三角形的两边,满足,则三角形的周长是 .13.已知点关于x轴对称点的坐标是,关于轴对称点的坐标是,则点的坐标是。
14.中,,平分交于点,且,则点到的距离是。
15.一个多边形的内角和等于外角和的倍,这个多边形的边数是。
八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列四个图案中,是轴对称图形的是()A. B. C. D.2.点M(3,-4)关于x轴的对称点M′的坐标是()A. (3,4)B. (−3,−4)C. (−3,4)D. (−4,3)3.下列计算正确的是()A. a3+a2=a5B. (3a−b)2=9a2−b2C. a6b÷a2=a3bD. (−ab3)2=a2b64.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3B. 4C. 6D. 55.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90∘6.下列说法中,错误的是()A. 任意两条相交直线都组成一个轴对称图形B. 等腰三角形最少有1条对称轴,最多有3条对称轴C. 成轴对称的两个三角形一定全等D. 全等的两个三角形一定成轴对称7.一个三角形的三个外角之比为3:3:2,则这个三角形是()A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 等边三角形8.和三角形三条边距离相等的点是()A. 三条角平分线的交点B. 三边中线的交点C. 三边上高所在直线的交点D. 三边的垂直平分线的交点9.AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是()A. DE=DFB. AE=AFC. BD=CDD. ∠ADE=∠ADF10. 如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD =2,则AC 等于( )A. 4B. 5C. 6D. 811. 如果三角形中一边上的中线等于这边的一半,则这个三角形是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形12. 如图,三角形ABC 中,∠A 的平分线交BC 于点D ,过点D作DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,下面四个结论:①∠AFE =∠AEF ;②AD 垂直平分EF ;③S △BFDS △CED =BF CE ; ④EF 一定平行BC .其中正确的是( )A. ①②③B. ②③④C. ①③④D. ①②③④二、填空题(本大题共5小题,共16.0分)13. 等腰三角形的周长为14,其一边长为4,那么它的底边为______ .14. 如图,D 是等边△ABC 的AC 边上的中点,点E 在BC 的延长线上,DE =DB ,△ABC的周长是9,则∠E = ______ °,CE = ______ .15. 如图,在等腰直角三角形ABC 中,∠C =90°,AC =BC =4,点D 是AB 的中点,E 、F 在射线AC 与射线CB 上运动,且满足AE =CF ;当点E 运动到与点C 的距离为1时,则△DEF 的面积= ______ .16. 如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.则∠ACB = ______ .17. 如图,DB 是△ABC 的高,AE 是角平分线,∠BAE =26°,则∠BFE =______.三、解答题(本大题共8小题,共68.0分)18.计算下列各式:)2013(1)(-3)2015•(-13(2)5x(x2+2x+1)-(2x+3)(x-5)19.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.20.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.21.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.22.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.23.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.作图一:如图1,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积______ .作图二:如图2,△ABC与△DEF关于直线l对称,请仅用无刻度的直尺,在图2中作出直线l.(保留作图痕迹)25.如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,交AB于点E,连接EG,EF.(1)求证:EG=EF.(2)请你判断BE+CF与EF的大小关系,并说明理由.答案和解析1.【答案】C【解析】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】A【解析】解:点M(3,-4)关于x轴的对称点M′的坐标是(3,4).故选A.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.【答案】D【解析】解:A、a3+a2=a5无法运用合并同类项计算,故此选项错误;B、(3a-b)2=9a2-6ab+b2,故此选项错误;C、a6b÷a2=a4b,故此选项错误;D、(-ab3)2=a2b6,故此选项正确.故选:D.分别根据合并同类项法则以及完全平方公式和整式的除法以及积的乘方分别计算得出即可.此题主要考查了完全平方公式以及积的乘方和整式的除法等知识,熟练掌握运算法则是解题关键.4.【答案】A【解析】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.5.【答案】C【解析】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】D【解析】解:A、正确,任意两条相交直线的夹角平分线是其对称轴,都能组成一个轴对称图形.B、正确,等腰三角形有1条对称轴,等腰三角形三条边都相等时有3条对称轴;C、正确,根据成轴对称的性质可知;D、错误,全等的两个三角形不一定成轴对称.故选D.根据轴对称图形,轴对称的定义和性质分析找出错误选项.本题考查了轴对称图形,轴对称以及对称轴的定义和应用.关于某条直线对称的一个图形叫轴对称图形.直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.7.【答案】B【解析】解:∵三角形的三个外角之比为3:3:2,∴三角形的三个外角的度数为:135°,135°,90°,∴三角形对应的内角度数为45°,45°,90°,∴此三角形是等腰直角三角形,故选B.根据三角形的外角和等于360°求出三个外角,再求出三个内角,即可得出答案.本题考查了三角形的外角和三角形的内角和定理的应用,解此题的关键是求出各个内角的度数.8.【答案】A【解析】解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选A.题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.本题考查了角平分线的性质;熟练掌握三角形中角平分线,重心,垂心,垂直平分线的性质,是解答本题的关键.9.【答案】C【解析】解:如图,∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,故A选项错误,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∠ADE=∠ADF,故B、D选项错误,只有△ABC是等腰三角形时,BD=CD,故C选项正确.故选C.作出图形,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用”HL“证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等,全等三角形对应角相等解答即可.本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质是解题的关键.10.【答案】C【解析】解:∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.∴AC=6,故选C.先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC=30°,根据CD=3cm可得出BD的长,进而得出AD的长.此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.【答案】B【解析】解:∵三角形中一边上的中线等于这边的一半,∴这个三角形是直角三角形.故选B.根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.12.【答案】A【解析】解:①∵三角形ABC中,∠A的平分线交BC于点D,DE⊥AC,DF⊥AB,∴∠ADE=∠ADF,DF=DE,∴AF=AE,∴∠AFE=∠AEF,故正确;②∵DF=DE,AF=AE,∴点D在EF的垂直平分线上,点A在EF的垂直平分线上,∴AD垂直平分EF,故正确;③∵S△BFD=BF•DF,S△CDE=CE•DE,DF=DE,∴;故正确;④∵∠EFD不一定等于∠BDF,∴EF不一定平行BC.故错误.故选A.由三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,根据角平分线的性质,可得DE=DF,∠ADE=∠ADF,又由角平分线的性质,可得AF=AE,继而证得①∠AFE=∠AEF;又由线段垂直平分线的判定,可得②AD垂直平分EF;然后利用三角形的面积公式求解即可得③.此题考查了角平分线的性质、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.13.【答案】4或6【解析】解:当腰是4时,则另两边是4,6,且4+4>6,6-4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5-4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.已知的边可能是腰,也可能是底边,应分两种情况进行讨论.本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.14.【答案】30;32【解析】解:∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,即∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为9,∴AC=3,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,即∠CDE=∠E,∴CD=CE=AC=.故答案为:30;由△ABC为等边三角形,且BD为边AC的中线,根据“三线合一”得到BD平分∠ABC,而∠ABC为60°,得到∠DBE为30°,又因为DE=DB,根据等边对等角得到∠E与∠DBE相等,故∠E也为30°;由等边三角形的三边相等且周长为9,求出AC的长为3,且∠ACB为60°,根据∠ACB为△DCE的外角,根据三角形的外角等于与它不相邻的两个内角之和,求出∠CDE也为30°,根据等角对等边得到CD=CE,都等于边长AC的一半,从而求出CE的值.此题考查了等边三角形的性质,利用等边三角形的性质可以解决角与边的有关问题,尤其注意等腰三角形“三线合一”性质的运用,及“等角对等边”、“等边对等角”的运用.15.【答案】132或52【解析】解:①E在线段AC上,∵在△ADE和△CDF中,,∴△ADE≌△CDF,(SAS),∴同理△CDE≌△BDF,∴四边形CEDF面积是△ABC面积的一半,∵CE=1,∴CF=4-1=3,∴△CEF的面积=CE•CF=,∴△DEF的面积=×2×2-=.②E'在AC延长线上,∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=2,∴∠DCE'=∠DBF'=135°,∵在△CDE'和△BDF'中,,∴△CDE'≌△BDF',(SAS)∴DE'=DF',∠CDE'=∠BDF',∵∠CDE'+∠BDE'=90°,∴∠BDE'+∠BDF'=90°,即∠E'DF'=90°,∵DE'2=CE'2+CD2-2CD•CE'cos135°=1+8+2×2×=13,∴S△E'DF'=DE'2=.故答案为或.易证△ADE≌△CDF,△CDE≌△BCF,可得四边形CEDF面积是△ABC面积的一半,再计算△CEF的面积即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADE≌△CDF和△CDE≌△BCF是解题的关键.16.【答案】90°【解析】解:∵CD⊥AB,BC=15,DB=9,∴DC===12,∴AD===16,∴AB=9+16=25,∴AB2=AC2+BC2,∴∠ACB=90°.故答案为:90°.直接利用勾股定理得出D,DC的长,再利用勾股定理逆定理得出∠ACB的度数.此题主要考查了勾股定理以及勾股定理的逆定理,正确得出AB的长是解题关键.17.【答案】64°【解析】【分析】本题主要考查了三角形内角和定理以及三角形的高以及角平分线的定义的运用,解决问题的关键是利用角平分线的定义和直角三角形的性质求解.由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.【解答】解:∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°-∠FAD=90°-26°=64°,∴∠BFE=∠AFD=64°.故答案为64°.18.【答案】解:(1)原式=[(-3)×(-1)]2013×(-3)23=(-1)2013×9=-9;(2)5x(x2+2x+1)-(2x+3)(x-5)=5x3+10x2+5x-2x2+10x-3x+15=5x3+8x2+12x+15.【解析】(1)先根据积的乘方进行变形,再求出即可;(2)先算乘法,再合并同类项即可.本题考查了积的乘方和整式的混合运算,能熟记运算法则是解此题的关键.19.【答案】解:(1)∵DE是AB的垂直平分线,∴AD=BD,△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=16;(2)∵AB=AC,∴∠B=∠C=25°,∴∠BAC=130°,∵AD=BD,∴∠BAD=∠B=25°,∴∠CAD=130°-25°=105°.【解析】(1)根据线段的垂直平分线的性质得到AD=BD,根据三角形的周长公式计算即可;(2)根据等腰三角形的性质和三角形内角和定理计算得到答案.本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.【答案】解:①∵DE是线段AB的垂直平分线,∴AD=BD,∵△BCD的周长为8,∴BD+DC+BC=BC+AD+DC=BC+AC=8,∵AB=AC=5,∴BC=3;②设∠A=a°,∵AD=BD,∴∠A=∠ABD=a°,∵BD平分∠ABC,∴∠ABD=∠CBD=a°,∵AB=AC,∴∠ABC=∠ACB=2a°,∵∠A+∠ABC+∠ACB=180°,∴5a=180,∴a=36,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=72°.【解析】①根据线段的垂直平分线的性质求出AD=BD,求出BD+DC+BC=BC+AC=8,即可得出答案;②设∠A=a°,根据等腰三角形的性质求出∠A=∠ABD=a°,∠ABC=∠ACB=2a°,根据三角形内角和定理得出方程5a=180,求出后根据三角形的外角性质求出即可.本题考查了三角形内角和定理,线段垂直平分线性质,含30度角的直角三角形,三角形的外角性质,等腰三角形的性质的应用,解此题的关键是推出AB=AE=EC,AE=2DE,综合性比较强,难度适中.21.【答案】证明:连接AD,在△ACD和△ABD中,AC=ABCD=BD,AD=AD∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【解析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.22.【答案】解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.【解析】根据平行线的性质和角平分线的性质,解出△BED和△CFD是等腰三角形,通过等量代换即可得出结论.本题综合考查等腰三角形的性质及平行线的性质;一般是利用等腰(等边)三角形的性质得出相等的边,进而得出结论.进行等量代换是解答本题的关键.23.【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB,∠CAD=∠BCEAC=BC∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE-DE,∴BE=AD-DE=5-3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD-DE.本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.24.【答案】6【解析】解:作图一:(1)如图1所示:△AEF即为所求;(2)△AEF与四边形ABCD重叠部分的面积为:2×4-2=6;故答案为:6;作图二:如图2所示:直线l即为所求作图一:(1)利用轴对称图形的性质得出B点关于直线AE的对称点F,△AEF 即为所求;=2×4=8;(2)△AEF与四边形ABCD重叠部分的面积为:S四边形AECD作图二:利用轴对称图形的性质得出,直线l即为所求.此题主要考查了轴对称变换,正确利用轴对称图形的性质得出是解题关键.25.【答案】解:(1)∵BG∥AC,∴∠DBG=∠C,在△DBG和△DCF中,∠BDG=∠FDC,∠DBG=∠CBD=DC∴△DBG≌△DCF,∴DG=DF,∵DE⊥GF,∴EG=EF.(2)结论:BE+CF>EF.理由:∵△DBG≌△DCF,∴CF=BG,在△EBG中,∵BE+BG>EG,∵BG=CF,EG=EF,∴BE+CF>EF.【解析】(1)只要证明△DBG≌△DCF,推出DG=DF,根据垂直平分线的性质即可解决问题.(2)结论:BE+CF>EF.在△BEG中,由BE+BG>EG,再根据EG=EF,BG=CF,即可解决问题.本题科学全等三角形的判定和性质、平行线的性质,三角形的三边关系等知识,解题的关键是善于理由全等三角形解决问题,善于中考常考题型.。
内蒙古呼和浩特市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018八上·浦江期中) 下列图形中是轴对称图形的是()A .B .C .D .2. (1分) (2017八上·黄梅期中) 如图,△ABC≌△ADE,则下列结论错误的是()A . ∠B=∠DB . DE=CBC . ∠BAC=∠DAED . AB=AE3. (1分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?()A . AD=AEB . AD<AEC . BE=CDD . BE<CD4. (1分)直角三角形中两锐角之差为20°,则最大锐角为()A . 45°B . 55°C . 65°D . 50°5. (1分)下列判断错误的是()A . 对角线相互垂直且相等的平行四边形是正方形B . 对角线相互垂直平分的四边形是菱形C . 对角线相等的四边形是矩形D . 对角线相互平分的四边形是平行四边形6. (1分) (2016八上·昆山期中) 如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A . AC=BDB . ∠1=∠2C . AD=BCD . ∠C=∠D7. (1分)如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC 都相切,切点分别为D,E,则⊙O的半径为()A . 8B . 6C . 5D . 48. (1分)(2020·台州) 把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A . 7+3B . 7+4C . 8+3D . 8+49. (1分) (2016八上·滨州期中) 已知多边形的内角和是外角和的4倍,则这个多边形的边数为()A . 6B . 8C . 10D . 1210. (1分)△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线相交于O点,将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CA O等于()A . 1︰1︰1B . 1︰2︰3C . 2︰3︰4D . 3︰4︰5二、填空题 (共9题;共9分)11. (1分) (2018八上·姜堰期中) 如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C 在x轴上,则点A在移动过程中,BO的最大值是________.12. (1分) (2018九下·江阴期中) 若一个多边形的内角和与外角和相等,则这个多边形的边数为________13. (1分)已知Rt△ABC的两直角边不相等,如果要画一个三角形与Rt△ABC全等,且使所画三角形两条直角边与Rt△ABC的两条直角边分别在同一条直线上(Rt△ABC本身不算),那么满足上述条件的三角形最多能画出________个.14. (1分)(2010·希望杯竞赛) 如图所示,直线AB、CD相交于点O。
内蒙古呼和浩特市八年级数学上学期期中试题(卷面分值:100分,考试时长:120分钟)一.选择题(3分×10=30分)1.如图,羊字象征吉祥和美满,下图的图案与羊有关,其中是轴对称的有()A.1个 B.2个 C.3个 D.4个2.下列线段能构成三角形的是()A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,63如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.4.在△ABC,AB=AC,若AB边上的高CD与底边BC所夹得角为30°,且BD=3,则△ABC的周长为()A.18B.9C.6D.4.55.已知点M(3,a)和N(b,4)关于x轴对称,则(a+b)2015的值为()A.1B.-1C.72015D.-72015如图,在△ABC内有一点D,且DA=DB=DC,若∠DAB=25°,∠DAC=35°,则∠BDC的度数为( )A.100° B.80° C.120° D.50°7.如图,∠EAF=20°,AB=BC=CD=DE=EF,则∠DEF等于()A、90°B、 20°C、70°D、 60°第6题第7题第8题8.如图,AB=AC,∠BAC=110°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90° B.80° C.75° D.60°9.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个 ( ) (1)AD 平分∠EDF ;(2)△EBD ≌△FCD ; (3)BD=CD ;(4)AD ⊥BC . (A )1个 (B )2个 (C )3个 (D )4个10.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、一处B 、两处C 、三处D 、四处FEDCBA第9题 第 10题 第12题 二.填空题(3分×6=18分)11.一个八边形的内角和是 .12.如图,△ABC 中,∠C=90°,AM 平分∠CAB ,CM=20cm ,那么点M 到线段AB 的距离是 .13.如果等腰三角形的一个角为50°,那么它的顶角为 .14.如图,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形 对.15.如图,AB ∥CD,O 是∠BAC 和∠ACD 的平分线的交点,OE ⊥AC 与E,OE=3,则AB 与CD 之间的距离为 .16.如图,∠A=75°,∠B=65°,将纸片的一角折叠,使点C•落在△ABC 外,若∠2=35°,则∠1的度数为 度.14题 15题 16题 三.解答题(共52分) 17.(6分)如图,已知点A 、E 、F 、C 在同一直线上,∠1=∠2,AE=CF ,AD=CB .请你判断BE 和DF 的关系,并证明你的结论.18.(6分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移2个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.19. (6分)求证:如果三角形一个外角的平行线平行于三角形的一边,那么这个三角形是等腰三角形。
天津市南开区2016-2017学年八年级(上)期中数学模拟试卷(二)(解析版)一、选择题1.以下图形中对称轴的数量小于3的是()A.B. C.D.2.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.如图,AD⊥BC,CE⊥BC,CH⊥AB,BG⊥AC,则在△ABC中,BC边上的高是()A.线段CE B.线段CH C.线段AD D.线段BG4.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100°D.125°5.已知三角形三边分别为2,a﹣1,4,那么a的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<66.一个多边形的内角和是1260°,这个多边形的边数是()A.7 B.8 C.9 D.107.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个8.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE ≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A.①B.②C.①②D.①②③9.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°10.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5° B.57.5° C.65°或57.5°D.32.5°或57.5°12.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2016B2016A2017的边长为()A.2016 B.4032 C.22016 D.22015二、填空题13.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)14.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为.15.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.16.如图所示,已知O是四边形ABCD内一点,OB=OC=OD,∠BCD=∠BAD=75°,则∠ADO+∠ABO=度.17.如图,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,则BC=.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有个.三、解答题(共7小题,满分66分)19.(8分)如图,在10×10的网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l.(1)求作点A关于直线l的对称点A1;(2)P为直线l上一点,连接BP,AP,求△ABP周长的最小值.20.(8分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠BFC度数.21.(10分)如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE 的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.22.(10分)如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,求证:∠BOD=∠COE.23.(10分)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.24.(10分)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC 和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.25.(10分)如图,已知等边△ABC,延长BC至D,E在AB上,使AE=CD,连接DE,交AC于F点,过E作EG⊥AC于G点.求证:FG=AC.2016-2017学年天津市南开区八年级(上)期中数学模拟试卷(二)参考答案与试题解析一、选择题1.以下图形中对称轴的数量小于3的是()A.B. C.D.【考点】轴对称图形.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.3.如图,AD⊥BC,CE⊥BC,CH⊥AB,BG⊥AC,则在△ABC中,BC边上的高是()A.线段CE B.线段CH C.线段AD D.线段BG【考点】三角形的角平分线、中线和高.【分析】如图,由于AD⊥BC,那么根据三角形的高的定义即可确定在△ABC中,BC边上的高.【解答】解:如图,∵AD⊥BC,∴在△ABC中,BC边上的高为线段AD.故选C.【点评】此题比较简单,主要考查了三角形的高的定义,利用定义即可判定AD是其高线.4.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A.50°B.75°C.100°D.125°【考点】三角形内角和定理.【分析】根据三角形内角和定理计算.【解答】解:设∠C=x°,则∠B=x°+25°.根据三角形的内角和定理得x+x+25=180﹣55,x=50.则x+25=75.故选B.【点评】能够用一个未知数表示其中的未知角,然后根据三角形的内角和定理列方程求解.5.已知三角形三边分别为2,a﹣1,4,那么a的取值范围是()A.1<a<5 B.2<a<6 C.3<a<7 D.4<a<6【考点】三角形三边关系;解一元一次不等式组.【分析】本题可根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边列出不等式:4﹣2<a﹣1<4+2,化简即可得出a的取值范围.【解答】解:依题意得:4﹣2<a﹣1<4+2,即:2<a﹣1<6,∴3<a<7.故选:C.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.6.一个多边形的内角和是1260°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】根据多边形的内角和公式列式求解即可.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=1260°,解得n=9.故选C.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键,是基础题,比较简单.7.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.8.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE ≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A.①B.②C.①②D.①②③【考点】全等三角形的判定与性质;角平分线的性质.【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等和边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【解答】解:∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确)故选D.【点评】此题考查了角平分线的性质及全等三角形的判定方法等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.9.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62°B.38°C.28°D.26°【考点】等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C.【点评】熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半.10.如图,等腰三角形ABC中,AB=AC,∠A=46°,CD⊥AB于D,则∠DCB等于()A.30°B.26°C.23°D.20°【考点】等腰三角形的性质;直角三角形的性质.【分析】先根据等腰三角形的性质和三角形内角和定理求出∠B的度数,进而在Rt△DCB 中,求得∠DCB的度数.【解答】解:∵∠A=46°,AB=AC,∴∠B=∠C=67°.∵∠BDC=90°,∴∠DCB=23°,故选C.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,难度适中.11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5° B.57.5° C.65°或57.5°D.32.5°或57.5°【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时底角是57.5°,当高在三角形外部时底角是32.5度,故选D.【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,依此类推,若OA 1=1,则△A 2016B 2016A 2017的边长为( )A .2016B .4032C .22016D .22015【考点】等边三角形的性质.【分析】根据等边三角形的性质和∠MON=30°,可求得∠OB 1A 2=90°,可求得A 1A2=2OA 1=2,同理可求得OA n +1=2OA n =4OA n ﹣1=…=2n ﹣1OA 2=2n OA 1=2n ,再结合含30°角的直角三角形的性质可求得△A n B n A n +1的边长,于是可得出答案.【解答】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,∵∠MON=30°,∴∠OB 1A 2=90°,可求得A 1A2=2OA 1=2,同理可求得OA n +1=2OA n =4OA n ﹣1=…=2n ﹣1OA 2=2n OA 1=2n ,在△OB n A n +1中,∠O=30°,∠B n A n +1O=60°,∴∠OB n A n +1=90°,∴B n A n +1=OA n +1=×2n =2n ﹣1,即△A n B n A n +1的边长为2n ﹣1,∴△A 2016B 2016A 2017的边长为22016﹣1=22015,故选D .【点评】本题主要考查等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA 1的关系是解题的关键.二、填空题13.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.【点评】考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为4.【考点】全等三角形的判定与性质.【分析】由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.【解答】解:∵∠ABC=45°,AD⊥BC,∴AD=BD.∵∠1=∠3(同角的余角相等),∠1+∠2=90°,∠3+∠4=90°,∴∠2=∠4.在△ADC和△BDH中,∵,∴△ADC≌△BDH(AAS),∴BH=AC=4.故答案是:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS等.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,∠DAB=∠EAC=60°,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是120°.【考点】全等三角形的判定与性质.【分析】首先得出∠DAC=∠EAB,进而利用ASA得出△ADC≌△AEB,进而得出∠E=∠ACD,再利用三角形内角和定理得出∠EAF=∠COF=60°,即可得出答案.【解答】解:∵∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠BAC+∠EAC,∴∠DAC=∠EAB,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠E=∠ACD,又∵∠AFE=∠OFC,∴∠EAF=∠COF=60°,∴∠DOE=120°.故答案为:120.【点评】此题主要考查了全等三角形的判定与性质以及三角形内角和定理等知识,根据已知得出△ADC≌△AEB是解题关键.16.如图所示,已知O是四边形ABCD内一点,OB=OC=OD,∠BCD=∠BAD=75°,则∠ADO+∠ABO=135度.【考点】多边形内角与外角;三角形的外角性质.【分析】由线段相等可得相应的角相等,那么可得∠CDO=∠DCO,∠OCB=∠OBC,可得这四个角的和;根据四边形ABCD的内角和为360°减去已知角的度数即为所求的度数.【解答】解:∵OB=OC=OD,∴∠CDO=∠DCO,∠OCB=∠OBC,∵∠DCO+∠BCO=75°,∴∠CDO+∠DCO+∠OCB+∠OBC=150°,∴∠ADO+∠ABO=360°﹣∠BAD﹣(∠CDO+∠DCO+∠OCB+∠OBC)=135°.故答案为:135.【点评】用的知识点为:等边对等角;四边形的内角和为360°.17.如图,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,则BC=11cm.【考点】等腰三角形的性质.【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长DE交BC于M,延长AE交BC于N,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴BD=DM=BM=8cm,∵DE=3cm,∴EM=5cm,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=2.5cm,∴BN=5.5cm,∴BC=2BN=11(cm).故答案为:11cm.【点评】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.18.如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有6个.【考点】等腰三角形的判定.【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB的垂直平分线交AC一点P1(PA=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).故符合条件的点有6个.故答案为:6.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.三、解答题(共7小题,满分66分)19.如图,在10×10的网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l.(1)求作点A关于直线l的对称点A1;(2)P为直线l上一点,连接BP,AP,求△ABP周长的最小值.【考点】轴对称-最短路线问题.【分析】(1)过点A作AO⊥直线l并延长至A′,使OA′=OA,点A即为所求;(2)根据题意得△ABP周长的最小值=AB+A1B,根据勾股定理得到A1B==,即可得到结论.【解答】解:(1)如图所示,点A1就是所求作的点;(2)△ABP周长的最小值=AB+A1B,∵A1B==,AB=4,∴△ABP周长的最小值=4+.【点评】本题考查了轴对称﹣最短路线问题,作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=25°,求∠BFC度数.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据HL证明Rt△ABE≌Rt△CBF;(2)因为△ABC是等腰直角三角形,所以∠BAC=45°,得∠BAE=20°,由(1)中的全等得:∠BCF=∠BAE=20°,从而得出结论.【解答】证明:(1)∵∠ABC=90°,∴∠ABC=∠CBF=90°,在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=CB,∠ABC=90°,∴∠CAB=∠ACB=45°,∵∠CAE=25°,∴∠BAE=45°﹣25°=20°,∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=20°,∴∠BFC=90°﹣20°=70°.【点评】本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是45°,除了熟知三角形一般的全等判定方法外,还要掌握直角三角形的全等判定HL:即有一直角边和斜边对应相等的两直角三角形全等.21.(10分)(2015春•陕西校级期末)如图,已知在△ABC中,AB=AC,AB的垂直平分线DE交AC于点E,CE的垂直平分线正好经过点B,与AC相交于点F,求∠A的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据等腰三角形的性质得出∠ABC=∠C,再由垂直平分线的性质得出∠A=∠ABE,根据CE的垂直平分线正好经过点B,与AC相交于点可知△BCE是等腰三角形,故BF是∠EBC的平分线,故(∠ABC﹣∠A)+∠C=90°,把所得等式联立即可求出∠A的度数.【解答】解:∵△ABC是等腰三角形,∴∠ABC=∠C=①,∵DE是线段AB的垂直平分线,∴∠A=∠ABE,∵CE的垂直平分线正好经过点B,与AC相交于点可知△BCE是等腰三角形,∴BF是∠EBC的平分线,∴(∠ABC﹣∠A)+∠C=90°,即(∠C﹣∠A)+∠C=90°②,①②联立得,∠A=36°.故∠A=36°.【点评】本题考查的是线段垂直平分线的性质及等腰三角形的性质,解答此类问题时往往用到三角形的内角和为180°这一隐含条件.22.(10分)(2016秋•南开区期中)如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,求证:∠BOD=∠COE.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在△AOF中,利用三角形的内角和定理,以及角平分线的定义,可以利用∠ACB 表示出∠AOF,则∠BOD即可得到,然后在直角△OCE中,利用直角三角形的两个内角互余以及角平分线的定义,即可利用∠ACB表示出∠COE,从而证得结论.【解答】证明:∵∠AFO=∠FBC+∠ACB=∠ABC+∠ACB,∴∠AOF=180°﹣(∠DAC+∠AF0)=180°﹣[∠BAC+∠ABC+∠ACB]=180°﹣[(∠BAC+∠ABC)+∠ACB]=180°﹣[(180°﹣∠ACB)+∠ACB]=180°﹣[90°+∠ACB]=90°﹣∠ACB,∴∠BOD=∠AOF=90°﹣∠ACB,又∵在直角△OCE中,∠COE=90°﹣∠OCD=90°﹣∠ACB,∴∠BOD=∠COE.【点评】本题主要考查了角平分线的定义,三角形的外角的性质以及三角形的内角和定理,正确求得∠AOF是关键.23.(10分)(2016秋•南开区期中)如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.【考点】角平分线的性质.【分析】(1)过点O作OE⊥AC于E,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)利用“HL”证明△ABO和△AEO全等,根据全等三角形对应角相等可得∠AOB=∠AOE,同理求出∠COD=∠COE,然后求出∠AOC=90°,再根据垂直的定义即可证明;(3)根据全等三角形对应边相等可得AB=AE,CD=CE,然后证明即可.【解答】证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上,以及全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.24.(10分)(2015秋•无棣县期末)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)由等边三角形的性质,可证明△DCB≌△ACE,可得到BD=AE;(2)结合(1)中△DCB≌△ACE,可证明△ACM≌△BCN,进一步可得到∠MCN=60°且CM=CN,可判断△CMN为等边三角形.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.【点评】本题主要考查全等三角形的判定和性质及等边三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键,即可以利用全等来证明线段相等,也可以找角相等的条件.25.(10分)(2016秋•南开区期中)如图,已知等边△ABC,延长BC至D,E在AB上,使AE=CD,连接DE,交AC于F点,过E作EG⊥AC于G点.求证:FG=AC.【考点】等边三角形的性质.【分析】延长GA到点H,使AH=FC,连接HE,可证明△AHE≌△CFD,可知∠H=∠CFD,结合对顶角可证得EA=EF,可知HG=GF,可证得结论.【解答】证明:如图,延长GA到点H,使AH=FC,连接HE,∵△ABC为等边三角形,∴∠BAC=∠ACB=60°,∴∠HAE=∠FCD=120°,在△AHE和△CFD中∴△AHE≌△CFD(SAS),∴∠EHA=∠CFD=∠GFE,∴EH=EF,∵EG⊥AC,∴EG=GF,∵HG=HA+AG=AG+FC,∴AG+FC=GF,∴FG=AC.【点评】本题主要考查等边三角形的性质及全等三角形的判定和性质,构造三角形全等是解题的关键.。
内蒙古呼和浩特市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列说法错误的是()A . 全等三角形的对应边相等B . 全等三角形的角相等C . 全等三角形的周长相等D . 全等三角形的面积相等2. (2分) 6912的相反数是()A . ﹣6912B .C . ﹣1269D . ﹣3. (2分)下列函数中,自变量x的取值范围是的是()。
A .B .C .D .4. (2分)下列说法正确的是()A . 3的平方根是B . 对角线相等的四边形是矩形C . 近似数0.2050有4个有效数字D . 两个底角相等的梯形一定是等腰梯形5. (2分)下列运算中,正确的是()A . (﹣2)0=1B . =-3C . =±2D . 2﹣1=﹣26. (2分)下列计算正确的是()A .B .C .D .7. (2分)下列命题中,真命题的个数为()(1)所有的等边三角形都全等(2) 对应角相等的三角形是全等三角形(3)两个三角形全等,它们的对应角相等(4) 全等三角形的周长相等A . 1B . 2C . 3D . 48. (2分)(2017·眉山) 已知 m2+ n2=n﹣m﹣2,则﹣的值等于()A . 1B . 0C . ﹣1D . ﹣9. (2分)(2018·安顺模拟) 如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE= AF;⑤ =FG•DG,其中正确结论的个数为()A . 2B . 3C . 4D . 510. (2分)下列命题中,正确的是()A . 圆心角相等,所对的弦相等B . 三点确定一个圆C . 长度相等的弧是等弧D . 弦的垂直平分线必经过圆心11. (2分) (2019八上·越秀期末) 如图,AC与BD相交于点O ,AB∥CD , AB=CD ,则图中的全等三角形共有()A . 1对B . 2对C . 3对D . 4对12. (2分) (2015九上·新泰竞赛) 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得:()A .B .C .D .二、填空题 (共8题;共8分)13. (1分) 4的算术平方根是________,5的平方根是________,﹣27的立方根是________.14. (1分)计算:=________ ,15. (1分) (2017八下·仁寿期中) 已知关于x的方程的解是负数,则m的取值范围是________.16. (1分) (2017八上·秀洲期中) 如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E 在同一条直线上,连结BD,BE.有以下结论①△ACE≌△BCD;②BD=CE;③∠ADB=45°;④∠ACE+∠DBC=45°.其中正确结论的是________.(写上序号)17. (1分)(2017·徐州模拟) 若xy=2,x﹣y=1,则代数式﹣x2y+xy2的值等于________.18. (1分) (2011·希望杯竞赛) 规定:,,若m是最小的质数,n是大于100的最小的合数,则 ________, ________;19. (1分) (2018八上·新疆期末) 某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设管道,那么根据题意,可得方程________.20. (1分)如图,点B在线段AE上,∠1=∠2,如果添加一个条件,即可得到△ABC≌△ABD,那么这个条件可以是________ (要求:不在图中添加其他辅助线,写出一个条件即可)三、解答题 (共6题;共45分)21. (5分)如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t >0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?22. (5分)(2019·高新模拟) 图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为________.23. (10分) (2016七下·莒县期中) 综合题。
2016-2017学年内蒙古呼和浩特市实验教育集团八年级(上)期中数学试卷一、选择题(30分)1.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm、4cm、8cm B.3cm、5cm、8cm C.5cm、6cm、10cm D.5cm、6cm、11cm2.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.3.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.斜边及一条直角边对应相等4.(3分)平面直角坐标系中,点A(m,﹣2)、B(1,n﹣m)关于x轴对称,则m、n的值为()A.m=1,n=1 B.m=﹣1,n=1 C.m=1,n=3 D.m=1,n=﹣35.(3分)如图,△ABC中,AC=25cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长是35cm,则BC边的长为()A.5cm B.10cm C.15cm D.17.5cm6.(3分)等腰三角形一腰上的高等于腰长的一半,则这个三角形的顶角为()A.30°或150°B.75°或15°C.75°D.30°7.(3分)点P是锐角△ABC内一点,PE⊥AB于E,PF⊥BC于F,PH⊥CA于H,若PE=PF=PH,则点P是△ABC的()A.三条中线的交点 B.三条高线的交点C.三条角平分线的交点D.三边垂直平分线的交点8.(3分)一个多边形的内角和是1440°,且这个多边形的每一个内角都相等,则这个多边形的一个外角是()A.60°B.45°C.36°D.30°9.(3分)如图,将长方形ABCD沿直线BD折叠,使点C落在点E处,BE交AD 于F,连接CE,下列结论①FA=FE ②BD平分∠FBC ③∠DEC=∠EBD ④EC垂直平分BD,正确的是()A.①②B.①②③C.②③④D.①②③④10.(3分)如图,△ABC中,点D、E分别在BC、AC边上,E是AC的中点,BC=3BD,BE与AD相交于F,S△ABD=2,S△BFD=0.5,则四边形FDCE的面积为()A.1.5 B.2.5 C.3 D.6二、填空题(18分)11.(3分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B=.12.(3分)如图,四边形ABCD中,AD∥BC,添加一个条件使得△ADB≌△CBD,添加的条件是.13.(3分)等腰三角形的周长为36cm,一腰上的中线把三角形分成两个三角形,其周长之差为3cm,则这个等腰三角形的底边长为.14.(3分)如图,∠CAE是△ABC的外角,且AD∥BC,AD平分∠EAC,若∠B=63°,则∠BAC=.15.(3分)若a、b、c为三角形的三边,化简|a﹣b+c|+|a﹣b﹣c|+|c﹣b﹣a|=.16.(3分)如图,点P在∠AOB内,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于E、F,若∠EPF=α,则∠AOB=.三、解答题(共7小题,满分52分)17.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.18.(6分)如果a、b、c是△ABC的三边,满足(b﹣3)2+|c﹣4|=0,a为奇数,求△ABC的周长.19.(6分)如图,△ABC在平面直角坐标系的坐标分别为A(﹣1,5),B(﹣1,0),C(﹣4,3),按要求完成:(1)在同一坐标系中,画出△ABC关于y轴对称的图形△A'B'C';(2)若CD是△ABC中AB边的中线,E是CD的中点,F是AE的中点,连接AE、BE,FB,则△EFB的面积S=.20.(6分)如图,下午2时一艘轮船从A处向正北方向航行,5时达到B处,继续航行到达D处时发现,灯塔C恰好在正西方向,从A处、B处望灯塔C的角度分别是∠A=30°,∠DBC=60°,已知轮船的航行速度为24海里/时,求AD的长度.21.(8分)如图,AB=AC,DB=DC,(1)求证:AD平分∠BAC(2)延长CD与AB的延长线相交于E,延长AD到F,使DF=DC,连接EF,若∠C=100°,∠BAC=40°,求证AC+EF=AD+DC.22.(8分)“有两边及一边上的中线对应相等的两个三角形全等”是真命题吗?如果是,请给予证明,如果不是,请举出反例.23.(12分)(1)等边三角形△ABC中,点D是AB边所在直线上的一动点(D 与A、B不重合),连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,①如图1,当D在线段AB上时,∠ABC与∠EAC有怎样的数量关系直接写出结论②如图2,当D在BA延长线上时,求证:∠ABC=∠EAC③如图3,当D在AB延长线上时,探究∠ABC与∠EAC的数量关系,直接写出结论(2)等腰三角形△ABC中,AB=AC,点D是AB边上一动点(D与A、B不重合),如图4,连接DC,以DC为边在BC边上方作等腰三角形△DCE,使顶角∠DEC=∠BAC,连接AE,探究∠ABC与∠EAC的数量关系,给予证明2016-2017学年内蒙古呼和浩特市实验教育集团八年级(上)期中数学试卷参考答案与试题解析一、选择题(30分)1.(3分)下列长度的三条线段中,能组成三角形的是()A.3cm、4cm、8cm B.3cm、5cm、8cm C.5cm、6cm、10cm D.5cm、6cm、11cm【解答】解:A、∵3+4=7<8,∴不能组成三角形,故本选项错误;B、∵3+5=8,∴不能组成三角形,故本选项错误;C、∵6﹣5<10<6+5,∴能组成三角形,故本选项正确;D、∵5+6=11,∴不能组成三角形,故本选项错误.故选:C.2.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.3.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.斜边及一条直角边对应相等【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故本选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故本选项错误;C、一条边对应相等,再加一组直角相等才能得出两三角形全等,故本选项错误;D、当两个直角三角形的两直角边对应相等时,由ASA可以判定它们全等;当一直角边与一斜边对应相等时,由HL判定它们全等,故本选项正确;故选:D.4.(3分)平面直角坐标系中,点A(m,﹣2)、B(1,n﹣m)关于x轴对称,则m、n的值为()A.m=1,n=1 B.m=﹣1,n=1 C.m=1,n=3 D.m=1,n=﹣3【解答】解:∵点A(m,﹣2)、B(1,n﹣m)关于x轴对称,∴m=1,n﹣m=2,解得m=1,n=3.故选:C.5.(3分)如图,△ABC中,AC=25cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长是35cm,则BC边的长为()A.5cm B.10cm C.15cm D.17.5cm【解答】解:∵DE垂直平分AB,∴AD=BD,∵△DBC的周长是35cm,∴BC+CD+BD=BC+CD+AD=BC+AC=35cm,∵AC=25cm,∴BC=10cm.故选:B.6.(3分)等腰三角形一腰上的高等于腰长的一半,则这个三角形的顶角为()A.30°或150°B.75°或15°C.75°D.30°【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故选:A.7.(3分)点P是锐角△ABC内一点,PE⊥AB于E,PF⊥BC于F,PH⊥CA于H,若PE=PF=PH,则点P是△ABC的()A.三条中线的交点 B.三条高线的交点C.三条角平分线的交点D.三边垂直平分线的交点【解答】解:∵PE⊥AB于E,PF⊥BC于F,PH⊥CA于H,若PE=PF=PH,∴点P是△ABC的三条角平分线的交点,故选:C.8.(3分)一个多边形的内角和是1440°,且这个多边形的每一个内角都相等,则这个多边形的一个外角是()A.60°B.45°C.36°D.30°【解答】解:∵该多边形的内角和是1440°,∴根据多边形内角和定理:(n﹣2)•180=1440,解得,n=10.∵多边形外角和为360°,∴这个多边形的一个外角度数为:360°÷10=36°.故选:C.9.(3分)如图,将长方形ABCD沿直线BD折叠,使点C落在点E处,BE交AD于F,连接CE,下列结论①FA=FE ②BD平分∠FBC ③∠DEC=∠EBD ④EC垂直平分BD,正确的是()A.①②B.①②③C.②③④D.①②③④【解答】解:由折叠的性质可知,DE=DC,∠BED=∠BCD=90°,在△ABF和△EDF中,,∴△ABF≌△EDF,∴FA=FE,①正确;由折叠的性质可知,∠EBD=∠CBD,∴BD平分∠FBC,②正确;∵∠BED=∠BCD=90°,∴E、B、C、D四点共圆,又DE=DC,∴∠DEC=∠EBD,③正确;由折叠的性质可知,BD垂直平分EC,④错误,故选:B.10.(3分)如图,△ABC中,点D、E分别在BC、AC边上,E是AC的中点,BC=3BD,BE与AD相交于F,S△ABD=2,S△BFD=0.5,则四边形FDCE的面积为()A.1.5 B.2.5 C.3 D.6=2,【解答】解:∵BC=3BD,S△ABD∴S=3S△ABD=6,△ABC∵E是AC的中点,即CE=AC,∴S=S△ABC=3,△BCE=S△BCE﹣S△BFD=2.5,∴S四边形FDCE故选:B.二、填空题(18分)11.(3分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B=60°.【解答】解:∵∠B=∠A+10°,∠C=∠B+10°,∴∠C=∠B+10°=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+20°)=180°,解得:∠A=50°,∴∠B=60°;故答案为:60°.12.(3分)如图,四边形ABCD中,AD∥BC,添加一个条件使得△ADB≌△CBD,添加的条件是∠A=∠C.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,而BD=DB,∴当添加∠A=∠C时,可根据“AAS”判断△ADB≌△CBD.故答案为:∠A=∠C13.(3分)等腰三角形的周长为36cm,一腰上的中线把三角形分成两个三角形,其周长之差为3cm,则这个等腰三角形的底边长为10cm或14cm.【解答】解:解:设等腰三角形的腰长是xcm,底边长是ycm,根据题意得或解得或,故答案是:10cm或14cm.14.(3分)如图,∠CAE是△ABC的外角,且AD∥BC,AD平分∠EAC,若∠B=63°,则∠BAC=54°.【解答】解:∵AD∥BC,∠B=63°,∴∠EAD=∠B=63°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×63°=126°,∴∠BAC=54°,故答案为:54°15.(3分)若a、b、c为三角形的三边,化简|a﹣b+c|+|a﹣b﹣c|+|c﹣b﹣a|= a+b+c.【解答】解:因为a,b,c是三角形的三边长,所以a﹣b+c>0,a﹣b﹣c<0,c ﹣b﹣a<0,所以原式=a﹣b+c﹣(a﹣b﹣c)﹣(c﹣b﹣a)=a﹣b+c﹣a+b+c﹣c+b+a=a+b+c.故答案为:a+b+c.16.(3分)如图,点P在∠AOB内,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于E、F,若∠EPF=α,则∠AOB=90°﹣α.【解答】解:如图,连接OP、OM、ON,∵点M、N分别是点P关于直线OA、OB的对称点,∴OP=PM=ON,∠OPE=∠OME,∠OPF=∠ONF,∠POE=∠MOE,∠POF=∠NOF,∴∠OME+∠ONF=∠OPE+∠OPF=∠EPF=α,在△OMN中,∠MON=180°﹣(∠OME+∠ONF)=180°﹣α,∵∠MON=∠MOE+∠POE+∠POF+∠NOF=2(∠POE+∠POF)=2∠AOB,∴∠AOB=∠MON=(180°﹣α)=90°﹣α.故答案为:90°﹣α.三、解答题(共7小题,满分52分)17.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.18.(6分)如果a、b、c是△ABC的三边,满足(b﹣3)2+|c﹣4|=0,a为奇数,求△ABC的周长.【解答】解:∵(b﹣3)2≥0,|c﹣4|≥0 且(b﹣3)2+|c﹣4|=0,∴(b﹣3)2=0|c﹣4|=0,∴b=3,c=4.∵4﹣3<a<4+3且a为奇数,∴a=3 或5.当a=3时,△ABC的周长是3+4+3=10;当a=5时,△ABC的周长是3+4+5=12.19.(6分)如图,△ABC在平面直角坐标系的坐标分别为A(﹣1,5),B(﹣1,0),C(﹣4,3),按要求完成:(1)在同一坐标系中,画出△ABC关于y轴对称的图形△A'B'C';(2)若CD是△ABC中AB边的中线,E是CD的中点,F是AE的中点,连接AE、BE,FB,则△EFB的面积S=.【解答】解:(1)如图,△A'B'C'即为所求;(2)连接AE、BE,FB,∵CD是△ABC中AB边的中线,=S△BCD=S△ABC=××6×3=;∴S△ACD∵E是CD的中点,=S△ADE=S△BCD=,即S△ABE=,∴S△BDE∵F是AE的中点,∴S=S△ABE=.△BEF故答案为:.20.(6分)如图,下午2时一艘轮船从A处向正北方向航行,5时达到B处,继续航行到达D处时发现,灯塔C恰好在正西方向,从A处、B处望灯塔C的角度分别是∠A=30°,∠DBC=60°,已知轮船的航行速度为24海里/时,求AD的长度.【解答】解:∵C在D的正西方向,∴∠ADC=90°;∵∠A=30°,∠DBC=60°,∠DBC=∠A+∠BCA∴∠BCA=30°,∴∠BCA=∠A,∴BC=BA.在Rt△CBD中,∠DBC=60°,∴∠BCD=30°,∴DB=CB,∴AD=AB+DB=AB+CB=AB+AB=AB,∵AB=24×(5﹣2)=72(海里),∴AD=AB=×72=108(海里).答:AD的长度是108海里.21.(8分)如图,AB=AC,DB=DC,(1)求证:AD平分∠BAC(2)延长CD与AB的延长线相交于E,延长AD到F,使DF=DC,连接EF,若∠C=100°,∠BAC=40°,求证AC+EF=AD+DC.【解答】解:(1)证明:在△ABD和△ACD中,∴△ABD≌△ACD,(SAS)∴∠1=∠2,∴AD平分∠BAC;(2)由△ABD≌△ACD得∠1=∠2,∠5=∠6,∵∠BAC=40°∠C=100°,∴∠1=∠2=20°∠5=∠6=60°,∵∠BDE+∠5+∠6=180°,∴∠BDE=60°,∵∠FDE=∠6=60°,∵DF=DC,DB=DC,∴DB=DF,在△BDE和△FDE中,∴△BDE≌△FDE,∴EB=EF∠3=∠4∠F=∠EBD,又∵∠3+∠BAC+∠C=180°,∴∠3=∠4=40°,∵∠EBD=∠5+∠1=80°,∴∠F=∠EBD=80°,∵∠AEF=∠3+∠4=80°,∴∠AEF=∠F,∴AE=AF,∵AC+EF=AB+BE=AE,AD+DC=AD+DF=AF,∴AC+EF=AD+DC.22.(8分)“有两边及一边上的中线对应相等的两个三角形全等”是真命题吗?如果是,请给予证明,如果不是,请举出反例.【解答】解:“有两边及一边上的中线对应相等的两个三角形全等”是真命题,已知:如图,△ABC和△A'B'C'中,AB=A'B',BC=B'C',AD、A'D'分别是BC、B'C'边上的中线,AD=A'D'求证:△ABC≌△A'B'C',证明:∵BC=B'C',AD、A'D'分别是BC、B'C'边上的中线∴BD=B'D'在△ABD和△A'B'D'中∴△ABD≌△A'B'D'(SSS),∴∠B=∠B'在△ABC和△A'B'C'中∴△ABC≌△A'B'C'(SAS).23.(12分)(1)等边三角形△ABC中,点D是AB边所在直线上的一动点(D 与A、B不重合),连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,①如图1,当D在线段AB上时,∠ABC与∠EAC有怎样的数量关系直接写出结论∠ABC=∠EAC②如图2,当D在BA延长线上时,求证:∠ABC=∠EAC③如图3,当D在AB延长线上时,探究∠ABC与∠EAC的数量关系,直接写出结论∠ABC+∠EAC=180°或∠EAC=2∠ABC(2)等腰三角形△ABC中,AB=AC,点D是AB边上一动点(D与A、B不重合),如图4,连接DC,以DC为边在BC边上方作等腰三角形△DCE,使顶角∠DEC=∠BAC,连接AE,探究∠ABC与∠EAC的数量关系,给予证明【解答】(1)①证明:∵△ABC、△CDE是等边三角形,∴AB=AC,CD=CE,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,∵在△BCD和△ACE中,∴△BCD≌△ACE(SAS),∴∠ABC=∠EAC;故答案为:∠ABC=∠EAC;②解:结论∠ABC=∠EAC仍成立;理由如下:∵△ABC、△CDE是等边三角形,∴AB=AC,CD=CE,∠BCA=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE(SAS),∴∠ABC=∠EAC;③∵△ABC、△CDE是等边三角形,∴∠ACB=∠DCE=∠ABC=60°,∴∠ACE=∠BCD,在△BCD和△ACE中,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC,∵∠ABC+∠DBC=180°,∴∠ABC+∠EAC=180°,∵∠ABC=60°,∴∠EAC=120°=2∠ABC.故答案为:∠ABC+∠EAC=180°或∠EAC=2∠ABC (2)解:∠ABC=∠EAC;理由如下:∵AB=AC,ED=EC,顶角∠BAC=∠DEC,∴底角∠ACB=∠ECD,∴△ABC∽△EDC,∴,又∵∠BCD=∠ACB﹣∠ACD,∠ACE=∠DCE﹣∠ACD,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠ABC=∠CAE.。