无刷直流电机原理专业知识讲座
- 格式:ppt
- 大小:3.16 MB
- 文档页数:21
永磁无刷直流电动机的基本工作原理无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。
电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。
驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。
无刷直流电动机的原理简图如图一所示:永磁无刷直流电动机的基本工作原理主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5—26KHZ调制波的对称交变矩形波。
永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3—T6导通、T3-T2导通、T5—T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C—、B+C-、B+A-、C+A-、C+B—上,这样转子每转过一对N—S极,T1—T6功率管即按固定组合成六种状态的依次导通。
每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。
正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。
2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组.由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流—转矩特性。
无刷直流电机的原理和控制——介绍讲解无刷直流电机(Brushless DC Motor,简称BLDC)是一种采用电子换向器而不是机械换向器的电动机。
与传统的直流电机相比,无刷直流电机具有更高的效率、更小的体积和更低的噪音。
本文将介绍无刷直流电机的原理以及其控制方法。
一、无刷直流电机的原理无刷直流电机由转子和定子组成,其中转子是由多个极对磁铁组成,定子则由多个绕组分布在电机的周围。
当电流通过定子绕组时,会在定子上产生一个旋转磁场。
根据洛伦兹力定律,当磁场与转子上的磁铁相互作用时,会产生一个扭矩,从而使转子转动。
传统的直流电机通过刷子和换向器来反转电流方向,从而使电机转动。
而无刷直流电机则通过电子换向器来实现换向。
电子换向器由电子器件(如晶体管或MOSFET)组成,可以实现对电流方向的快速控制。
具体来说,当电流进入电机的一个绕组时,电子换向器会关闭这条绕组上的电流,并打开下一条绕组上的电流。
通过不断地切换绕组上的电流,电子换向器可以实现对电机转子的连续控制,从而实现转向。
二、无刷直流电机的控制方法1.传感器反馈控制在传感器反馈控制中,电机上安装了传感器来检测转子位置。
最常见的传感器是霍尔传感器,用于检测磁铁在固定位置上的磁场变化。
传感器会将检测到的位置信号反馈给控制器,控制器根据这个信号来判断何时关闭当前绕组并打开下一个绕组。
传感器反馈控制方法可以提供更准确的转子位置信息,从而实现更精确的控制。
然而,传感器的安装和布线会增加电机的成本和复杂性。
2.无传感器反馈控制无传感器反馈控制(或称为传感器逆变控制)是一种通过测量相电压或相电流来估计转子位置的方法。
在这种方法中,控制器会根据测量的电压或电流值来估计转子位置,并基于此来控制绕组的开关。
无传感器反馈控制方法可以减少电机系统的复杂性和成本,但在低速或高负载情况下可能会导致转矩波动或失控。
3.矢量控制矢量控制是一种高级的无刷直流电机控制方法,通过测量电流和转子位置来实现电机的高精度控制。
半导体器件应用网/news/190158_p2.html 无刷直流(BLDC)电机的构造原理及电源控制方案【大比特导读】无刷直流(Brushless Direct Current,BLDC)电机是一种正快速普及的电机类型,它可在家用电器、汽车、航空航天、消费品、医疗、工业自动化设备和仪器等行业中使用。
引言无刷直流 (Brushless Direct Current, BLDC)电机是一种正快速普及的电机类型,它可在家用电器、汽车、航空航天、消费品、医疗、工业自动化设备和仪器等行业中使用。
正如名称指出的那样, BLDC 电机不用电刷来换向,而是使用电子换向。
BLDC 电机和有刷直流电机以及感应电机相比,有许多优点。
其中包括:•更好的转速-转矩特性•快速动态响应•高效率•使用寿命长•运转无噪音•较高的转速范围此外,由于输出转矩与电机体积之比更高,使之在需要着重考虑空间与重量因素的应用中,大有用武之地。
在本应用笔记中,我们将详细讨论 BLDC 电机的构造、工作原理、特性和典型应用。
描述 BLDC 电机时常用术语的词汇表,请参见附录 B:“词汇表”。
构造和工作原理BLDC 电机是同步电机中的一种。
也就是说,定子产生的磁场与转子产生的磁场具有相同的频率。
BLDC 电机不会遇到感应电机中常见的“差频”问题。
BLDC 电机可配置为单相、两相和三相。
定子绕组的数量与其类型对应。
三相电机最受欢迎,使用最普遍。
本应用笔记主要讨论三相电机。
"BLDC 电机的定子由铸钢叠片组成,绕组置于沿内部圆周轴向开凿的槽中 (如图 3 所示)。
定子与感应电机的定子十分相似,但绕组的分布方式不同。
多数 BLDC 电机都有三个星型连接的定子绕组。
这些绕组中的每一个都是由许多线圈相互连接组成的。
在槽中放置一个或多个线圈,并使它们相互连接组成绕组。
沿定子圆周分布这些绕组,以构成均均匀分布的磁极。
有两种类型的定子绕组:梯形和正弦电机。
图文讲解无刷直流电机的工作原理电动无刷直流电机由电动机主体和驱动器组成导读:,是一种典型的机电一体化产品。
同三相异步电动机十分相似。
它的应用非常广泛,,机的定子绕组多做成三相对称星形接法在很多机电一体化设备上都有它的身影。
什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。
由于无刷所以不会像变频调速下重载启动的同步电机那样在转子上另直流电动机是以自控式运行的,加启动绕组,也不会在负载突变时产生振荡和失步。
中小容量的无刷直流电动机的永磁体,稀土永磁无刷电动机的体积比材料。
因此,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)同容量三相异步电动机缩小了一个机座号。
. . .无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传无换向火花、机械噪声低等优点,广泛应用于统的接触式换向器和电刷。
它具有可靠性高、高档录音座、录像机、电子仪器及自动化办公设备中。
无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。
位置传感按转子(即检测转子磁极相对定子绕组的位位置的变化,沿着一定次序对定子绕组的电流进行换流按并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,置,定子绕组的工作电压由位置传感器输出控制的电子开。
一定的逻辑关系进行绕组电流切换)关电路提供。
位置传感器有磁敏式、光电式和电磁式三种类型。
采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。
转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。
(例是在定子组件上安装有电磁传感器部件采用电磁式位置传感器的无刷直流电动机,谐振电路等),当永磁体转子位置发生变化时,电磁效应将如耦合变压器、接近开关、LC 使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。
⽆刷直流永磁电动机的讲解,两种接法图⽂讲解⼀⽬了然直流电动机运⾏效率⾼、调速性能好,直流永磁电动机⼜有节能的优点,但电机中的电刷换向器存在⽕花、⽆线电⼲扰、噪声,因磨损⽽寿命短,使直流电动机的应⽤受到很⼤限制。
近年来功率电⼦器件的迅速发展使得采⽤电⼦开关代替换向器成为现实,⽆刷直流永磁电动机才得以迅速发展。
有电刷直流永磁电动机⼯作原理还是基于通电导体在磁场中受⼒的原理,⽽⽆刷直流永磁电动机的⼯作原理则不同,是靠定⼦磁场与转⼦磁场间的作⽤⼒拉动转⼦转动的。
定⼦的基本结构类似交流三相电机,三个线圈绕组由电⼦开关元件按规律接通直流电源形成旋转磁场,从⽽拉动转⼦旋转。
ABC三组线圈的连接⽅式也与交流电机的三相线圈⼀样,有星形接法与三⾓形接法,图1下左是星形接法,图1下右是三⾓形接法。
图1 星形接法与三⾓形接法星形接法在⽆刷直流永磁电动机应⽤较多,图2是星形接法线圈与电⼦换向器的连接图,由换向器中六个开关晶体管BG1⾄BG6组成的桥式电路切换通过ABC三个线圈的电流。
例如BG1与BG5导通时电流从A线圈流进B线圈流出;如果BG2与BG4与BG6导通时电流从B线圈流进从A线圈与C线圈并联流出。
每个开关晶体管旁并联有续流⼆极管为开关晶体管关断时提供续流通路。
图2 电⼦换向器电路⽰意图我们通过⼀个实际的结构模型来展⽰三个线圈电流的切换顺序,这是⼀个典型结构,模型由六槽结构的定⼦与两极永磁转⼦组成,图3是六槽定⼦⽰意图,定⼦内圆周有六个嵌线槽。
图3 六槽定⼦铁芯在嵌线槽内嵌有ABC三个线圈,三个线圈按星形连接,图4是嵌有线圈的定⼦⽰意图。
图4 三个线圈嵌线图转⼦由永磁体构成,可在定⼦内⾃由旋转,见图5。
图5 定⼦与永磁转⼦⽤该模型的正视图来表演线圈磁场的切换与转⼦跟随转动的过程,在图中⽤两根平⾏的箭头来表⽰线圈产⽣磁场的⽅向,以此图作动画,见图6。
图6 定⼦线圈与转⼦磁场根据图2的星形接法线圈与电⼦换向器的连接图与下⾯动画的截图来说明开关晶体管是如何控制产⽣旋转的磁场,图中标注的“红⾊A+、B+、C+”表⽰相应线圈与电源正极接通,“蓝⾊A-、B-、C-”表⽰相应线圈与电源负极接通。