2018-2019学年广东省广州市天河区八年级(下)期末数学试卷
- 格式:docx
- 大小:192.02 KB
- 文档页数:20
2018-2019学年广东省东莞市八年级(下)期末数学试卷一、选择题:每小题2分,共20分1.(2分)若式子有意义,则x的取值范围是()A.x≥B.x>C.x≤D.x<2.(2分)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)衡量一组数据波动大小的统计量是()A.平均数B.众数C.中位数D.方差4.(2分)的结果是()A.B.C.D.25.(2分)某篮球队5名主力队员的身高(单位:cm)分别是174,179,180,174,178,则这5名队员身高的中位数是()A.174 B.177 C.178 D.1806.(2分)在Rt△ABC中,∠B=90°,∠C=30°,AC=2,则AB的长为()A.1 B.2 C.D.7.(2分)下列各组线段中,能够组成直角三角形的一组是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.4cm,5cm,6cm D.1cm,cm,cm8.(2分)如图,在△ABC中,点E、F分别是AB、AC的中点,则下列结论不正确的是()A.EF∥BC B.BC=2EF C.∠AEF=∠B D.AE=AF9.(2分)在▱ABCD中,对角线AC、BD相交于点O,若AC=8,BD=6,AB=5,则△AOB 的周长为()A.11 B.12 C.13 D.1410.(2分)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B.C.D.二、填空题:每小题3分,共15分11.(3分)已知数据:5,7,9,10,7,9,7,这组数据的众数是.12.(3分)一次函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是.13.(3分)已知a=,b=,则ab= .14.(3分)如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A的面积为.15.(3分)如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD 的度数是.三、解答题(一):每小题5分,共25分16.(5分)计算:(+3)÷2﹣3.17.(5分)为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.(1)求出以上表格中a= ,b= ;(2)计算该2路公共汽车平均每班的载客量是多少?18.(5分)如图,在四边形ABCD中,∠BAD=∠BCD,∠1=∠2,求证:四边形ABCD是平行四边形.19.(5分)将直线l1:y=2x﹣3向下平移2个单位后得到直线l2.(1)写出直线l2的函数关系式;(2)判断点P(﹣1,3)是否在直线l2上?20.(5分)如图,在△ABC中,D为BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.四、解答题(二):每小题8分,共40分21.(8分)观察下列各式,发现规律:=2;=3;=4;…(1)填空:= ,= ;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.22.(8分)某商场连续5个月统计了A、B两种品牌冰箱的销售情况(单位:台).A品牌:15,16,17,13,14B品牌:10,14,15,20,16(1)求出A品牌冰箱数据的方差;(2)已知B品牌冰箱月销售量的平均数为=15,方差为S B2=10.4,你认为这两种品牌冰箱哪一种的月销量比较稳定?23.(8分)如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.24.(8分)如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4).(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P在x轴上,且点P到直线y=kx+b的距离为,直接写出符合条件的点P的坐标.25.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)求证:BE=CF;(2)当点E,F在BC,CD上滑动时,四边形AECF的面积是否发生变化?如果不变,求出这个定值,如果变化,说明理由.2015-2016学年广东省东莞市八年级(下)期末数学试卷参考答案与试题解析一、选择题:每小题2分,共20分1.(2分)若式子有意义,则x的取值范围是()A.x≥B.x>C.x≤D.x<【分析】直接利用二次根式有意义的条件,(a≥0),进而得出答案.【解答】解:∵式子有意义,∴3x﹣1≥0,解得:x≥.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(2分)一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.3.(2分)衡量一组数据波动大小的统计量是()A.平均数B.众数C.中位数D.方差【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.【解答】解:由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4.(2分)的结果是()A.B.C.D.2【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2=.故选C.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.(2分)某篮球队5名主力队员的身高(单位:cm)分别是174,179,180,174,178,则这5名队员身高的中位数是()A.174 B.177 C.178 D.180【分析】中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).【解答】解:数据从小到大的顺序排列为174,174,178,179,180,∴这组数据的中位数是178.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(2分)在Rt△ABC中,∠B=90°,∠C=30°,AC=2,则AB的长为()A.1 B.2 C.D.【分析】根据含30°角的直角三角形性质得出AB=AC,代入求出即可.【解答】解:∵在Rt△ABC中,∠B=90°,∠C=30°,∴AB=AC=×2=1,故选:A.【点评】本题考查了含30°角的直角三角形性质的应用,能根据含30°角的直角三角形性质得出AB=AC是解此题的关键.7.(2分)下列各组线段中,能够组成直角三角形的一组是()A.1cm,2cm,3cm B.2cm,3cm,4cm C.4cm,5cm,6cm D.1cm,cm,cm【分析】先用三角形的三边的关系两边之和大于第三边,和两边之差小于第三边判断,再用勾股定理逆定理进行判断即可.【解答】解:A:12+22≠32,所以1cm,2cm,3cm不能构成三角形,即不能组成直角三角形.B:∵2+3>4,∴2cm,3cm,4cm能构成三角形,∵22+32≠42,所以不能组成直角三角形.C:∵4+5>6,∴4cm,5cm,6能构成三角形,∵42+52≠62,所以不能组成直角三角形,D:∵1+>,∴1cm,cm,cm能构成三角形,∵12+()2=()2,所以能直故选D.【点评】此题是勾股定理逆定理题,主要考查了三角形的三边关系,勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.8.(2分)如图,在△ABC中,点E、F分别是AB、AC的中点,则下列结论不正确的是()A.EF∥BC B.BC=2EF C.∠AEF=∠B D.AE=AF【分析】根据三角形中位线定理即可判断.【解答】解:∵AE=EB,AF=FC,∴EF∥BC,EF=BC,即BC=2EF,∴∠AEF=∠B,故A、B、C正确,D错误.故选D.【点评】本题考查三角形中位线定理:三角形的中位线平行于第三边并且等于第三边的一半,解题的关键是记住三角形中位线定理,属于中考常考题型.9.(2分)在▱ABCD中,对角线AC、BD相交于点O,若AC=8,BD=6,AB=5,则△AOB的周长为()A.11 B.12 C.13 D.14【分析】根据平行四边形对角线互相平分,求出OA、OB即可解决问题.【解答】解:如图,∵四边形ABCD是平行四边形,∴AO=OC=AC=4,BO=OD=BD=3,∵AB=5,∴△AOB的周长为OA+OB+AB=4+3+5=12.故选B.【点评】本题考查平行四边形的性质,三角形周长等知识,解题的关键是记住平行四边形的性质:对角线互相平分,属于中考基础题,常考题型.10.(2分)如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B.C.D.【分析】根据蚂蚁在上运动时,随着时间的变化,距离不发生变化可得正确选项.【解答】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,走另一条半径时,S随t的增大而减小.故选:C.【点评】本题主要考查动点问题的函数图象;根据随着时间的变化,距离不发生变化抓住问题的特点得到图象的特点是解决本题的关键.二、填空题:每小题3分,共15分11.(3分)已知数据:5,7,9,10,7,9,7,这组数据的众数是7 .【分析】根据众数的定义:出现次数最多的数叫做众数进行解答即可.【解答】解:7出现的次数最多,所以众数是7.故答案为7.【点评】本题考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.12.(3分)一次函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是m>﹣2 .【分析】先根据函数的增减性列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m+2)x中,y随x的增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.【点评】本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.13.(3分)已知a=,b=,则ab= ﹣2 .【分析】根据a=,b=,利用平方差公式可以求得ab的值.【解答】解:∵a=,b=,∴ab==3﹣5=﹣2,故答案为:﹣2.【点评】本题考查二次根式的化简求值,解题的关键是找出所求式子与已知式子之间的关系.14.(3分)如图,三个正方形恰好围成一个直角三角形,它们的面积如图所示,则正方形A的面积为36 .【分析】要求正方形A的面积,则要知它的边长,而A正方形的边长是直角三角形的一直角边,利用另外两正方形的面积可求得该直角三角形的斜边和另一直角边,再用勾股定理可解.【解答】解:根据正方形的面积与边长的平方的关系得,图中面积为64和100的正方形的边长是8和10;解图中直角三角形得A正方形的边长:=6,所以A正方形的面积为36.故答案是:36.【点评】此题考查了正方形的面积公式与勾股定理,比较简单.15.(3分)如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD 的度数是22.5°.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数,进而得出∠PCD的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°﹣45°)=67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.∴∠PCD=45°﹣22.5°=22.5°,故答案为:22.5°【点评】此题主要考查了正方形的性质,关键是根据正方形的对角线平分对角的性质,平分每一组对角解答.三、解答题(一):每小题5分,共25分16.(5分)计算:(+3)÷2﹣3.【分析】首先进行二次根式的化简,然后进行同类二次根式的合并.【解答】解:原式=(4+3)÷2﹣3×=2+﹣2=.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.17.(5分)为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.(1)求出以上表格中a= 31 ,b= 51 ;(2)计算该2路公共汽车平均每班的载客量是多少?【分析】(1)利用组中值的定义写出第2、3组的组中值即可得a和b的值;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解.【解答】解:(1)a=31,b=51,故答案为31;51;(2)=43(次)答:该2路公共汽车平均每班的载客量是43次.【点评】本题考查了加权平均数:若n个数x1,x2,x3,…,x k的权分别是w1,w2,w3,…,w k,则(x1w1+x2w2+…+x k w k)叫做这n个数的加权平均数.18.(5分)如图,在四边形ABCD中,∠BAD=∠BCD,∠1=∠2,求证:四边形ABCD是平行四边形.【分析】由∠1=∠2得出AB∥CD,再证出∠CAD=∠BCA,得出AD∥BC,从而得出四边形ABCD 是平行四边形.【解答】证明:∵∠1=∠2,∴AB∥CD,∵∠BAD=∠BCD∴∠BAD﹣∠1=∠BCD﹣∠2,∴∠CAD=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、平行线的判定;熟练掌握平行四边形的判定方法,证出AD∥BC是解决问题的关键.19.(5分)将直线l1:y=2x﹣3向下平移2个单位后得到直线l2.(1)写出直线l2的函数关系式;(2)判断点P(﹣1,3)是否在直线l2上?【分析】(1)根据一次函数图象与几何变换得到直线y=2x﹣3向下平移2个单位得到的函数解析式为y=2x﹣3﹣2.(2)把x=﹣1代入解析式解答即可.【解答】解:(1)直线y=2x﹣3向下平移2个单位得到的函数解析式为y=2x﹣3﹣2=2x﹣5;(2)当x=﹣1时,y=2×(﹣1)﹣5=﹣7≠3,∴P(﹣1,3)不在直线l2上.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.20.(5分)如图,在△ABC中,D为BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:在Rt△ACB中,∠C=90°∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.四、解答题(二):每小题8分,共40分21.(8分)观察下列各式,发现规律:=2;=3;=4;…(1)填空:= 5,= 6;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.【分析】(1)根据已知等式得出规律,写出所求结果即可;(2)利用二次根式性质计算得到结果即可;(3)归纳总结得到一般性规律,写出即可.【解答】解:(1)根据题意得:=5;=6;故答案为:5;6;(2)====2015;(3)归纳总结得:=(n+1)(自然数n≥1).【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(8分)某商场连续5个月统计了A、B两种品牌冰箱的销售情况(单位:台).A品牌:15,16,17,13,14B品牌:10,14,15,20,16(1)求出A品牌冰箱数据的方差;(2)已知B品牌冰箱月销售量的平均数为=15,方差为S B2=10.4,你认为这两种品牌冰箱哪一种的月销量比较稳定?【分析】(1)利用方差公式计算出A品牌的方差即可;(2)根据方差的意义,判断这两种品牌冰箱月销售量的稳定性.【解答】解:(1)=(15+16+17+13+14)÷5=15(台)∴=[(15﹣15)2+(16﹣15)2+(17﹣15)2+(13﹣15)2+(14﹣15)2]=2;(2)∵B品牌冰箱月销售量的方差为S B2=10.4,A品牌冰箱月销售量的方差为2,∴<S B2,∴A品牌冰箱月销售量比较稳定,B品牌冰箱月销售量不稳定.【点评】本题主要考查了方差的计算,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示.方差越大,则数据不稳定;反之,数据较稳定.23.(8分)如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.【点评】本题考查了平行四边形的性质、矩形的判定与性质,三角形全等的判定和性质,勾股定理的应用等知识;熟练掌握平行四边形的性质,证明四边形是矩形是解决问题的关键.24.(8分)如图,直线y=kx+b与坐标轴相交于点M(3,0),N(0,4).(1)求直线MN的解析式;(2)根据图象,写出不等式kx+b≥0的解集;(3)若点P在x轴上,且点P到直线y=kx+b的距离为,直接写出符合条件的点P的坐标.【分析】(1)把点M、N的坐标分别代入一次函数解析式,列出关于系数k、b的方程组,通过解方程组求得它们的值;(2)直线y=kx+b在x轴及其上方的部分对应的x的取值范围即为所求;(3)作△OMN的高OA.在Rt△OMN中利用勾股定理求出MN==5.根据三角形的面积公式求出OA===,则点P的坐标是(0,0);在x轴上作O关于M的对称点为(6,0),易得(6,0)到直线y=kx+b的距离也为.【解答】解:(1)∵直线y=kx+b与坐标轴相交于点M(3,0),N(0,4),所以,解得:,∴直线MN的解析式为:y=﹣x+4;(2)根据图形可知,当x≤3时,y=kx+b在x轴及其上方,即kx+b≥0,则不等式kx+b≥0的解集为x≤3;(3)如图,作△OMN的高OA.在Rt△OMN中,∵OM=3,ON=4,∠MON=90°,∴MN==5.∵S△OMN=MN•OA=OM•ON,∴OA===,∴点P的坐标是(0,0);在x轴上作O关于M的对称点为(6,0),易得(6,0)到直线y=kx+b的距离也为,所以点P的坐标是(0,0)或(6,0).【点评】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,三角形的面积,点到直线的距离,勾股定理.难度适中.25.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合.(1)求证:BE=CF;(2)当点E,F在BC,CD上滑动时,四边形AECF的面积是否发生变化?如果不变,求出这个定值,如果变化,说明理由.【分析】(1)利用菱形的性质和等边三角形的性质,根据SAS证明△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S得出四边形AECF的面积不会发生变化;再作AH⊥BC于点H.求出AH的值,根据S △ABC=S△ABC=BC•AH,代入计算即可求解.四边形AECF【解答】(1)证明:∵在菱形ABCD中,∠BAD=120°,∴∠B=60°,∠BAC=∠BAD=60°,∴△ABC为等边三角形,∴AB=BC=AC.∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF,∴△BAE≌△CAF,∴BE=CF;(2)解:四边形AECF的面积不会发生变化.理由如下:∵△BAE≌△CAF,∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,∵△ABC的面积是定值,∴四边形AECF的面积不会发生变化.如图,作AH⊥BC于点H.∵AB=AC=BC=4,∴BH=BC=2,AH=AB•sin∠B=4×=2,∴S四边形AECF=S△ABC=BC•AH=×4×2=4.【点评】本题考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,求证△ABE ≌△ACF是解题的关键,难度适中.。
2018-2019学年广州市天河区八下期末数学试卷一、选择题(共10小题;共50分)1. 下列二次根式中,属于最简二次根式的是A. B. D.2. 以下列各组数据为边长作三角形,其中能组成直角三角形的是A. ,,B. ,,C. ,,D. ,,3. 若一组数据,,,,的平均数为,则的值是A. B. C. D.4. 函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择A. 甲B. 乙C. 丙D. 丁6. 下列命题中,真命题是A. 有两边相等的平行四边形是菱形B. 有一个角是直角的四边形是矩形C. 四个角相等的菱形是正方形D. 两条对角线互相垂直且相等的四边形是正方形7. 已知正比例函数,且随的增大而减少,则直线的图象是A. B.C. D.8. 如图,在矩形纸片中,已知,折叠纸片,使边与对角线重合,点落在点处,折痕为,且,则的长为A. B. C. D.9. 如图,过平行四边形对角线交点的线段,分别交,于点,,当时,的面积为,则四边形的面积是A. B. C. D.10. 如图,在平面直角坐标系中,点,,在直线上,点,,在轴上,,,都是等腰直角三角形,若已知点,则点的纵坐标是二、填空题(共6小题;共30分)11. 若式子在实数范围内有意义,则的取值范围是.12. 若一直角三角形的两直角边长为,,则斜边长为.13. 把直线沿着轴向上平移个单位,所得直线的函数解析式为.14. 如图,直线与轴的交点为,则关于的不等式的解集是.15. 如图,平行四边形在平面直角坐标系中,已知,,点在上,连接,当时,点到轴的距离为.16. 如图,在平行四边形中,,平分交于点,作,垂足为,连接,小明得到三个结论:①;②;③.则三个结论中一定成立的是.三、解答题(共10小题;共130分)17. 请回答:(1)计算:.(2)计算.18. 如图,中,,,作,垂足为,若,求的长.19. 如图,已知平行四边形的对角线和交于点,且,,求的周长.20. 某校八年级学生在一次射击训练中,随机抽取名学生的成绩如下表,请回答问题:(1)填空:名学生的射击成绩的众数是,中位数是.(2)求这名学生的平均成绩.(3)若环(含环)以上评为优秀射手,试估计全年级名学生中有多少是优秀射手? 21. 如图,是等边三角形.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);作线段的中点.连接,并延长到,使,连接,.(2)求证()中所作的四边形是菱形.22. 在平面直角坐标系中,原点为,已知一次函数的图象过点,点和点.(1)求这个一次函数的解析式;(2)当时,求直线,直线与轴围成的图形的面积;(3)当的面积等于的面积的倍时,求的值.23. 如图,菱形的对角线和相交于点,,,,且,满足:.(1)求菱形的面积;(2)求的值.24. 如图,在平面直角坐标系中,为原点,点,,直线与轴交于点.(1)求点的坐标;(2)求证:是直角三角形.25. 如图,矩形中,,,以为原点建立平面直角坐标系,点,点分别在轴,轴上,点在第一象限内,若平面内有一动点,且满足,问:(1)当点在矩形的对角线上,求点的坐标;(2)当点到,两点的距离之和取最小值时,求点的坐标.26. 如图,在菱形中,,,是的中点,过点作,垂足为,将沿点到点的方向平移,得到.(1)求的长;(2)设,分别是,的中点,当点与点重合时,求证四边形是平行四边形,并求出四边形的面积.答案第一部分1. B 【解析】A、,故此选项错误;B、是最简二次根式,故此选项正确;C、,故此选项错误;D、,故此选项错误.2. A 【解析】A.,即以,,为边能组成直角三角形,故本选项符合题意;B.,即以,,为边不能组成直角三角形,故本选项不符合题意;C.,即以,,为边不能组成直角三角形,故本选项不符合题意;D.,即以,,为边不能组成直角三角形,故本选项不符合题意.3. D 【解析】依题意有:,解得.4. A 【解析】,一次函数经过二四象限;,一次函数又经过第三象限,一次函数的图象不经过第一象限.5. A【解析】,,,,,,,,从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲.6. C 【解析】A、两邻边相等的平行四边形是菱形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、四个角相等的菱形是正方形,所以C选项正确;D、两条对角线互相垂直平分且相等的四边形是正方形,所以D选项错误.7. D 【解析】正比例函数,且随的增大而减少,.在直线中,,,函数图象经过一三四象限.8. D 【解析】四边形是矩形,,,是翻折而成,,,是直角三角形,,在中,,设,在中,,即,解得.9. C 【解析】是平行四边形,,,,,,,,,,,,,,.10. D【解析】在直线上,,.设,,则有,.又,,都是等腰直角三角形,,,将点坐标依次代入直线解析式得到:,,又,,,点的纵坐标是第二部分11.【解析】由题意,得,解得.12.【解析】斜边长.13.【解析】把直线沿着轴向上平移个单位,所得直线的函数解析式为,即.14.【解析】直线与轴的交点为,随的增大而增大,当时,,即.【解析】,,,,作轴,,,,点到轴的距离为.16. ①③【解析】,,在平行四边形中,,,故①正确;延长交的延长线于,,在与中,,,,,,,故②错误;,,,,,故③正确.第三部分17. (1)(2)18. ,,,,,.19. 四边形是平行四边形,,,,,,的周长.20. (1)环;环【解析】射击成绩出现次数最多的是环,共出现次,因此众数是环,射击成绩从小到大排列后处在第,位的数都是环,因此中位数是环.(2)环,答:这名学生的平均成绩为环.(3)人,答:全年级名学生中有名是优秀射手.21. (1)如图,四边形即为所求.(2),,四边形是平行四边形,是等边三角形,,,四边形是菱形.22. (1)设这个一次函数的解析式是,把点,点的坐标代入得:解得:,,这个一次函数的解析式是.(2)设直线交轴于,如图.当时,,解得,则;当时,,即直线,直线与轴围成的图形的面积为.(3)当的面积等于的面积的倍,,或,即点的横坐标为或当时,,此时;当时,,此时.综上所述,的值为或.23. (1)四边形是菱形,垂直平分,,,,,,满足:.,,的面积,菱形的面积的面积.(2),,,,.24. (1)设直线的解析式为:,点,,则解得,设直线的解析式为:,点的坐标为.(2)点,,,,,则,是直角三角形.25. (1)矩形中,,,,设直线的解析式为,,,直线的解析式为,点在矩形的对角线上,设,,,,.(2),设点的纵坐标为,,,点在直线或的直线上,作关于直线的对称点,则点的坐标为,连接交直线于,则此时的值最小,设直线的解析式为,,,直线的解析式为,当时,,,同理,点在直线的直线上,,点的坐标为或.26. (1)四边形是菱形,,是的中点,,点作,,.(2)如图,连接,,交于.由题意,,四边形是平行四边形,四边形是菱形,,是等边三角形,,,,在中,,,,,,,在中,,,,,,平行四边形的面积.。
2018-2019学年广东省江门市八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.下列图案中是轴对称图形的有()A. 1个B. 2 个C. 3个D. 4个2.下列计算正确的是()A. B. C.D.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短4.下列多项式中能用平方差公式分解因式的是()A. B. C. D.5.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A. B. C. D.6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 4B. 5C. 6D. 77.如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A. 9B. 6C.D. 48.等腰三角形周长为18,其中一边长为4,则其它两边长分别为()A. 4,10B. 7,7C. 4,10或7,7D. 无法确定9.如图,DE是△ABC中AC边的垂直平分线,若BC=6cm,AB=8cm,则△EBC的周长为()A. 14cmB. 18cmC. 20cmD. 22cm10.一件工作,甲独做x小时完成,乙独做y小时完成,那么甲、乙合做全部工作需()小时A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.一根头发的直径约为0.0000715米,该数用科学记数法表示为______.12.已知点A(m,-3)与点B(-4,n)关于x轴对称,则m+n的值为______.13.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=______.14.已知单项式-2x a+2b y a-b与3x4y是同类项,则2a+b的值为______.15.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则BD的长度是______.16.若a+b=7,ab=12,则的值为______.三、计算题(本大题共2小题,共13.0分)17.计算:(1-)÷18.先化简,再求值:(x+2y)(x-2y)+(20xy3-8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共53.0分)19.分解因式:-2a3+12a2-18a20.如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAB的周长最小.21.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.22.上午8时,一艘轮船从A处出发以每小时20海里的速度向正北航行,10时到达B处,则轮船在A处测得灯塔C在北偏西36°,航行到B处时,又测得灯塔C在北偏西72°,求从B到灯塔C的距离.23.因课外活动的需要,鹏胜同学第一次在文具店买若干支笔芯,花了30元,第二次再去买该款笔芯时,发现每一盒(20支装)价钱升了2元,他这一次买该款笔芯的数量是第一次的2倍,花了68元,求他两次买的笔芯分别是多少支?24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?答案和解析1.【答案】B【解析】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有第一、四共2个.故选:B.根据轴对称图形的概念对各图形分析判断后即可求解.本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.【答案】D【解析】解:(a-b)2=a2-2ab+b2,A错误;(x2)3=x6,B错误;x8÷x2=x6,C错误;x2•x5=x7,D正确;故选:D.根据完全平方公式,同底数幂的乘除法法则,幂的乘方法则进行计算,判断即可.本题考查的是完全平方公式,同底数幂的乘除法,幂的乘方,掌握它们的运算法则是解题的关键.3.【答案】A【解析】解:根据三角形的稳定性可固定窗户.故选:A.根据三角形的稳定性即可解决问题.本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.4.【答案】D【解析】解:A、a2+(-b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故C选项错误;D、-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.能用平方差公式分解因式的式子特点是:两项平方项,符号相反.本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.5.【答案】B【解析】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】C【解析】解:设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.【答案】C【解析】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的,△ABE是△ABD面积的,∴△ABE的面积=18××=18×=4.5.故选:C.中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的.本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.8.【答案】B【解析】解:当腰为4时,另一腰也为4,则底为18-2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18-4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形∴其它两边长分别为7,7.故选:B.由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴CE+BE=AB=8cm.∵BC=6cm,∴△EBC的周长=BC+CE+BE=BC+AB=6+8=14(cm).故选:A.先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB即可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.【答案】D【解析】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:,∴甲、乙合做全部工作需:=,故选:D.根据甲独做x小时完成,乙独做y小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.此题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.11.【答案】7.15×10-5【解析】解:0.0000715=7.15×10-5;故答案为7.15×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】-1【解析】解:∵点A(m,-3)与点B(-4,n)关于x轴对称,∴m=-4,n=3,则m+n=-4+3=-1,故答案为:-1.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数求得m、n 的值,再代入计算可得.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.13.【答案】240°【解析】解:∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°故答案是:240°.本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.14.【答案】5【解析】解:∵单项式-2x a+2b y a-b与3x4y是同类项,∴,解得,a=2,b=1,则2a+b=5,故答案为:5.根据同类项的定义列出二元一次方程组,解方程组求出a,b,计算即可.本题考查的是同类项的定义,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.【答案】6cm【解析】解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=2cm,在Rt△ACD中,AC=2AD=4cm,在Rt△ABC中,AB=2AC=8cm.∴AB的长度是8cm.∴BD的长度=8-2=6cm,故答案为:6cm先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质,关键是先求出∠ACD=30°.16.【答案】【解析】解:原式=,由于a+b=7,ab=12.∴原式==,故答案为:.根据完全平方公式进行化简,然后将a+b与ab的值代入即可求出答案.本题考查整式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.17.【答案】解:原式=•=•=x+1.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=x2-4y2+5y2-2xy=x2-2xy+y2,=(x-y)2,当x=2018,y=2019时,原式=(2018-2019)2=(-1)2=1.【解析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.【答案】解:原式=-2a(a2-6a+9)=-2a(a-3)2.【解析】先提取公因式-2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.【答案】解:(1)如图所示:从△ABC各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点A关于直线DE的对称点A1,连接A1B,交直线DE于点Q,点Q即为所求,此时△QAB的周长最小.【解析】(1)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(2)利用轴对称图形的性质可作点A关于直线DE的对称点A1,连接BA1,交直线DE于点Q,点Q即为所求.此题主要考查了有关轴对称--最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握,用到的知识点为:两点之间,线段最短.注意,作图形变换这类题的关键是找到图形的对应点.21.【答案】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.【解析】(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.本题考查了平行线的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.22.【答案】解:由题意得:AB=(10-8)×20=40海里,∵∠C=72°-∠A=36°=∠A,∴BC=AB=40海里.答:从B到灯塔C的距离为40海里.【解析】易得AB长为40海里,利用三角形的外角知识可得△ABC为等腰三角形,那么BC=AB.考查方向角问题;利用外角知识判断出△ABC的形状是解决本题的突破点.23.【答案】解:设他第一次买的笔芯为x支,则第二次买的笔芯为2x支.由题意得方程:=,化简,得:,解得:x=40,2x=80,经检验,x=40是原分式方程的解.答:他两次买的笔芯分别是40支、80支.【解析】根据“第二次购买的单价-第一次购买的单价=每支的单价=”这一等量关系即可列出方程求解.此题考查了分式方程的应用,能根据单价列出相应的等量关系是解决本题的关键.24.【答案】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【解析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.25.【答案】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10-4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)【解析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.。
2021-2021学年广东省广州市天河区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.2.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm3.点(3,﹣2)关于x轴的对称点坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(3,﹣2)4.使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣25.下列运算中正确的是()A.B.(a﹣b)(﹣a﹣b)=a2﹣b2C.2a2•a3=2a6D.(﹣a)10÷(﹣a)4=a66.若一个多边形的内角和是1080°,则此多边形的边数是()A.十二B.十C.八D.十四7.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm8.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,且△ACE的周长为30,则BE的长是()A.5B.10C.12D.139.已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.c<b<a B.b<a<c C.c<a<b D.a<c<b10.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)11.已知x m=8,x n=2,则x m﹣n=.12.若分式的值为0,则x=.13.如图,直线a∥b,∠1=70°,∠2=35°,则∠3的度数是.14.如图,已知∠ABC=∠DCB,添加一个条件,使△ABC≌△DCB,你添加的条件是.(注:只需写出一个条件即可)15.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=.16.若(x+p)与(x+5)的乘积中不含x的一次项,则p=.三、解答题(本大题共9题,共102分,解答要求写出文字说明、证明过程或演算步骤.)17.(12分)(1)分解因式:3x3﹣27x(2)18.(10分)先化简,再求值:(﹣x﹣2y)(x﹣2y)+(2x3﹣4x2y)÷2x,其中x=﹣2,y=1.19.(10分)如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出AA1的长度;(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)20.(10分)如图,已知点E、F在AB上,AD=BC,∠A=∠B,∠C=∠D.求证:AE=BF.21.(10分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.22.(10分)某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.23.(12分)已知A=﹣,B=(x+2)(x+4)+1.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.24.如图,等腰直角三角形ABD中,∠A=90°,AB=AD=2,作△ABD关于直线BD对称的△CBD,已知点F为线段AB上一点,且AF=m,连接CF,作∠FCE=90°,CE交AD的延长线于点E.(1)求证:△BCF≌△DCE;(2)若AE=n,且mn=3,求m2+n2的值.25.△ABC中,∠BAC>90°,∠ACB=∠ABC=α,点D为BC边上任意一点,点E在AD延长线上,且BC=BE.(1)当α=30°,点D恰好为BC中点时,补全图1,求∠BEA的度数;(2)如图2,若∠BAE=2α,此时恰好DB=DE,连接CE,求证:△ABE≌△CEB.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.点(3,﹣2)关于x轴的对称点坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(3,﹣2)【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而求出即可.【解答】解:点(3,﹣2)关于x轴的对称点坐标是(3,2),故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.4.使分式有意义的x的取值范围是()A.x>﹣2B.x<2C.x≠2D.x≠﹣2【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.5.下列运算中正确的是()A.B.(a﹣b)(﹣a﹣b)=a2﹣b2C.2a2•a3=2a6D.(﹣a)10÷(﹣a)4=a6【分析】根据负整数指数幂,平方差公式,单项式乘法,同底数幂的除法分别求出每一部分的值,再选择即可.【解答】解:A、结果是9,故本选项错误;B、结果是b2﹣a2,故本选项错误;C、结果是2a5,故本选项错误;D、结果是a6,故本选项正确;故选:D.【点评】本题考查了负整数指数幂,平方差公式,单项式乘法,同底数幂的除法的应用,能正确运用法则进行计算是解此题的关键.6.若一个多边形的内角和是1080°,则此多边形的边数是()A.十二B.十C.八D.十四【分析】多边形的内角和可以表示成(n﹣2)•180°,列方程可求解.【解答】解:设此多边形边数是n,则(n﹣2)•180°=1080°,解得n=8.故选:C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm【分析】题中没有指明哪个是底哪个腰,故应该分两种情况进行分析,注意利用三角形三边关系进行检验.【解答】解:当7为腰时,周长=7+7+3=17;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17.故选:B.【点评】本题考查的是等腰三角形的性质,在解答此题时要进行分类讨论.8.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,且△ACE的周长为30,则BE的长是()A.5B.10C.12D.13【分析】根据CE=5,AC=12,且△ACE的周长为30,可得AE的长,再根据线段垂直平分线的性质,可得答案.【解答】解:∵CE=5,AC=12,且△ACE的周长为30,∴AE=13.∵AB的垂直平分线交AB于D,交BC于E,∴BE=AE=13,故选:D.【点评】本题考查了线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.9.已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.c<b<a B.b<a<c C.c<a<b D.a<c<b【分析】先根据零指数幂和负整数指数幂及乘方运算法则计算出a、b、c的值,再比较大小即可得.【解答】解:∵a=2﹣2=,b=(π﹣2)0=1,c=(﹣1)3=﹣1,∴c<a<b,故选:C.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).10.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【分析】想办法证明△FAB≌△EAC(SAS),利用全等三角形的性质即可解决问题;【解答】解:∵∠EAF=∠BAC,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△FAB≌△EAC(SAS),故①正确,∴BF=EC,故②正确,∴∠ABF=∠ACE,∵∠BDF=∠ADC,∴∠BFD=∠DAC,∴∠BFD=∠EAF,故③正确,无法判断AB=BC,故④错误,故选:A.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.已知x m=8,x n=2,则x m﹣n=4.【分析】根据同底数幂相除,底数不变指数相减进行计算即可得解.【解答】解:∵x m=8,x n=2,∴x m﹣n=x m÷x n=8÷2=4.故答案为:4.【点评】本题考查了同底数幂的除法,是基础题,熟记性质并灵活运用是解题的关键.12.若分式的值为0,则x=3.【分析】分式的值为0,分子等于0,且分母不等于0.【解答】解:依题意得x﹣3=0,解得x=3,经检验,x=3符合题意.故答案是:3.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,直线a∥b,∠1=70°,∠2=35°,则∠3的度数是35°.【分析】根据平行线的性质得出∠4=∠1=70°,然后根据三角形外角的性质,即可求得∠3的度数.【解答】解:∵直线a∥b,∠1=70°,∴∠4=∠1=70°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=70°﹣35°=35°.故答案为:35°.【点评】本题考查了平行线的性质和三角形外角的性质,熟练掌握平行线的性质定理是解题的关键.14.如图,已知∠ABC=∠DCB,添加一个条件,使△ABC≌△DCB,你添加的条件是∠A=∠D.(注:只需写出一个条件即可)【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理解答即可.【解答】解:添加的条件为:∠A=∠D或AB=DC或OB=OC;∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,∵OB=OC,∴∠DBC=∠ACB,∵∠ABC=∠DCB,∴∠ABO=∠DCO,∵∠AOB=∠DOC,∠A+∠ABO+∠AOB=180°,∠D+∠DCO+∠DOC=180°,∴∠A=∠D,∵∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,∴能推出△ABC≌△DCB;故答案为:∠A=∠D【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=3.【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故答案为:3.【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.16.若(x+p)与(x+5)的乘积中不含x的一次项,则p=﹣5.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再根据乘积中不含x的一次项,得出它的系数为0,即可求出p的值.【解答】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,故答案为:﹣5.【点评】本题主要考查单项式乘单项式,解题的关键是熟练掌握单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.三、解答题(本大题共9题,共102分,解答要求写出文字说明、证明过程或演算步骤.)17.(12分)(1)分解因式:3x3﹣27x(2)【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3x(x2﹣9)=3x(x+3)(x﹣3);(2)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.【点评】此题考查了解分式方程,以及分解因式,熟练掌握运算法则是解本题的关键.18.(10分)先化简,再求值:(﹣x﹣2y)(x﹣2y)+(2x3﹣4x2y)÷2x,其中x=﹣2,y=1.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.【解答】解:原式=(﹣2y)2﹣x2+x2﹣2xy=4y2﹣x2+x2﹣2xy=4y2﹣2xy,当x=﹣2,y=1时,原式=4×12﹣2×(﹣2)×1=4+4=8.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.(10分)如图1,方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出AA1的长度;(3)如图2,A、C是直线MN同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使AD+DC最小.(保留作图痕迹)【分析】(1)直接利用轴对称图形的性质分别得出对应点位置进而得出答案;(2)利用网格直接得出AA1的长度;(3)利用轴对称求最短路线的方法得出点D位置.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)AA1的长度为:2×5=10;(3)如图所示:点D即为所求,此时AD+DC最小.【点评】此题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.20.(10分)如图,已知点E、F在AB上,AD=BC,∠A=∠B,∠C=∠D.求证:AE=BF.【分析】欲证明AE=BF,只要证明AF=BE,只要证明△ADF≌△BCE(ASA)即可;【解答】证明:在△ADF和△BCE中,,∴△ADF≌△BCE(ASA),∴AF=BE,∴AE=BF.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.21.(10分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.【分析】先根据三角形外角性质,得出∠3=∠4=∠1+∠2=2∠1,再根据三角形内角和定理,得出∠DAC+∠3+∠4=180°,最后根据∠DAC+4∠1=180°,以及∠BAC=∠1+∠DAC=69°,求得∠DAC的度数即可.【解答】解:∵∠1=∠2,∠3=∠4,而∠3=∠1+∠2,∴∠3=∠4=∠1+∠2=2∠1,在△ADC中,∠DAC+∠3+∠4=180°,∴∠DAC+4∠1=180°,∵∠BAC=∠1+∠DAC=69°,∴∠1+180°﹣4∠1=69°,解得∠1=37°,∴∠DAC=69°﹣37°=32°.【点评】本题主要考查了三角形内角和定理以及三角形外角性质的综合应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.22.(10分)某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.【分析】设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x﹣5)元,根据数量=总价÷单价结合用10000元购买科普类图书和用9000元购买文学类图书数量相等,即可得出关于x的分式方程,解之经检验即可得出结论.【解答】解:设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意得:=,解得:x=50,经检验,x=50是所列分式方程的解,且符合题意.答:科普类图书平均每本的价格为50元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式是解题的关键.23.(12分)已知A=﹣,B=(x+2)(x+4)+1.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.【分析】(1)根据分式的混合运算顺序和运算法则可化简A,再根据多项式乘多项式法则与合并同类项法则化简B,继而依据完全平方公式可分解B;(2)由B=0得出x的值,代入化简后的A的代数式计算可得.【解答】解:(1)A=﹣===,B=x2+4x+2x+8+1=x2+6x+9=(x+3)2;(2)当B=0时,(x+3)2=0,解得x=﹣3,则A===﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的能力.24.如图,等腰直角三角形ABD中,∠A=90°,AB=AD=2,作△ABD关于直线BD对称的△CBD,已知点F为线段AB上一点,且AF=m,连接CF,作∠FCE=90°,CE交AD的延长线于点E.(1)求证:△BCF≌△DCE;(2)若AE=n,且mn=3,求m2+n2的值.【分析】(1)首先证明四边形ABCD是正方形,再根据ASA证明△CDF≌△CBF即可;(2)由△CDF≌△CBF,推出DE=BF=n﹣2=2﹣m,可得m+n=4,再利用完全平方公式即可解决问题;【解答】(1)证明:∵△BCD与△BAD关于直线BD对称,∴BA=BC,DA=DC,∵∠A=90°,AB=AD=2,∴AB=AD=CD=BC=2,∴四边形ABCD是菱形,∵∠A=90°,∴四边形ABCD是正方形,∴∠DCB=∠ECF=90°,∴∠ECD=∠FCB,∵∠CDE=∠CBF=90°,CD=CB,∴△CDF≌△CBF(ASA).(2)解:∵△CDF≌△CBF,∴DE=BF=n﹣2=2﹣m,∴m+n=4,∴m2+2mn+n2=16,∵mn=3,∴m2+n2=10.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,正方形的判定和性质,轴对称等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.△ABC中,∠BAC>90°,∠ACB=∠ABC=α,点D为BC边上任意一点,点E在AD延长线上,且BC=BE.(1)当α=30°,点D恰好为BC中点时,补全图1,求∠BEA的度数;(2)如图2,若∠BAE=2α,此时恰好DB=DE,连接CE,求证:△ABE≌△CEB.【分析】(1)只要证明AE⊥BC,△BCE是等边三角形即可解决问题;(2)如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN ⊥AE于N,只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.【解答】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEA=30°;(2)延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N,∵∠ACB=∠ABC=α,∴∠FAB=∠ABC+∠ACB=2α,∵∠BAE=2α,∴∠MAB=∠NAB,∴BM=BN,在Rt△BMF与Rt△BNE中,,∴Rt△BMF≌Rt△BNE(HL),∴∠F=∠AEB,∵BF=BC,∴∠F=∠ACB=α,∴∠AEB=α,∴∠ACB=∠AEB,∴A,B,E,E四点共圆,∴∠BAE=∠ECB,在△ABE与△CEB中,,∴ABE≌△CEB(AAS).【点评】本题考查了全等三角形的判定,等腰三角形的性质,四点共圆,圆周角定理,正确的作出辅助线是解题的关键.。
2020-2021学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中,只有一个是正确的。
)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤4C.x≥﹣4D.x≥42.(3分)下列选项中,属于最简二次根式的是()A.B.C.D.3.(3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A.6B.7C.8D.94.(3分)在△ABC中,D,E分别是AB,AC的中点,若BC=10,AB=12,则DE的长为()A.4B.5C.6D.75.(3分)如图,每个小正方形的边长都是1,A,B,C分别在格点上,则∠ABC的度数为()A.30°B.45°C.50°D.60°6.(3分)甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是S甲2=0.55,S乙2=0.65,S丙2=0.50,则成绩最稳定的是()A.甲B.乙C.丙D.无法确定7.(3分)小明向东走80m后,沿方向A又走了60m,再沿方向B走了100m回到原地,则方向A是()A.南向或北向B.东向或西向C.南向D.北向8.(3分)若函数y=﹣3x+m的图象如图所示,则函数y=mx+1的大致图象是()A.B.C.D.9.(3分)如图,将边长分别是4,8的矩形纸片ABCD折叠,使点C与点A重合,则BF 的长是()A.2B.3C.D.410.(3分)已知矩形的对角线为1,面积为m,则矩形的周长为()A.B.C.2D.2二、填空题(本题有6个小题,每小题3分,共18分。
)11.(3分)在▱ABCD中,∠A=50°,则∠C=°.12.(3分)“若a>0,b>0,则ab>0.”的逆命题为(填“真”或“假”)命题.13.(3分)如图,在△ABC中,∠ABC=90°,AD=DC,BD=4,则AC=.14.(3分)如图,已知直线y1=k1x+b1与直线y2=k2x+b2相交于点A(1,2),若y1<y2,则x的取值范围为.15.(3分)一组数据4,2,x,6,3的平均数是4,则这组数据的中位数是.16.(3分)观察3个式子:,,.猜想第四个式子得:=;依此类推,按照每个等式反映的规律,第n个二次根式的计算结果是.三、解答题(本大题有8小题,共72分,解答要求写出文字说明,证明过程或计算步骤。
2018-2019学年广州市天河区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,132.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3) D.(﹣3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.5.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为()A.y=kx﹣3 B.y=kx+1 C.y=kx+3 D.y=kx﹣18.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.49.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)10.一次函数y=kx+k的图象可能是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)13.函数的自变量x的取值范围是.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.15.函数y=(k+1)x+k2﹣1中,当k满足时,它是一次函数.16.菱形的周长是20,一条对角线的长为6,则它的面积为.17.若正多边形的一个内角等于140°,则这个正多边形的边数是.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an= .(用含n 的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …an三、解答题(本大题共2个小题,每小题6分,满分12分)19.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC 的度数.20.已知y+6与x成正比例,且当x=3时,y=﹣12,求y与x的函数关系式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?22.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?五、解答题(本大题共2个小题,每小题9分,满分18分)23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.六、综合探究题(本大题共2个小题,每小题10分,满分20分)25.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2018-2019学年广州市天河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3) D.(﹣3,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标是(2,3),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.4.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对【考点】矩形的性质.【分析】首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【解答】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=2,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=192.故选:B.【点评】此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为()A.y=kx﹣3 B.y=kx+1 C.y=kx+3 D.y=kx﹣1【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:原直线的k=k,b=﹣1;向上平移2个单位长度,得到了新直线,那么新直线的k=k,b=﹣1+2=1.∴新直线的解析式为y=kx+1.故选B.【点评】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.8.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.4【考点】一次函数的性质.【分析】根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,当(k﹣3)>0时,即k>3时,y随x的增大而增大,分析选项可得D选项正确.答案为D.【点评】本题考查一次函数的性质,掌握一次项系数及常数项与图象间的关系.9.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点()A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据“两点法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.【解答】解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,则,解得,∴y=x+3;A、当x=4时,y=×4+3=9≠6,点不在直线上;B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;C、当x=6时,y=×6+3=12≠9,点不在直线上;D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;故选B.【点评】本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标.10.一次函数y=kx+k的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b <0时,函数图象经过二、三、四象限是解答此题的关键.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为100 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.【解答】解:由题意可得:AB=200m,∠A=30°,则BC=AB=100(m).故答案为:100.【点评】此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件AD=BC (写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)【考点】平行四边形的判定.【专题】开放型.【分析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC故答案为:AD=BC(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.13.函数的自变量x的取值范围是x≥2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是0.1 .【考点】频数与频率.【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.【点评】本题是对频率=频数÷总数这一公式的灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.15.函数y=(k+1)x+k2﹣1中,当k满足k≠﹣1 时,它是一次函数.【考点】一次函数的定义.【专题】计算题;一次函数及其应用.【分析】利用一次函数定义判断即可求出k的值.【解答】解:函数y=(k+1)x+k2﹣1中,当k满足k≠﹣1时,它是一次函数.故答案为:k≠﹣1【点评】此题考查了一次函数的定义,熟练掌握一次函数定义是解本题的关键.16.菱形的周长是20,一条对角线的长为6,则它的面积为24 .【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据周长可求得其边长,再根据勾股定理可求得另一条对角线的长,从而利用面积公式即可求得其面积.【解答】解:∵菱形的周长是20∴边长=5∵一条对角线的长为6∴另一条对角线的长为8∴菱形的面积=×6×8=24.故答案为24.【点评】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.17.若正多边形的一个内角等于140°,则这个正多边形的边数是9 .【考点】多边形内角与外角.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an= 3n+1 .(用含n的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …an【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.【点评】此类题的属于找规律,从所给数据中,很容易发现规律,再分析整理,得出结论.三、解答题(本大题共2个小题,每小题6分,满分12分)19.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC 的度数.【考点】直角三角形的性质.【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.20.已知y+6与x成正比例,且当x=3时,y=﹣12,求y与x的函数关系式.【考点】待定系数法求一次函数解析式.【专题】待定系数法.【分析】先根据y+6与x成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k即可.【解答】解:∵y+6与x成正比例,∴设y+6=kx(k≠0),∵当x=3时,y=﹣12,∴﹣12+6=3k,解得k=﹣2∴y+6=﹣2x,∴函数关系式为y=﹣2x﹣6.【点评】本题主要考查了待定系数法求一次函数解析式,解题时注意:求正比例函数,只要一对x,y的对应值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的对应值.四、解答题(本大题共2个小题,每小题8分,满分16分)21.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?【考点】频数(率)分布直方图.【专题】图表型.【分析】(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;(3)利用总人数乘以一等奖的人数,据此即可判断.【解答】解:(1)200﹣(35+40+70+10)=45,如下图:(2)设抽了x人,则,解得x=8;(3)依题意知获一等奖的人数为200×25%=50(人).则一等奖的分数线是80分.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC===10m,故小鸟至少飞行10m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.五、解答题(本大题共2个小题,每小题9分,满分18分)23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是108 元;(2)第二档的用电量范围是180<x≤450 ;(3)“基本电价”是0.6 元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?【考点】一次函数的应用.【分析】(1)通过函数图象可以直接得出用电量为180千瓦时,电费的数量;(2)从函数图象可以看出第二档的用电范围;(3)运用总费用÷总电量就可以求出基本电价;(4)结合函数图象可以得出小明家8月份的用电量超过450千瓦时,先求出直线BC的解析式就可以得出结论.【解答】解:(1)由函数图象,得当用电量为180千瓦时,电费为:108元.故答案为:108;(2)由函数图象,得设第二档的用电量为x千瓦时,则180<x≤450.故答案为:180<x≤450;(3)基本电价是:108÷180=0.6;故答案为:0.6(4)设直线BC的解析式为y=kx+b,由图象,得,解得:,y=0.9x﹣121.5.y=328.5时,x=500.答:这个月他家用电500千瓦时.【点评】本题考查了运用函数图象求自变量的取值范围的运用,待定系数法求一次函数的解析式的运用,由解析式通过自变量的值求函数值的运用,解答时读懂函数图象的意义是关键.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.六、综合探究题(本大题共2个小题,每小题10分,满分20分)25.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=120°,即∠ABC=120°;(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD 的长是关键.。
2019-2020学年广东省广州市天河区广东实验中学附属天河学校八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.式子√x+2在实数范围内有意义,则x的取值范围为()A. x≥−2B. x>2C. x≤2D.x≤−22.在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的()A.平均数B.中位数C.众数D.方差3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 64第3题图第7题图4.下列二次根式是最简二次根式的是()A. √8B. √7C. √0.3D.√155.在平行四边形ABCD中,∠A+∠C=100°,则∠D等于()A.50°B. 80°C.100°D. 130°6.下列各组数不能作为直角三角形三边长的是()A. 6,8,10B. 7,24,25C. 1.5,2,3D.9,12,157.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是()A. 96分、98分B. 97分、98分C. 98分、96分D. 97分、96分8.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩分别为95分,90分,88分,则小彤这学期的体育成绩为()A. 89分B.90分C. 92分D.93分9.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC. 若AB=4,AC=6,则BD的长为()A. 11B. 10C. 9D. 810.如图,长方形ABCD中,AB=3 cm,AD=9 cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()cm2A. 3B. 4C. 6D.12第9题图第10题图二、填空题(本大题共6小题,每小题3分,共18分)11. 如图,在平面直角坐标系xOy中,若A点的坐标为(1,√3),则OA的长为_______.12. 如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是_________.13. 顺次连接矩形各边中点所得四边形为________.14. 如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=__________°.第11题图第12题图第14题图15. 如图,数轴上点A表示的数为a,化简a+√a2−4a+4=__________.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是_______.第15题图第16题图三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,计算.(1)√18+√12−√8−√27.(2)√23÷√223×√2518. 如图,在平行四边形ABCD中,点E、F在BD上,且BE=AB,DF=CD,求证:四边形AECF是平行四边形.19. 已知a=2+√5,b=2−√5,求下列式子的值.(1)a2b+ab2(2)a2−3ab+b2.20. 在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.21. 某校要从甲、乙两名同学中挑选一人参加“我的中国梦”演讲比赛,在最近五次选拔测试中,他们的成绩如下表:(1)求甲、乙五次测试成绩的平均数;(2)在这五次测试中,哪个同学的成绩比较稳定?请说明理由.22. 如图,在四边形ABCD中,AB=1,AD=√3,BD=2,∠ABC+∠ADC=180°,CD=√2.(1)判断△ABD的形状,并说明理由.(2)求BC的长.23. 某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示(1)甲班学生总数为______人,表格中a的值为________.(2)甲班学生艺术赋分的平均分是多少?(3)根据统计结果,估计全校3000名学生艺术评价等级为A级的人数是多少?24. 如图,在平行四边形ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD交于点F、G. AF 与BG交于E.(1)若AB=10,点M为边AB的中点,求EM的长;(2)若AD=6,AF=8,求BG的长.25.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD 的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)当点G在边CD上运动时,点F到边CD的距离是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)试说明当点G运动到何处时,△FCG的面积最小,并求出这个最小值.。
广东省广州市天河区2023-2024学年学年高一下学期期末考试数学试卷一、单选题1.设x ∈R ,向量(),1a x =r ,()4,2b =-r ,若//a b r r ,则x =( )A .2-B .12-C .12 D .22.已知一个矩形较长边长为2用斜二测画法画出矩形的直观图是菱形,则直观图的面积为( )A B C .D .3.将函数()()sin f x x ωϕ=+的图象向左平移π4个单位后,与函数()()cos g x x ωϕ=+的图象重合,则ω的值可以是( )A .1B .2C .3D .44.已知两条不同的直线m ,n 及三个不同的平面α,β,γ则下列推理正确的是( ) A .,n αβαβ⊥⋂=,m n m β⊥⇒⊥B .,αγβγαβ⊥⊥⇒⊥C .m αβ=I ,//n α,////n m n β⇒D .m n ⊥,//n m αα⊥⇒5.抛掷两枚质地均匀的硬币,记事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,事件C =“两枚硬币都正面朝上”,事件D =“至少一枚硬币反面朝上”则( ) A .C 与D 独立 B .A 与B 互斥 C .()12P D =D .()34P A B ⋃= 6.已知样本数据12345,,,,x x x x x 都为正数,其方差12251(80)5i i s x ==-∑,则样本数据的平均数为( )A .2B .C .4D .7.ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,30A =︒,若三角形有唯一解,则整数b 构成的集合为( )A .{}3B .{}1,2C .{}1,2,4D .{}1,2,3,4 8.如图,弹簧挂着的小球做上下运动,它在t 秒时相对于平衡位置的高度h 厘米由关系式()()sin h t A t ωϕ=+确定,其中0A >,0ω>,π<ϕ.小球从最低点出发,经过2秒后,第一次回到最低点,则下列说法中正确的是( )A .()πsin π2h t A t ⎛⎫=+ ⎪⎝⎭ B .9t =秒与53t =秒时小球偏离于平衡位置的距离之比为2 C .当00t t <<时,若小球有且只有三次到达最高点,则[]05,7t ∈D .当1220t t <<<时,若12,t t 时刻小球偏离于平衡位置的距离相同,则12πsin 1t t ⎛⎫= ⎪+⎝⎭二、多选题9.已知一组数据6,13,14,15,18,13,则特征量为13的是( )A .极差B .众数C .中位数D .第40百分位数 10.已知i 为虚数单位,以下四个说法中正确的是( )A .234i i i z =++的虚部为1-B .若z 是复数,满足()1i 1i z -=+,则z 在复平面内对应的点位于第一象限C .若1z 、2z 是非零复数,且12=z z ,则2212z z =D .若1z 、2z 是非零复数,且2112z z z =,则12z z =11.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为11B C 的中点,则下列说法中正确的是( )A .若点O 为11C D 的中点,则//MO 平面1A DBB .连接BM ,则直线BM 与平面11BDD BC .若点N 为线段BC 上的动点(包含端点),则MN DN +D .若点Q 在侧面正方形11ADD A 内(包含边界),且1MQ AC ⊥,则点Q三、填空题12.在复数范围内方程2450x x -+=的一个根为0x ,则0x =.13.在ABC V 中,已知2AB AC AB AC AB +=-=u u u r u u u r u u u r u u u r u u u r ,则向量CA u u u r 在向量CB u u u r 上的投影向量为.14.已知一个圆台的上、下底面直径分别为2、8,母线长为6,则在圆台内部放置半径最大的球的表面积为.四、解答题15.某企业进入中学参与学校举办的模拟招聘会,设置了笔试、面试两个环节,先笔试后面试,笔试通过了才可以进入面试,面试通过后即可录用,李明参加该企业的模拟招聘.笔试关:有4道题,应聘者随机从中选择2道,两道题均答对即可通过笔试,否则淘汰不予录用.已知李明能答对其中的3道题;面试关:有2道题,面试者答对第一道题,则面试通过被企业录用,否则就继续答第二道题,答对第二道题则面试通过被企业录用,否则淘汰不予录用.已知李明答对每道面试题的概率都是14,两道题能否答对相互独立. (1)李明笔试关中能答对的3道题记为1a ,2a ,3a ,不能答对的题记为b ,请写出李明参加笔试关所有可能结果构成的样本空间,并求出李明通过笔试关的概率;(2)求李明被录用的概率.16.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且22cos 0a c b C +-=.(1)求B ∠;(2)若2c =,D 为线段AC 的中点,且1BD =,求ABC V 的面积.17.为推动习近平新时代中国特色社会主义思想深入人心,促进全社会形成爱读书、读好书、善读书的新风尚,培育有坚定理想信念、爱党爱国、堪当民族复兴大任的有为青年,某学校举办了读书节活动.现从该校的2000名学生中发放调查问卷,随机调查了100名学生一周的课外阅读时间,将统计数据按照[)0,20,[)20,40,…[)100,120,[]120,140组后绘制成如图所示的频率分布直方图(单位:分钟,同一组中的数据用该组区间的中点值作代表).(1)求a 的值,若每周课外阅读时间60分钟以上(含60分钟)视为达标,试估计该校达标的人数;(2)估计该校学生每周课外阅读的平均时间;(3)若样本数据在[)0,20与[)20,40内的方差分别为213s =,2253s =,计样本数据在[)0,40内的方差2s .18.如图,已知三棱台111ABC A B C -,底面ABC V 是以B 为直角顶点的等腰直角三角形,体11ABB A ⊥平面ABC ,且111112AA A B BB AB ===.(1)证明:BC ⊥平面11ABB A ;(2)求点B 到面11ACC A 的距离;(3)在线段1CC 上是否存在点F ,使得二面角F AB C --的大小为π6,若存在,求出CF 的长,若不存在,请说明理由.19.如图,已知ABC V ,21AB AC BC ===,且点P 是ABC V 的重心.过点P 的直线l 与线段AB 、AC 分别交于点E 、F .设AE AB λ=u u u r u u u r ,AF AC μ=u u u r u u u r (0λ≠,0μ≠).(1)求AB AC ⋅uu u r uu u r 的值,并判断11λμ+是否为定值,若是则求出定值,若不是请说明理由; (2)若AEF △的周长为1C ,ABC V 的周长为2C .设x λμ=,记()12C f x x C =-,求()f x 的取值范围.。
2022~2023学年广东省广州市天河区八年级(上)期末数学试卷1. 下列图形中,不是轴对称图形的是( )A. B. C. D.2. 下列运算正确的是( )A. B. C. D.3. 点关于x 轴对称的点B 的坐标为( )A. B.C. D.4. 已知一个多边形的内角和是,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形5. 科学家发现一种病毒直径为微米,则用科学记数法可以表示为( )A. B. C. D.6. 已知分式的值为0,则下列选项正确的是( )A. B.C. D.7. 若多项式因式分解的结果是,则m的值是( )A. B.C. 16D. 208. 若,则分式( )A. B. C. 2 D.9. 如图,在和中,,,添加一个条件后,仍然不能证明≌,这个条件可能是( )A. B.C. D.10. 如图,某小区规划在边长为xm的正方形场地上,修建两条宽为2 m的甬道,其余部分种草,以下各选项所列式子是计算甬道所占面积的为.( )A. B.C. D.11. 若分式有意义,则x 的取值范围是__________.12. 分解因式:__________.13. 如图,在中,,,,则__________.14. 计算:__________.15. 若,则的值为__________.16. 现有甲、乙、丙三种不同的矩形纸片边长如图小亮要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片__________块.17.已知:如图,点C为AB中点,,求证:≌18. 计算:;19. 如图的平面直角坐标系中,的三个顶点坐标分别为,,,作出关于y 轴对称的保留作图痕迹,并求的面积.20. 如图,在中,,求的度数;先作图后证明:用尺规作AB 的垂直平分线DE ,交AC 于点 D ,交AB 于点 E ,连接BD ,保留作图痕迹求证:21. 已知,,问:当x 为何值时,22. 随着国内快递业务量的迅速增长,通过无人机可打造短途航空物流网络,加速物流效率,刘峰和李朋对此非常感兴趣,相约周末去科技馆看展览了解情况,根据他们的谈话内容如图,请判断他们两人能同时到达吗?请说明理由.23. 如图,把正方形ABCD 和正方形MPNF 重叠得到长方形EFGD ,当它的长与宽的和正好是正方形MPNF 的边长时,,若设正方形ABCD 的边长为 a ,求长方形EFGD 的面积;用含 a 的式子表示若长方形EFGD 的面积是300,求正方形MPNF 的面积.24. 如图,在平面直角坐标系中,直线AB 与坐标轴的交点坐标分别为,,若点 C 在第一象限,且,填空:______;求点 C 的坐标;已知点P 在y 轴正半轴上,满足,连接AP ,设点 C 关于直线AB 的对称点为 D ,点 C 关于直线AP 的对称点为 E ,试问:点D,E关于坐标轴对称吗?请说明理由.答案和解析1.【答案】B【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念分析判断即可.【解答】解:是轴对称图形,该选项不符合题意;B. 不是轴对称图形,该选项符合题意;C. 是轴对称图形,该选项不符合题意;D. 是轴对称图形,该选项不符合题意.故选:2.【答案】B【解析】【分析】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式,故本选项错误;B、原式,故本选项正确;C、原式,故本选项错误;D、与不是同类项,不能合并,故本选项错误;故选:3.【答案】D【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点关于x轴对称的点B的坐标为 .故选:4.【答案】A【解析】【分析】利用n边形的内角和可以表示成,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:,解得: .则这个多边形是五边形.故选:5.【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与绝对值较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:微米用科学记数法可以表示为微米,故选:6.【答案】A【解析】【分析】根据分式值为零的条件可得,且,再解即可.【解答】解:由题意得:,且,解得:,故选:7.【答案】A【解析】【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:,可得,故选:8.【答案】C【解析】【分析】先化简式子得出,再将代入求解即可.【解答】解:,,,故选:9.【答案】D【解析】【分析】根据全等三角形的判定,利用ASA、AAS、SAS即可得出答案.【解答】解:,,当时,由ASA可得,故A不符合题意;当时,则,由AAS可得,故B不符合题意;当时,则,由SAS可得,故C不符合题意;当时,不能得出,故D符合题意;故选:10.【答案】B【解析】【分析】用正方形场地的面积减去正方形场地除去甬道部分的面积即可.【解答】解:由图可知边长为xm的正方形场地的面积为,除去甬道部分的面积为,甬道所占面积为:故选:11.【答案】【解析】【分析】根据分式有意义的条件得出,再求出即可.【解答】解:分式有意义,,解得:,故答案为: .12.【答案】【解析】【分析】观察原式,找到公因式a,提出即可得出答案.提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.【解答】解:故答案为:13.【答案】8【解析】【分析】根据含30度角的直角三角形的性质即可得出答案.【解答】解:,,,,,故答案为:14.【答案】【解析】【分析】根据同分母分式相减的运算法则计算即可.【解答】解:,故答案为: .15.【答案】8【解析】【分析】根据同底数幂的乘法进行计算,然后代入求值即可.【解答】解:,.故答案为:16.【答案】4【解析】【分析】根据即可得.【解答】解:,甲纸片1块,乙纸片4块,丙纸片4块,可以拼成一个边长为的正方形,故答案为:17.【答案】证明:,点C为AB中点,在和中,,≌【解析】根据中点定义推出,根据两直线平行,同位角相等,推出,然后利用SAS即可证明≌18.【答案】解:;.【解析】【分析】根据多项式除以单项式的运算法则计算即可;根据平方差公式,多项式乘以单项式计算即可.19.【答案】解:,,,关于y轴对称的点分别为:,,,再顺次连接即可,如图所示:,的高为:,【解析】【分析】根据网格结构找出点A、B、C关于y轴的对称点、、的位置,然后顺次连接即可;根据三角形的面积公式即可得到结论.20.【答案】解:,,;证明:的垂直平分线DE交AC于点D,交AB于点E,,.【解析】【分析】根据等边对等角和三角形内角和定理即可得出答案;根据线段垂直平分线的性质得出,得出,即可得出答案.21.【答案】解:根据题意可得:,,,,,当时,分式无意义,为除了之外的所有实数,故当时, .【解析】【分析】根据题意可得:,去分母得出,根据当时,分式无意义,得出x为除外的所有实数.22.【答案】解:他们两人能同时到达,理由如下:设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,若两人同时到达,李明用时比刘峰少30分钟,即小时,根据题意,可得,解得,经检验,是原分式方程的解,且符合题意.所以,刘峰骑自行车的速度为每小时20千米,李明乘公交车的速度为每小时60千米,两人可同时到达.【解析】【分析】设刘峰骑自行车的速度为每小时x千米,则李明乘公交车的速度为每小时 3x千米,根据题意列出分式方程,求解并检验即可解决问题.23.【答案】解:设正方形ABCD的边长为a,,,,设正方形MPNF的边长为b,长方形EFGD的长与宽的和是正方形MPNF的边长,,,,,,,.【解析】【分析】正方形ABCD的边长为a,则,,根据即可得出答案;设正方形MPNF的边长为b,根据题意可得,求出,再根据,化简得,代入求解即可.24.【答案】解:如图,过点C作,,,,,,,,在和中,,≌,,,,;对称,理由:如图,过点C作,,,,,,,是直角三角形,连接CP并延长至E,使得,则点C关于直线AP对称点为E,设,,,,,,,,设,点,,,,,,点D,E关于x轴对称.【解析】解:,,故答案为:;见答案;见答案.【分析】根据,即可得出;过点C作,得出,,证明≌,得出,,,即可得出答案;过点C作,证明是直角三角形,连接CP并延长至E,使得,则点C关于直线AP的对称点为E,设,得出,,求出,设,得出,,求出,即可得出点D,E 关于x轴对称.。
2018-2019学年广东省广州市天河区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算中正确的是()A. B.C.D.2.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD3.若三角形的三边长分别为,,2,则此三角形的面积为()A. B. C.D.4.甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B. C.D.6.与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣27.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=488.若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.1819.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<210.甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.在函数中,自变量x的取值范围是.12.若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为.13.已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为.14.在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC= .15.如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE 的周长为.16.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限内,对角线BD 与x 轴平行,直线y=x+3与x 轴、y 轴分别交于点E ,F .将菱形ABCD 沿x 轴向左平移m (m >0)个单位,当点D 落在△EOF 的内部时(不包括三角形的边),则m 的取值范围是 .三、解答题:本大题共6个小题,共52分 17.小明本学期的数学测验成绩如表所示: 测验 类别平时测验 期中 测验期末 测验第1次第2此 第3次 第4次 成绩808684909095(1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.18.已知一次函数y=kx+b (k 为常数,k ≠0)的图象经过点A (2,2),B (0,1). (1)求该一次函数的解析式,并作出其图象; (2)当0≤y ≤2时,求x 的取值范围.19.用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.20.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.21.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD 交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.22.某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?2018-2019学年广东省广州市天河区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列运算中正确的是()A. B.C.D.【考点】二次根式的混合运算.【分析】对各个选项矩形计算分析,即可得出结论.【解答】解:A、+≠,选项A错误;B、×=,选项B错误;C、÷==2,选项C正确;D、==6,选项D错误;故选:C.【点评】本题考查了二次根式的运算、二次根式的性质;熟练掌握二次根式的运算和性质是解决问题的关键.2.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AD∥BC B.OA=OC C.AC⊥BD D.AC=BD【考点】菱形的性质.【分析】直接根据菱形的性质对各选项进行判断.【解答】解:∵四边形ABCD为菱形,∴AD∥BC,OA=OC,AC⊥BD,所以A、B、C选项的说法正确,D选项的说法错误.故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.3.若三角形的三边长分别为,,2,则此三角形的面积为()A. B. C.D.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理求出该三角形是直角三角形,再求出三角形的面积即可.【解答】解:∵三角形的三边长分别为,,2,∴()2+22=()2,∴此三角形是直角三角形,∴此三角形的面积是××2=,故选C.【点评】本题考查了勾股定理的逆定理的应用,能求出三角形是直角三角形是解此题的关键.4.甲、乙、丙、丁四人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:从折线图上看,乙的波动最小,因此成绩最稳定的是乙,故选:B.【点评】此题主要考查了方差,关键是掌握方差是反映一组数据的波动大小的一个量.5.下列图象分别给出了x与y的对应关系,其中y是x的函数的是()A.B. C.D.【考点】函数的概念.【分析】利用函数的定义,对于给定的x的值,y都有唯一的值与其对应,进而判断得出.【解答】解:在图象A,C,D中,每给x一个值,y都有2个值与它对应,所以A,C,D中y不是x的函数,在B中,给x一个正值,y有一个值与之对应,所以y是x的函数.故选:B.【点评】本题考查函数的定义.利用函数定义结合图象得出是解题关键.6.与直线y=2x+5平行,且与x轴相交于点M(﹣2,0)的直线的解析式为()A.y=2x+4 B.y=2x﹣2 C.y=﹣2x﹣4 D.y=﹣2x﹣2【考点】待定系数法求一次函数解析式.【分析】根据已知条件“一次函数y=kx+b(k≠0)的图象与直线y=2x+5平行”知k=2,再将点M(﹣2,0)代入y=kx+b(k≠0),利用待定系数法求此一次函数的解析式.【解答】解:设直线解析式为y=kx+b(k≠0),∵函数的图象与直线y=2x+5平行,∴k=2;∵与x轴相交于点M(﹣2,0),∴0=﹣4+b,解得b=4;∴此一次函数的解析式为y=2x+4;故选A.【点评】本题考查了待定系数法求一次函数解析式.解答此题的关键是弄清楚两条直线平行的条件是k值相同.7.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x,则可列方程为()A.48(1+x)2=36 B.48(1﹣x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设教育经费的年平均增长率为x,然后根据已知条件可得出方程.【解答】解:依题意得三月份的营业额为36(1+x)2,∴36(1+x)2=48.故选D.【点评】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律8.若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为()A.﹣57 B.63 C.179 D.181【考点】解一元二次方程-配方法;有理数的混合运算.【专题】计算题.【分析】配方得出(x﹣1)2=3600,推出x﹣1=60,x﹣1=﹣60,求出x的值,求出a、b 的值,代入2a﹣b求出即可.【解答】解:x2﹣2x﹣3599=0,移项得:x2﹣2x=3599,x2﹣2x+1=3599+1,即(x﹣1)2=3600,x﹣1=60,x﹣1=﹣60,解得:x=61,x=﹣59,∵一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,∴a=61,b=﹣59,∴2a﹣b=2×61﹣(﹣59)=181,故选D.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.9.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.1<x1<2【考点】解一元二次方程-公式法;估算无理数的大小.【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣x﹣3=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,∴x=,∴方程的最小值是,∵3<<4,∴﹣3>﹣>﹣4,∴﹣>﹣>﹣2,∴﹣>﹣>﹣2,∴﹣1>>﹣故选:B.【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.10.甲、乙两名选手参加长跑比赛,他们的行程y(km)随时间x(h)变化的图象(全程)如图所示,有下列说法:①在起跑后1h内,甲在乙的前面;②甲在第1.5h时的行程为12km;③乙比甲早0.3h到达终点;④本次长跑比赛的全程为20km.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】一次函数的应用.【分析】①正确.由图象即可判断.②正确,通过计算可知甲在第1.5h时的行程为12km.③错误.无法判断甲到达终点的时间.④正确.求出乙2小时的路程即可判断.【解答】解:由图象可知,在起跑后1h内,甲在乙的前面,故①正确.=10x,∵y乙=4x+6,当0.5<x<1.5时,y甲=12,故②正确,x=1.5时,y甲=20,故④正确,x=2时,y乙无法判断甲到达终点的时间,故③错误,故选C.【点评】本题考查一次函数、路程、速度、时间之间的关系等知识,解题的关键是构建一次函数解决问题,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,共18分)11.在函数中,自变量x的取值范围是x≤2 .【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得2﹣x≥0,解得x≤2,故答案为:x≤2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.12.若关于x的方程x2﹣x﹣a2+5=0的一个根是2,则它的另一个根为﹣1 .【考点】根与系数的关系.【分析】根据一元二次方程的一个根为x=2,通过根与系数的关系x1+x2=﹣,求得方程的另一个根即可.【解答】解:设关于x的一元二次方程x2﹣x﹣a2+5=0的另一个根为x2,则2+x2=1,解得x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程的解的定义.解答关于x的一元二次方程x2﹣x﹣a2+5=0的另一个根时,也可以直接利用根与系数的关系x1+x2=﹣解答.13.已知一次函数的图象经过点(0,1),且满足y随x的增大而增大,则该一次函数的解析式可以为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).【考点】一次函数的性质.【专题】开放型.【分析】先设出一次函数的解析式,再根据一次函数的图象经过点(0,1)可确定出b 的值,再根据y随x的增大而增大确定出k的符号即可.【解答】解:设一次函数的解析式为:y=kx+b(k≠0),∵一次函数的图象经过点(0,1),∴b=1,∵y随x的增大而增大,∴k>0,故答案为y=x+1(答案不唯一,可以是形如y=kx+1,k>0的一次函数).【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0,y随x 的增大而增大,与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上.14.在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,则AC= .【考点】勾股定理.【分析】分两种情况:①D在BC上;②D在BC的延长线上.先在Rt△ADB中利用勾股定理求出AD,然后在Rt△ACD中利用勾股定理求出AC.【解答】解:分两种情况:①D在BC上,如图1.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;②D在BC的延长线上,如图2.在Rt△ADB中,由勾股定理得:AD2=AB2﹣BD2=32﹣22=5,在Rt△ADC中,由勾股定理得:AC2=DC2+AD2=12+5=6,所以AC=;综上可知,AC=.故答案为.【点评】本题主要考查勾股定理,即:在直角三角形中,两直角边的平方和等于斜边的平方.15.如图,在平行四边形ABCD中,AB=2,BC=4,AC的垂直平分线交AD于点E,则△CDE 的周长为 6 .【考点】平行四边形的性质;线段垂直平分线的性质.【分析】根据平行四边形的性质求出AD、CD的长,根据线段垂直平分线性质求出E=CE,求出△CDE的周长=AD+CD,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,AB=2,BC=4,∴AD=BC=4,CD=AB=2,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长为DE+CE+DC=DE+AE+CD=AD+CD=4+2=6,故答案为:6.【点评】本题考查了平行四边形的性质,线段垂直平分线性质的应用,解此题的关键是求出AD、CD的长和求出△CDE的周长=AD+CD,注意:平行四边形的对边相等,难度适中.16.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限内,对角线BD与x轴平行,直线y=x+3与x轴、y 轴分别交于点E,F.将菱形ABCD沿x轴向左平移m(m>0)个单位,当点D落在△EOF 的内部时(不包括三角形的边),则m的取值范围是4<m<6 .【考点】一次函数图象上点的坐标特征;菱形的性质;坐标与图形变化-平移.【分析】根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到MN上时的x的值,从而得到m的取值范围.【解答】解:∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=﹣2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<6.故答案为:4<m<6.【点评】本题考查的是一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.三、解答题:本大题共6个小题,共52分17.小明本学期的数学测验成绩如表所示:测验类别平时测验期中测验期末测验第1次第2此第3次第4次成绩80 86 84 90 90 95(1)求六次测验成绩的众数和中位数;(2)求小明本学期的数学平时测验的平均成绩;(3)如果本学期的总评成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照3:3:4的比例计算所得,计算小明本学期学科的总评成绩.【考点】众数;加权平均数;中位数.【分析】(1)根据中位数及众数的定义,即可得出答案;(2)根据平均数的计算方法进行计算即可;(3)用本学期的数学平时测验的平均成绩×0.3+期中测验成绩×0.3+期末测验成绩×0.4,计算即可.【解答】解:(1)∵在六次成绩中,90出现了2次,出现的次数最多,∴这组数据的众数为90;∵将六次成绩按从小到大的顺序排列,处于中间的两个数分别为86,90,有=88,∴这组数据的中位数为88;(2)根据表中数据,小明四次平时成绩的平均值==85;(3)根据题意,小明的总评成绩为85×0.3+90×0.3+95×0.4=90.5.【点评】本题考查了扇形统计图、中位数及众数的知识,注意培养自己的读图能力,另外要熟练掌握中位数及众数的定义,难度一般.18.已知一次函数y=kx+b(k为常数,k≠0)的图象经过点A(2,2),B(0,1).(1)求该一次函数的解析式,并作出其图象;(2)当0≤y≤2时,求x的取值范围.【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】常规题型;函数及其图象.【分析】(1)将点A、B的坐标代入一次函数的解析式y=kx+b(k为常数,k≠0),得关于k、b的二元一次方程组,解之即可;(2)根据函数图象的性质及函数的解析式求x的取值范围或直接利用函数图象确定x 的取值范围.【解答】解:(Ⅰ)∵点A(2,2),点B(0,1)在一次函数y=kx+b(k为常数,k≠0)的图象上,∴解得∴一次函数的解析式为:y=x+1其图象如下图所示:(Ⅱ)∵k=>0,∴一次函数y=x+1的函数值y随x的增大而增大.当y=0时,解得x=﹣2;当y=2时,x=2.∴﹣2≤x≤2.即:当0≤y≤2时,求x的取值范围是:﹣2≤x≤2.【点评】本题考查了待定系数法求一次函数的解析式及一次函数图象的画法,关键是要理解函数图象上的点的坐标与函数图象的关系:若点在函数的图象上,那么点的坐标(x,y)就满足函数的解析式y=kx+b.19.用适当的方法解下列方程.(1)x2+3x=5(x+3);(2)2x2﹣6x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)直接利用提取公因式法分解因式解方程得出答案;(2)直接利用公式法解方程得出答案.【解答】解:(1)移项,得 x(x+3)﹣5(x+3)=0.因式分解,得(x﹣5)(x+3)=0.于是得x﹣5=0,或x+3=0,解得:x1=5,x2=﹣3;(2)∵a=2,b=﹣6,c=1,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,方程有两个不等的实数根x===,解得:x1=,x2=.【点评】此题主要考查了因式分解法以及公式法解方程,正确因式分解是解题关键.20.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2,求k的值.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=4(k﹣1)2﹣4k2≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=2(k﹣1),x1•x2=k2,利用k≤得到x1+x2=2(k﹣1)<0,则﹣(x1+x2)=x1x2,所以﹣2(k﹣1)=k2,然后解关于k的一元二次方程,然后利用k的范围确定k的值.【解答】解:(1)根据题意得△=4(k﹣1)2﹣4k2≥0,解得k≤;(2)根据题意得x1+x2=2(k﹣1),x1•x2=k2,∵k≤,∴x1+x2=2(k﹣1)<0,∴﹣(x1+x2)=x1x2,∴﹣2(k﹣1)=k2,整理得k2+2k﹣2=0,解得k1=﹣1+,k2=﹣1﹣,∵k≤,∴k=﹣1﹣.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.也考查了根的判别式.21.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD 交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.【考点】翻折变换(折叠问题);直角三角形全等的判定;矩形的性质.【专题】几何综合题.【分析】(1)由折叠的性质知,CB′=BC=AD,∠B=∠B′=∠D=90°,∠B′EC=DEA,则由AAS得到△AED≌△CEB′;(2)延长HP交AB于M,则PM⊥AB,PG=PM,PG+PH=HM=AD,∵CE=AE=CD﹣DE=8﹣3=5在Rt△ADE中,由勾股定理得到AD=4,∴PG+PH=HM=AD=4.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、全等三角形的判定和性质,矩形的性质,勾股定理求解.22.某家具厂生产的沙发计划在甲地区全部采用网络直销的方式销售,并找当地人员进行安装,甲地区一家专业安装公司给出如下安装方案(均为每月收费),设该品牌沙发在甲地区每月的销量为x套(x>0),该家具厂需支付安装公司的费用为y元.方案1:安装费为9600元,不限安装套数;方案2:每安装一套沙发,安装费为80元;方案3:不超过30套,每套安装费为100元,超过30套,超出部分每套安装费为60元.(1)分别求出按方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式;(2)该家具厂应选择哪种安装方案比较省钱?【考点】一次函数的应用;一元一次不等式组的应用.【专题】应用题;一次函数及其应用.【分析】(1)根据题中的方案,分别表示出方案1,方案2,方案3需要支付给安装公司的费用y与销量x之间的函数关系式即可;(2)根据方案二与方案三,方案一与方案三,方案一与方案二,分别联立求出x的值,分类讨论安装方案比较省钱的x范围即可.【解答】解:(1)按方案一,需要支付给安装公司的费为y=9600;按方案二,需要支付给安装公司的费为y=80x;按方案三,根据题意,=100x;当0<x≤30时,y3当x>30时,其中有30套沙发的安装费按100元∕套收费,其余的(x﹣30)套沙发按60元∕套收费,∴y3=30×100+60(x﹣30)=60x+1200,∴y3关于x的函数解析式为y3=;(2)根据题意,由,解得:,由60x+1200=9600,解得:x=140;由80x=9600,解得:x=120,∴当0<x<60时,方案2比较省钱;当x=60时,方案2,方案3安装费相同;当60<x<140时,方案3比较省钱;当x=140时,方案1,方案3安装费相同;当x>140时,方案1比较省钱.【点评】此题考查了一次函数的应用,以及二元一次方程组的解法,熟练掌握一次函数性质是解本题的关键.。