2020届河北省衡水密卷新高考原创冲刺模拟试卷(一)理科数学
- 格式:doc
- 大小:316.55 KB
- 文档页数:15
2020届河北衡水密卷新高考押题信息考试(一)理科数学试卷★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,m n R ∈,集合{2,lg }A m =,{},2nB m =,若{1}A B ⋂=,则m n +=( )A. 7B. 8C. 9D. 10【答案】D 【解析】集合{}2,lg A m =,{},2nB m =,若{}1A B ⋂=.所以lg 1m =,解得10m =. 所以21n =,解得0n =. 所以10m n +=. 故选D. 2.已知复数3412iZ i-=- ,则复数Z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】341121255i z i z i -==+-Q 在复平面内对应的点Z 坐标为112(,)55在第一象限,故选A. 3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A.54钱 B.43钱 C.32钱 D.53钱 【答案】B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )A. B. C. D.【答案】D 【解析】由正视图与侧视图可知,该几何体可以为如图所示的正方体截去一部分后的四棱锥P ABCD -,如图所示,由图知该几何体的俯视图为D ,故选D.5.若实数,x y 满足521x y x y x +≥⎧⎪≤⎨⎪≥⎩则2z x y =+的最小值是( )A. 9B.203C.103D. 2【答案】B 【解析】作出不等式组所表示的平面区域如图所示,其中()10514,33A B ⎛⎫⎪⎝⎭,,.作直线:20l x y +=,平移直线l ,当其经过点B 时,z 取得最小值,min 105202333z =+⨯=, 故选B.点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.6. 将4名实习教师分配到高一年级三个班实习,每班至少安排一名教师,则不同的分配方案有( )种 A. 12 B. 36C. 72D. 108【答案】B 【解析】试题分析:第一步从4名实习教师中选出2名组成一个复合元素,共有246C =种,第二步把3个元素(包含一个复合元素)安排到三个班实习有336A =,根据分步计数原理不同的分配方案有6636⨯=种,故选B .考点:计数原理的应用.7.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A. 甲B. 乙C. 丙D. 丁【答案】A 【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A. 8.执行如图的程序框图,则输出的n =( )A. 4B. 5C. 6D. 7【答案】A 【解析】 【分析】模拟执行程序,依次写出每次循环得到的m ,n 的值,当5m =,4n =时满足条件9m n +=,退出循环,输出n 的值为4,从而得解.【详解】模拟程序的运行,可得:1m =,1n = 执行循环体,不满足条件m n >,3m =,2n =不满足条件9m n +=,执行循环体,满足条件m n >, 2m =,3n = 不满足条件9m n +=,执行循环体,不满足条件m n >,5m =,4n = 满足条件9m n +=,退出循环,输出n 的值为4. 故选:A .【点睛】本题主要考查了循环结构的程序框图的应用问题,分析出程序的功能是解答的关键,属于基础题.9.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若30MNA ∠=︒,则C 的离心率为( ) A. 3 B.3C. 2D.2【答案】C 【解析】双曲线()2222:10,0x y C a b a b-=>>的右顶点为A (a ,0),以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点. 若30MNA ∠=︒,可得A 到渐近线bx +ay =0的距离为:sin 302bb =o, 可得:222b a b =+,即222223,3,2c b a c a a e a=-=∴==. 10.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A.26B.210C.3 D.310【答案】B 【解析】试题分析:以C 为原点,CA 为x 轴,在平面ABC 中过作AC 的垂线为y 轴,CC 1为z 轴,建立空间直角坐标系,∵在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,AB=4,AA 1=6, E ,F 分别是棱BB 1,CC 1上的点,且BE=B 1E ,C 1F=13CC 1, ∴A 1(4,0,6),E (2,233),F (0,0,4),A (4,0,0),1A E u u u r =(-2,23-3),AF u u u r=(-4,0,4), 设异面直线A 1E 与AF 所成角所成角为θ,则11·2cos 10425A E AF A E AF θ===⨯u u u r u u u ru u u r .∴异面直线A 1E 与AF 所成角的余弦值为210考点:异面直线及其所成的角11.若曲线()ln (1)f x x a x =-+存在与直线210x y -+=垂直的切线,则实数a 的取值范围为( ) A. 1(,)2-+∞ B. 1[,)2+∞C. (1,)+∞D. [1,)+∞【答案】C 【解析】函数()()ln 1f x x a x =-+,0x >,则()11f x a x'=--,若函数()f x 存在与直线210x y -+=垂直的切线,可得1 12a x --=-有大于0的解,则1 10a x=->,解得1a >,则实数a 的取值范围是()1,+∞,故选C.点睛:本题考查导数的运用:求切线的斜率,考查存在性问题的解法,注意运用参数分离法,考查运算能力,属于中档题;求出函数()()ln 1f x x a x =-+的导函数,结合与直线210x y -+=垂直的切线斜率为2-,可得112a x--=-有大于0的解,分离参数,求出实数a 的取值范围.12.已知ABC V 是腰长为4的等腰直角三角形,AB AC =,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值为( ) A. 4- B. 43-C. 0D. 2-【答案】A 【解析】 【分析】如图建立坐标系,设(,)P x y ,运用向量的坐标运算和向量数量积的坐标表示,得出()PA PB PC ⋅+u u u r u u u r u u u r关于x ,y 的表达式,配方即可得出结论.【详解】如图建立坐标系,(0,2)A ,(2,0)B -,2,0)C ,设(,)P x y , 则(,22)PA x y =-u u u r ,2(2,2)PB PC PO x y +==--u u u r u u u r u u u r,∴2222()242222(2)44PA PB PC x y x y ⋅+=-+=+-≥-u u u v u u u v u u u v,∴最小值为4-, 故选:A .【点睛】本题主要考查了平面向量的数量积运算,运用坐标法解题是关键,属于中档题.第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分。
【衡水金卷】河北省衡水中学2020届高考模拟押题卷(一)理科综合能力测试注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H1C12N14O16Si28Fe56第I卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞中某些物质的叙述,错误的是A.组成纤维素、淀粉、糖原的单体是相同的B.RNA可以在细胞核或某些细胞器中合成C.抗体的形成与分泌需要ATP直接提供能量D.激素和神经递质的合成是在核糖体上进行的2.甲乙两种物质在胰岛B细胞内、外的浓度情况如图所示,下列相关叙述正确的是A.甲可以是Na+,胰岛B细胞兴奋时Na+内流会导致细胞内Na+浓度高于细胞外B.甲可以是氧气,其进入细胞后可以在细胞质基质或线粒体参与相关反应C.乙可以是DNA,其运出细胞后可将遗传信息传递给其他细胞D.乙可以是胰岛素,其运出细胞时不需要载体的协助3.如图表示生物体内遗传信息的传递和表达过程,下列叙述不正确的是A.上述过程均需要模板、酶、能量和原料,并且均遵循碱基互补配对原则B.在神经细胞和甲状腺细胞中均能进行2过程,并且形成的RNA也相同C.过程3中涉及到5种碱基和8种核苷酸D.RNA发生改变,通过5过程形成的蛋白质不一定发生改变4.下列关于植物激素、植物生长调节剂的叙述中,不合理的是A.植物激素不直接参与细胞代谢,只传递调节代谢的信息B.用一定浓度的赤霉素处理种子可以促进其萌发C.给去掉尖端的胚芽鞘放置含生长素的琼脂块后仍能生长,说明生长素可促进生长D.生长素和细胞分裂素在促进植株生长方面存在协同关系5.下图是某家族甲病(A-a)和乙病(B-b)的遗传系谱图。
2020年河北省衡水中学高考(理科)数学考前密卷一、选择题(共12小题).1.设集合A={x|x2﹣3x+2≤0},B={x|log2x<1},则A∪B=()A.{x|1≤x<2}B.{x|1<x≤2}C.{x|0<x≤2}D.{x|0≤x≤2} 2.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数3.已知正实数a,b满足,,则()A.a<b<1B.1<b<a C.b<1<a D.1<a<b 4.2019年5月22日,具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市,江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.5.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,点,,则下列说法错误的是()A.直线是f(x)图象的一条对称轴B.f(x)的最小正周期为πC.f(x)在区间上单调递增D.f(x)的图象可由g(x)=2sin2x向左平移个单位而得到6.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2C.D.47.已知(1+)(1+x)6的展开式中各项系数的和为256,则该展开式中x3的系数为()A.26B.32C.38D.448.执行如图的程序框图,则输出的S是()A.36B.45C.﹣36D.﹣459.数列{a n}满足a1∈Z,a n+1+a n=2n+3,且其前n项和为S n.若S13=a m,则正整数m=()A.99B.103C.107D.19810.已知双曲线(a>0,b>0)的左、右焦点分别为F1,F2,过F2的直线交双曲线右支于P,O两点,且PQ⊥PF1,若,则该双曲线离心率e=()A.B.C.D.11.在三棱锥P﹣ABC中,△ABC与△PBC均为边长为1的等边三角形,P,A,B,C四点在球O的球面上,当三棱锥P﹣ABC的体积最大时,则球O的表面积为()A.B.2πC.5πD.12.已知函数f(x)与f'(x)的图象如图所示,则不等式的解集为()A.(0,1)B.C.D.(1,4)二、填空题:本题共4小题,每小题5分,共20分13.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获科40元,若产品不能销售,则每件产品亏损80元,已知一箱中有4件产品,记一箱产品获利X元,则P(X≥﹣80)=.14.已知f(x)=sin(2019x+)+cos(2019x﹣)的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为.15.设函数f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,若不等式f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,则实数a的取值范围是.16.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:①A′F⊥B′F;②AM⊥BM;③A′F∥BM;④A′F与AM的交点在y轴上;⑤AB′与A′B交于原点.其中真命题的是.(写出所有真命题的序号)三、解答题(共5小题,满分60分)17.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.18.某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验960次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这k个人的血样再分别进行一次化验.这样,该组k个人的血总共需要化验k+1次.假设此次普查中每个人的血样化验呈阳性的概率为p,且这些人之间的试验反应相互独立.(1)设方案②中,某组k个人中每个人的血化验次数为X,求X的分布列;(2)设p=0.1.试比较方案②中,k分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).19.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC,D,E分别为AA1、B1C 的中点.(1)证明:DE⊥平面BCC1B1;(2)已知B1C与平面BCD所成的角为30°,求二面角D﹣BC﹣B1的余弦值.20.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,P是椭圆上一点,且△PF1F2面积的最大值为1.(1)求椭圆C的方程;(2)过F2且不垂直坐标轴的直线l交椭圆C于A,B两点,在x轴上是否存在一点N (n,0),使得|AN|:|BN|=|AF2|:|BF2|,若存在,求出点N(n,0),若不存在,说明理由.21.已知函数f(x)=e2x﹣ax.(1)讨论f(x)的单调性;(2)当x>0时,f(x)>ax2+1,求a的取值范围.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m =0.(1)求C和l的直角坐标方程;(2)已知l与C相切,求m的值.23.已知a>0,b>0,c>0设函数f(x)=|x﹣b|+|x+c|+a,x∈R.(1)若a=b=c=2,求不等式f(x)>7的解集;(2)若函数f(x)的最小值为2,证明:++≥(a+b+c).参考答案一、选择题(共12小题,每小题5分,满分60分)1.设集合A={x|x2﹣3x+2≤0},B={x|log2x<1},则A∪B=()A.{x|1≤x<2}B.{x|1<x≤2}C.{x|0<x≤2}D.{x|0≤x≤2}解:A={x|1≤x≤2},B={x|0<x<2},∴A∪B={x|0<x≤2}.故选:C.2.已知z1、z2均为复数,下列四个命题中,为真命题的是()A.|z1|=||=B.若|z2|=2,则z2的取值集合为{﹣2,2,﹣2i,2i}(i是虚数单位)C.若z12+z22=0,则z1=0或z2=0D.z1+z2一定是实数解:A.不成立,例如取z1=i;B.不成立,|z2|=2,则z2=2(cosθ+i sinθ),θ∈[0,2π);C.不成立,例如取z1=i,z2=﹣i;D.设z1=a+bi,z2=c+di,a,b,c,d∈R,则z1+z2=(a+bi)(c﹣di)+(a﹣bi)(c+di)=ac+bd+(bc﹣ad)i+ac﹣bd+(ad﹣bc)i=2ac,因此是实数,正确.故选:D.3.已知正实数a,b满足,,则()A.a<b<1B.1<b<a C.b<1<a D.1<a<b解:在同一坐标系中分别作出函数y=,y=及y=log2x的图象如图:由图可知,1<b<a.故选:B.4.2019年5月22日,具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市,江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.B.C.D.解:现有4名高三学生进行去四个地方的总共有:4×4×4×4=44种情况;再四个地方选出一个地方空出C41种情况;将剩下的三个地方进行四人选择,将四人中捆绑两人有C42种情况进行排列在三个位置有:A33种;则恰有一个地方未被选中的可能有:C41C42A33种;由古典概型的定义知:则恰有一个地方未被选中的概率为:=故选:A.5.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,点,,则下列说法错误的是()A.直线是f(x)图象的一条对称轴B.f(x)的最小正周期为πC.f(x)在区间上单调递增D.f(x)的图象可由g(x)=2sin2x向左平移个单位而得到解:由题意可得:,由2sinφ=,得sinφ=,由0<φ<π,得φ=或φ=;又点在最高点的左侧,∴φ=.由五点作图的第三点知,,即ω=2.∴f(x)=2sin(2x+).由f()=2sin()=2,可知直线是f(x)图象的一条对称轴,故A正确;由周期公式可得T=,故B正确;当x∈,2x+∈(),可知f(x)在区间上单调递增,故C正确;∵f(x)=2sin(2x+)=2sin2(x+),∴f(x)的图象可由g(x)=2sin2x向左平移个单位而得到,故D错误.故选:D.6.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2C.D.4解:设的夹角为θ,则cosθ==﹣,∴sinθ=,∴=2×2×=2.故选:B.7.已知(1+)(1+x)6的展开式中各项系数的和为256,则该展开式中x3的系数为()A.26B.32C.38D.44解:令x=1,可得(1+)(1+x)6的展开式中各项系数的和为(1+a)•26=256,∴a=3,则(1+)(1+x)6的展开式中x3的系数为+3=38,故选:C.8.执行如图的程序框图,则输出的S是()A.36B.45C.﹣36D.﹣45解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+…﹣72+82的值,由于S=﹣12+22﹣32+…﹣72+82=(22﹣12)+(42﹣32)+(62﹣52)+(82﹣72)=3+7+11+15=36.故选:A.9.数列{a n}满足a1∈Z,a n+1+a n=2n+3,且其前n项和为S n.若S13=a m,则正整数m=()A.99B.103C.107D.198解:由a n+1+a n=2n+3,得a n+1﹣(n+1)﹣1=﹣(a n﹣n﹣1),∴{a n﹣n﹣1}为等比数列,∴,∴,,∴S13=a1+(a2+a3)+…+(a12+a13)=a1+2×(2+4+…+12)+3×6=a1+102,①m为奇数时,a1﹣2+m+1=a1+102,m=103;②m为偶数时,﹣(a1﹣2)+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解.综上所述,m=103,故选:B.10.已知双曲线(a>0,b>0)的左、右焦点分别为F1,F2,过F2的直线交双曲线右支于P,O两点,且PQ⊥PF1,若,则该双曲线离心率e=()A.B.C.D.解:设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=|PF1|,在直角三角形PF1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=|PF1|,即有|PF2|+|QF2|=|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=|PF1|,∴(1﹣+)|PF1|=4a,解得|PF1|=.∴|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|==,则e=.故选:C.11.在三棱锥P﹣ABC中,△ABC与△PBC均为边长为1的等边三角形,P,A,B,C四点在球O的球面上,当三棱锥P﹣ABC的体积最大时,则球O的表面积为()A.B.2πC.5πD.解:因为△ABC和△PBC为等边三角形,V=h,而S一定,所以高最大值时,所以当面△PBC⊥面ABC时,三棱锥的体积最大,设两个外接圆的圆心分别为G,F,如图所示,过G,F分别作两个面的垂线,交于O,连接OP,OA,则OA=OP为外接球的半径R,△OAG中,OA2=OG2+AG2,而由题意OG=EF==,AG==,所以OA2=()2+()2=,所以外接球的表面积S=4πR2=,故选:A.12.已知函数f(x)与f'(x)的图象如图所示,则不等式的解集为()A.(0,1)B.C.D.(1,4)解:根据导数与单调性的关系可知,当f′(x)<0时,函数单调递减,当f′(x)>0,函数单调递增,结合图象可知,图象中实线为f′(x)的图象,虚线为f(x)的图象,由可得,0<x<1,故选:A.二、填空题:本题共4小题,每小题5分,共20分13.为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.若产品可以销售,则每件产品获科40元,若产品不能销售,则每件产品亏损80元,已知一箱中有4件产品,记一箱产品获利X元,则P(X≥﹣80)=.解:由题意得该产品能销售的概率为(1﹣)(1﹣)=,X的可能取值为﹣320,﹣200,﹣80,40,160,设ξ表示一篇产品中可以销售的件数,ξ~B(4,),∴P(ξ=k)=,∴P(X=﹣80)=P(ξ=2)==,P(X=40)=P(ξ=3)=,P(X=160)=P(ξ=4)==,∴P(X≥﹣80)=P(X=﹣80)+P(X=40)+P(X=160)==.故答案为:.14.已知f(x)=sin(2019x+)+cos(2019x﹣)的最大值为A,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为π.解:已知=sin2019x+cos2019x+cos2019x+sin2019x=sin2019x+cos2019x=2sin (2019x+),函数的最大值为A=2,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,∴f(x1)为最小值,f(x2)为最大值,∴|x1﹣x2|的最小值为•=,∴A|x1﹣x2|=2|x1﹣x2|的最小值为π,故答案为:π.15.设函数f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,若不等式f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,则实数a的取值范围是{a|a ≤2e﹣1}.解:令t=f(x)﹣e x+x,所以f(x)=e x﹣x+t,因为f(x)在定义域(0,+∞)上是单调函数,∀x∈(0,+∞),f[f(x)﹣e x+x]=e,故t为常数且f(t)=e t=e,所以,t=1,f(x)=e x﹣x+1,f′(x)=e x﹣1因为f(x)+f'(x)≥ax对x∈(0,+∞)恒成立,所以2e x≥(a+1)x对x∈(0,+∞)恒成立,即a+1对x∈(0,+∞)恒成立,令g(x)=,x>0,则g′(x)=,当x>1时,g′(x)>0,g(x)单调递增,当0<x<1时,g′(x)<0,g(x)单调递减,故当x=1时,函数取得最小值g(1)=2e,故a+1≤2e即a≤2e﹣1.故答案为:{a|a≤2e﹣1}.16.已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题:①A′F⊥B′F;②AM⊥BM;③A′F∥BM;④A′F与AM的交点在y轴上;⑤AB′与A′B交于原点.其中真命题的是①②③④⑤.(写出所有真命题的序号)解:①由于A,B在抛物线上,根据抛物线的定义可知A'A=AF,B'B=BF,因为A′、B′分别为A、B在l上的射影,所以A'F⊥B'F;②取AB中点C,则CM=,∴AM⊥BM;③由②知,AM平分∠A′AF,∴A′F⊥AM,∵AM⊥BM,∴A'F∥BM;④取AB⊥x轴,则四边形AFMA′为矩形,则可知A'F与AM的交点在y轴上;⑤取AB⊥x轴,则四边形ABB'A'为矩形,则可知AB'与A'B交于原点故答案为①②③④⑤.三、解答题(共5小题,满分60分)17.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.18.某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验960人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验960次.方案②:按k个人一组进行随机分组,把从每组k个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这k个人的血样再分别进行一次化验.这样,该组k个人的血总共需要化验k+1次.假设此次普查中每个人的血样化验呈阳性的概率为p,且这些人之间的试验反应相互独立.(1)设方案②中,某组k个人中每个人的血化验次数为X,求X的分布列;(2)设p=0.1.试比较方案②中,k分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数).解:(1)设每个人的血呈阴性反应的概率为q,则q=1﹣p.所以k个人的血混合后呈阴性反应的概率为q k,呈阳性反应的概率为1﹣q k.依题意可知X=,1+所以X的分布列为:X1+P q k1﹣q k(2)方案②中.结合(1)知每个人的平均化验次数为:E(X)=•q k+(1+)(1﹣q k)=﹣q k+1.所以当k=2时,E(X)=﹣0.92+1=0.69,此时960人需要化验的总次数为662次,k=3时,E(X)=﹣0.93+1≈0.6043,此时960人需要化验的总次数为580次,k=4时,E(X)=﹣0.94+1=0.5939,此时960人需要化验的次数总为570次,即k=2时化验次数最多,k=3时次数居中,k=4时化验次数最少.而采用方案①则需化验960次,故在这三种分组情况下,相比方案①,当k=4时化验次数最多可以平均减少960﹣570=390次.19.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC,D,E分别为AA1、B1C的中点.(1)证明:DE⊥平面BCC1B1;(2)已知B1C与平面BCD所成的角为30°,求二面角D﹣BC﹣B1的余弦值.【解答】(1)证明:以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A﹣xyz.设AB=1,AD=a,则B(1,0,0),C(0,1,0),B1(1,0,2a),D(0,0,a),B1(1,0,2a),,,,.∵,,∴DE⊥BC,DE⊥B1C,又BC∩B1C=C,∴DE⊥平面BCC1B1;(2)解:设平面BCD的法向量=(x0,y0,z0),则,又,故,取x0=1,得.∵B1C与平面BCD所成的角为30°,,∴|cos<>|=,解得,∴.由(1)知平面BCB1的法向量,∴cos<>==.∴二面角D﹣BC﹣B1的余弦值为.20.已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,P是椭圆上一点,且△PF1F2面积的最大值为1.(1)求椭圆C的方程;(2)过F2且不垂直坐标轴的直线l交椭圆C于A,B两点,在x轴上是否存在一点N (n,0),使得|AN|:|BN|=|AF2|:|BF2|,若存在,求出点N(n,0),若不存在,说明理由.解:(1)由题意可得e==,(S)max==1,即bc=1,又c2=a2﹣b2,解得:a2=2,b2=1,所以椭圆的方程为:+y2=1;(2)假设存在N(n,0)满足条件,由|AN|:|BN|=|AF2|:|BF2|,可得AF2为∠ANB的角平分线,所以k AN+k BN=0,由题意直线AB的斜率存在且不为0,由(1)可得右焦点F2(1,0),设直线AB的方程为x=my+1,设A(x1,y1),B(x2,y2),将直线AB的方程与椭圆的方程联立:,整理可得:(2+m2)y2+2my﹣1=0,y1+y2=﹣,y1y2=﹣,k AN+k BN=+===0,所以2my1y2﹣(n+1)(y1+y2)==0,即2mn=0,因为m≠0,所以n=0,即存在N(0,0)满足条件.21.已知函数f(x)=e2x﹣ax.(1)讨论f(x)的单调性;(2)当x>0时,f(x)>ax2+1,求a的取值范围.解:(1)f′(x)=2e2x﹣a,a≤0时,f′(x)>0,f(x)在R上递增,a>0时,由f′(x)=0得x=ln,x∈(﹣∞,ln),f′(x)<0,f(x)在(﹣∞,ln)上递减;x∈(ln,+∞),f′(x)>0,f(x)在(ln,+∞)上递增.(2)f(x)=e2x﹣ax>ax2+1变形为e2x﹣ax2﹣ax﹣1>0,令g(x)=e2x﹣ax2﹣ax﹣1,g′(x)=2e2x﹣2ax﹣a,令g′(x)=0,可得a=,令h(x)=,h′(x)=,x>0时,h′(x)>0,h(x)在(0,+∞)上单调递增,∴h(x)的值域是(2,+∞),当a≤2时,g′(x)=0没有实根,g′(x)>0,g(x)在(0,+∞)上单调递增,g(x)>g(0)=0,符合题意,当a>2时,g′(x)=0有唯一实根x0,x∈(0,x0)时,g′(x)<0,g(x)在(0,x0)上递减,g(x)<g(0)=0,不符题意,综上,a的取值范围是a≤2.(二)选考题:共10分,请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m =0.(1)求C和l的直角坐标方程;(2)已知l与C相切,求m的值.解:(1)因为,,两式相减,有4x2﹣2y2=4,所以C的直角坐标方程为.直线l的极坐标方程为2ρcosθ﹣ρsinθ+m=0.把x=ρcosθ,y=ρsinθ,代入上述方程可得:直线l的直角坐标方程为2x﹣y+m=0.(2)联立l与C的方程,有,消y,得2x2+4mx+m2+2=0,因为l与C相切,所以有△=16m2﹣4×2(m2+2)=8m2﹣16=0,解得:.23.已知a>0,b>0,c>0设函数f(x)=|x﹣b|+|x+c|+a,x∈R.(1)若a=b=c=2,求不等式f(x)>7的解集;(2)若函数f(x)的最小值为2,证明:++≥(a+b+c).解:(1)当a=b=c=2时,f(x)=|x﹣2|+|x+2|+2=.∵f(x)>7,∴或,∴或,∴不等式的解集为.(2)∵f(x)=|x﹣b|+|x+c|+a≥|(x﹣b)﹣(x+c)|+a=|b+c|+a=b+c+a,∴f(x)min=b+c+a=2,∴=≥,∴≥。
2020届河北省衡水金卷新高考第一次摸底考试数学试题(理)★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷 选择题部分一、选择题(每小题只有一个选项正确,每小题5分,共60分。
) 1.已知集合,,则( )A .B .C .D .2.与函数相同的函数是( )A B .)10(log ≠>=a a a y x a 且 C .D .3.原命题:“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A. 0 B. 1 C. 2D. 44.幂函数在上单调递增,则的值为( )A . 2B . 3C . 4D . 2或45. 已知97log c ,)97(b ,)97(a ,22)x (f 23121xx===-=--则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a <<6.已知函数1x )(23=++=在bx ax x x f 处有极值10,则等于( )A. 1B. 2C.D.7.函数)32(log )(221--=x x x f 的单调递减区间是( )A.B.C.D.8.下列四个命题中真命题的个数是( ) ①若是奇函数,则的图像关于轴对称;②若,则;③若函数对任意满足,则是函数的一个周期;④命题“存在”的否定是“任意”A .B .C .D . 9.函数xx x y 2)(3-=的图象大致是( )10.已知定义域为R 的奇函数()f x 满足()()30f x f x -+=,且当3,02x ⎛⎫∈-⎪⎝⎭时, ()()2log 27f x x =+,则()2017f =( )A. 2log 5-B. 2C. 2-D. 2log 511.设定义域为R 的函数f(x)=.1,01||,1|lg |⎩⎨⎧=≠-x x x ,则关于x 的方程f 2(x)+bf(x)+c=0有7个不同实数解的充要条件是 ( )A .b<0且c>0B .b>0且c<0C .b<0且c=0D .b ≥0且c=0 12.已知()(),ln xf x eg x x ==,若()()f t g s =,则当s t -取得最小值时, ()f t 所在区间是( )A.()ln2,1 B . 1,ln22⎛⎫⎪⎝⎭C . 11,3e ⎛⎫ ⎪⎝⎭D . 11,2e ⎛⎫⎪⎝⎭第Ⅱ卷二、填空(每小题5分,共20分)13.设函数,则f [f (2)]=______.14.若函数y =f (x )的定义域是⎥⎦⎤⎢⎣⎡2,21,则函数y =f (log 2x )的定义域为______. 15.已知⎩⎨⎧≥<--=)1(log )1()3()(x x x a x a x f a 是(-∞,+∞)上的增函数,那么实数a 的取值范围是___________.16.已知函数()()4log 3(0),{130,4xx x x f x x x +->=⎛⎫-+≤ ⎪⎝⎭若()f x 的两个零点分别为12,x x ,则12x x -=__________.三、解答题(17题10分,其它各题每题12分,共70分.) 17.已知函数(1)当x ∈[2,4],求该函数的值域; (2)若对于恒成立,求m 的取值范围.18.已知a R ∈,命题:p “[0,2],240x x x a ∀∈-+≤均成立”, 命题:q “函数2()ln(2)f x x ax =++定义域为R ”.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题""p q ∨为真命题,命题""p q ∧为假命题,求实数a 的取值范围.()()()()()()(].2,02.213.1923的范围上是减函数,求在若函数的值的极值点,求实数是函数若函数a x f e x g a x f y x x ax x f x ⋅===-=20.已知函数y =a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a 的值;(2)证明f (x )+f (1-x )=1;(3)求)20192018()20193()20192(20191f f f f ++++ )(的值.21、已知函数)(ln 2)12(21)(2R a x x a ax x f ∈++-=(1)若曲线)(x f y =在1=x 和3=x 处的切线互相平行,求a 的值; (2)求)(x f 的单调区间;22.已知函数()2ln f x x ax =+, ()1g x x b x =++,且直线12y =-是函数()f x 的一条切线. (Ⅰ)求a 的值;(Ⅱ)对任意的1x ⎡∈⎣,都存在[]21,4x ∈,使得()()12f x g x =,求b 的取值范围;(Ⅲ)已知方程()f x cx =有两个根12,x x (12x x <),若()1220g x x c ++=,求证: 0b <.数学试题(理)答案第Ⅰ卷选择题部分一、选择题(每小题只有一个选项正确,每小题5分,共60分。
河北衡水中学2020年高考押题试卷理数试卷第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数122z =--,则||z z +=( ) A.122-- B.122i -+ C.122+ D.122- 2.集合2{|30}A x x x =-≤,{|lg(2)}B x y x ==-,则A B I =( )A .{|02}x x ≤<B .{|13}x x ≤<C .{|23}x x <≤D .{|02}x x <≤3.已知函数()cos()6f x x ωπω=-(0)ω>的最小正周期为π,则函数()f x 的图象( )A. 可由函数()cos 2g x π=的图象向左平移3π个单位而得 B 可由函数()cos 2g x π=的图象向右平移3π个单位而得C. 可由函数()cos 2g x π=的图象向左平移6π个单位而得D .可由函数()cos 2g x π=的图象向右平移6π个单位而得4.已知实数x ,y 满足约束条件33,24,34120,y x y x x y ≥-⎧⎪≤+⎨⎪++≥⎩则2z x y =-的最大值为( )A.2 B .3 C.4D .55.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于E 、F ,且交其对角线AC 于M ,若2AB AE =u u u r u u u r,3AD AF =u u u r u u u r ,AM AB AC λμ=-u u u u r u u u r u u u r (,)R λμ∈,则52μλ-=( )A .12-B .1 C.32D .-36.在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布(1,1)N -的密度曲线)的点的个数的估计值为(附:若2~(,)X N μσ,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=.( )A.906 B .1359 C.2718 D.34137.某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是( )A .808π+B .804π+C .808π-D .804π- 8.已知数列{}n a 中,11a =,1n n a a n +=+.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是( )A .2016?n ≤B .2017?n ≤ C.2015?n < D .2017?n < 9.已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则E ξ=( ) A.3 B .72 C.185D .4 10.已知抛物线C :22(0)y px p =>的焦点为F ,点00(2)()2pM x x >是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px =3|MA ,若=2,则||AF =( ) A .32B .1 C.2 D .311.若定义在R 上的可导函数()f x 满足(1)1f =,且2'()1f x >,则当3[,]22x ππ∈-时,不等式23(2cos )2sin 22xf x >-的解集为( ) A. 4(,)33ππ B .4(,)33ππ- C.(0,)3π D .(,)33ππ-12.已知0x 是方程222ln 0xx ex +=的实根,则关于实数0x 的判断正确的是( )A .0ln 2x ≥B .01x e< C.002ln 0x x += D .002ln 0x e x += 第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若26()baxx+的展开式中3x 项的系数为20,则22a b +的最小值为 . 14.已知ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,16bc =,则ABC ∆的面积为 .15.已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A ,B 两点,点)C ,若线段AC 的垂直平分线过点B ,则双曲线的离心率为 . 16.已知下列命题:①命题“x R ∀∈,235x x +<”的否定是“x R ∃∈,235x x +<”; ②已知p ,q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝为真命题”;③“2015a >”是“2017a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设n S 为数列{}n a 的前n 项和,且11a =,1(2)(1)n n na n S n n +=+++,*n N ∈. (1)证明:数列{1}nS n+为等比数列; (2)求12n n T S S S =+++L .18.如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,BE EC ⊥,6BC =,43AB =,30ABC ∠=︒.(1)求证:AC BE ⊥;(2)若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值.19.某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm )频数分布表如表1、表2. 表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X 表示身高在[165,180)学生的人数,求X 的分布列及数学期望.20. ABC ∆中,O 是BC 的中点,||32BC =其周长为632+,若点T 在线段AO 上,且||2||AT TO =. (1)建立合适的平面直角坐标系,求点T 的轨迹E 的方程;(2)若M ,N 是射线OC 上不同的两点,||||1OM ON ⋅=,过点M 的直线与E 交于P ,Q ,直线QN 与E 交于另一点R ,证明:MPR ∆是等腰三角形.21. 已知函数2()xf x e x a =-+,x R ∈,曲线()y f x =的图象在点(0,(0))f 处的切线方程为y bx =. (1)求函数()y f x =的解析式;(2)当x R ∈时,求证:2()f x x x ≥-+;(3)若()f x kx >对任意的(0,)x ∈+∞恒成立,求实数k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程在极坐标系中,曲线1C :2cos ρθ=,曲线2C :(cos 4)cos ρρθθ=⋅+⋅.以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系xOy ,曲线C的参数方程为12,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求1C ,2C 的直角坐标方程;(2)C 与1C ,2C 交于不同四点,这四点在C 上的排列顺次为H ,I ,J ,K ,求||||||HI JK -的值. 23. 选修4-5:不等式选讲. 已知a ,b 为任意实数.(1)求证:42242264()a a b b ab a b ++≥+;(2)求函数4224()|2(16)|f x x a a b b =-+--332|(221)|x a b ab +-+-的最小值.参考答案及解析理科数学一、选择题1-5:CADBA 6-10:BBBBB 11、12:DC二、填空题13.2 14.② 三、解答题17.解:(1)因为11n n n a S S ++=-,所以1()(2)(1)n n n n S S n S n n +-=+++,即12(1)(1)n n nS n S n n +=+++,则1211n n S Sn n+=⨯++, 所以112(1)1n n S S n n ++=++,又1121S+=,故数列{1}n S n+为等比数列.(2)由(1)知111(1)221n nn S S n -+=+⋅=,所以2n n S n n =⋅-,故2(12222)(12)nn T n n =⨯+⨯++⋅-+++L L . 设212222nM n =⨯+⨯++⋅L , 则231212222n M n +=⨯+⨯++⋅L ,所以212222n n M n +-=+++-⋅=L 11222n n n ++--⋅,所以1(1)22n M n +=-⋅+,所以1(1)(1)222n nn n T n ++=-⋅+-.18.解:(1)ABC ∆中,应用余弦定理得222cos 2AB BC AC ABC AB BC+-∠=g 2=解得AC = 所以222AC BC AB +=, 所以ACBC ⊥.因为平面BCDE ⊥平面ABC ,平面BCDE I 平面ABC BC =,BC AC ⊥,所以AC ⊥平面BCDE ,又因为BE ⊂平面BCDE , 所以AC BE ⊥.(2)由(1)AC ⊥平面BCDE ,CE ⊂平面BCDE , 所以AC CE ⊥. 又因为BCAC ⊥,平面ACE I 平面ABC AC =,所以BCE ∠是平面EAC 与平面BAC 所成的二面角的平面角,即45BCE ∠=︒. 因为BE EC ⊥,AC BE ⊥, 所以BE ⊥平面ACE .所以BAE ∠是AB 与平面ACE 所成的角. 因为在Rt ACE ∆中,sin 4532BE BC =︒=,所以在Rt BAE ∆中,6sin BE BAE AB ∠==. 19.解:(1)设高一女学生人数为x ,由表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在[165,180)的人数为5141363142+++++=,样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=. 因此,可估计该校学生身高在[165,180)的概率为35.(3)由题意可得X 的可能取值为0,1,2.由表格可知,女生身高在[165,180)的概率为13,男生身高在[165,180)的概率为45. 所以412(0)(1)(1)5315P X ==-⨯-=,41419(1)(1)(1)535315P X ==-+-⨯=,414(2)5315P X ==⨯=.所以X 的分布列为:所以9417()012151515E X =+⨯+⨯=. 20.解:(1)以BC 所在直线为x 轴,O 为坐标原点,建立平面直角坐标系,则||||6||AB AC BC +=>, 所以点A 的轨迹是以B ,C 为焦点的椭圆.所以26a =,232c =所以3a =,2c =, 所以22292ba c =-=, 所以点A 的轨迹方程为221(0)992x y y +=≠. 设(,)T x y ,点T 在线段AO 上,且||2||AT TO =,所以(3,3)A x y ,代入221992x y +=,整理可得点T 的轨迹E 的方程是221(0)12y x y +=≠. (2)证明:设(,0)(0)M m m >,由||||1OM ON ⋅=得1(,0)N m,11(,)P x y ,22(,)Q x y ,33(,)R x y .由题意,直线QM 不与坐标轴平行,11QM y k x m =-,直线QM 的方程为11()y y x m x m=--.与椭圆方程联立,消去y ,得22211(12)2(1)m mx x m x x +---+222111(2)0mx x m x --=.所以2221111221212mx x m x x x m mx --=+-,同理222111131221212mx x m x x x x x m mx --==+-, 所以23x x =,或10x =. 当23x x =时,PR x ⊥轴.当10x =时,2221m x m =+,322212211()1mmx x m m⋅===++,PR x ⊥轴, 所以||||MP MR =, 所以MPR ∆是等腰三角形.21. 解:(1)根据题意,得'()2xf x e x =-,则'(0)1f b ==. 由切线方程可得切点坐标为(0,0),将其代入()y f x =,得1a =-,故2()1x f x e x =--.(2)令2()()1xg x f x x x e x =+-=--. 由'()10xg x e =-=,得0x =,当(,0)x ∈-∞,'()0g x <,()y g x =单调递减; 当(0,)x ∈+∞,'()0g x >,()y g x =单调递增. 所以min ()(0)0g x g ==,所以2()f x x x ≥-+. (3)()f x kx >对任意的(0,)x ∈+∞恒成立等价于()f x k x>对任意的(0,)x ∈+∞恒成立. 令()()f x x x ϕ=,0x >,得2'()()'()xf x f x x xϕ-==22(2)(1)x x x e x e x x ----=2(1)(1)x x e x x ---. 由(2)可知,当(0,)x ∈+∞时,10xex -->恒成立,令'()0x ϕ>,得1x >;令'()0x ϕ<,得01x <<.所以()y x ϕ=的单调增区间为(1,)+∞,单调减区间为(0,1),故min ()(1)2x e ϕϕ==-,所以min ()2k x e ϕ<=-.所以实数k 的取值范围为(,2)e -∞-.22.解:(1)因为cos x ρθ=,sin y ρθ=,由2cos ρθ=,得22cos ρρθ=,所以1C 的直角坐标方程为22(1)1x y -+=.由(cos 4)cos ρρθθ=⋅+⋅,得22sin4cos ρθρθ=,所以曲线2C 的直角坐标方程为24y x =.(2)不妨设四点在C 上的排列顺序由下而上依次为H ,I ,J ,K ,它们对应的参数分别为,1234,,,t t t t ,如图.连接1C J ,则1C IJ ∆为正三角形,所以||1IJ =,故||||||||||||||HI JK HI IK IJ -=-+=1414|||||1||()1|t t t t -+=-++.把1 2,23 2x ty t⎧=-⎪⎪⎨⎪=⎪⎩代入24y x=,得23824t t=-,即238320t t+-=,故1483t t+=-,所以11||||||3HI JK-=.23. 解:(1)42242264()a ab b ab a b++-+=2222222()4()4a b ab a b a b+-++⋅=222(2)a b ab+-4()a b=-,因为4()0a b-≥,所以42242264()a ab b ab a b++≥+.(2)4224()|2(16)|f x x a a b b=-+--332|(221)|x a b ab+-+-=4224|2(16)|x a a b b-+--+ 33|22(221)|x a b ab-+-≥33|[22(221)]x a b ab-+--4224[2(16)]|x a a b b-+--=4|()1|1a b-+≥.即max()1f x=.。
启用前★绝密2020届河北省衡水中学新高考原创精准模拟考试(一)理科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数)(x f y =,[]b a x ,∈,那么集合[]{}{},(),,(,)2x y y f x x a b x y x =∈=()中元素的个数为 ( ) A .1 B .0 C .0或1 D .1或22.已知x ∈C ,若关于x 实系数一元二次方程20ax bx c ++=(a ,b ,c ∈R,a ≠0)有一根为1+i .则该方程的另一根为 ( ) A .-1+i B .1-i C .-1-i D .1 3.设)(),161(log );32(,21221R x x N a a a M ∈+=<<-+=,则M ,N 大小关系是( )A . M >NB . M =NC .M <ND . 不能确定4.设向量)25sin ,25(cos=a ,)20cos ,20(sin=b ,若t 是实数,且b t a u+=,则u的最小值为 ( ) A .2 B .1 C .22D .125.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是( ). A .正方形 B .矩形 C . 梯形 D .菱形6.设函数⎪⎩⎪⎨⎧<≥=1,1,)(2x x x x x f )(x g 是二次函数,若))((x g f 的值域是[0,+∞),则)(x g 的值域是 ( ). A .(-∞,-1]∪[1,+∞) B .(-∞,-1]∪[0,+∞) C .[0,+∞) D .[1,+∞)7.右图是求样本x 1,x 2,…,x 10平均数x 的程序框图,图中空白框中应填入的内容为( ). A.S =S +n x B.S =S +nx nC.S =S + nD.S =S +10nx8.函数)0(cos sin )(≠-=a x b x a x f 的图象关于4x π=对称,则3()4y f x π=-是( ) A .图象关于点),(0π对称的函数 B .图象关于点302π(,)对称的函数C .图象关于点),(02π对称的函数 D .图象关于点),(04π对称的函数9. 如图,在正方形区域内任取一点,则此点取自阴影部分的概率是 ( )A. 21-B.()2421π-C.()2421π+D.1610.f (x )是集合A 到集合B 的一个函数,其中,A={1,2,…,n},B={1,2,…,2n},n ∈N *,则f (x )为单调递增函数的个数是( ) A .B .n 2nC .(2n )nD .11.已知函数()ln 2x axf x x-=,若有且仅有一个整数k ,使得()1f k >,则实数a 的取值范围是 ( ) A. (1,3]B.1111ln 2,ln34262⎡⎫--⎪⎢⎣⎭C.11ln 21,ln3123⎡⎫--⎪⎢⎣⎭D.11,1e e ⎛⎤-- ⎥⎝⎦12..设点P 是椭圆22221(0)x y a b a b+=>>上异于长轴端点的任意一点,F 1,F 2分别是其左右焦点,O 为中心,2212||||||3PF PF OP b +=,则此椭圆的离心率为 ( )A .12 B .22 C. 32 D . 24二.填空题:本大题共4小题,每小题5分,共20分.13. 若实数x ,y 满足约束条件41014x y y x y --≥⎧⎪≥⎨⎪+≤⎩则z =ln y -ln x 的最小值是________. 14. 210(2018)()x y x y +-展开式中56x y 的系数为 .15. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点E 为线段A 1B 1的中点,点F ,G 分别是线段A 1D 与BC 1上的动点,当三棱锥E ﹣FGC 的俯视图的面积最大时,该三棱锥的正视图的面积是 .16.在△ABC 中,内角A ,B ,C 的边分别为a ,b ,c ,2ABC=3π∠,BD 平分ABC ∠交AC 于点D ,BD=2,则△ABC 面积的最小值为 .三.解答题:本大题共6小题,共70分。
2020届河北衡水密卷新高考原创考前信息试卷(十三)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B =I ð ( ) A .{|01}x x <≤ B .{|01}x x <≤C .{|0}x x <D .{|1}x x >2.若复数z 满足i1iz z =-,其中i 为虚数单位,则复数z 的共轭复数所对应的点位于 ( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知幂函数1()n f x mx +=是定义在区间[2,]n -上的奇函数,设222sin,cos,tan777a f b f c f πππ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则 ( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<4.已知双曲线22221(0,0)x y a b a b-=>>的两个实轴顶点为12,A A ,点C 为虚轴顶点,且120CA CA ⋅<u u u r u u u u r,则双曲线的离心率的范围为 ( )A .(1,2)B .(1,2)C.(2,)+∞D .(2,)+∞5.已知桌子上有同一副纸牌中的红桃、方片、梅花的纸牌各3张,若小李第一次从中抽取了1张红桃和2张其他纸牌后不再放回,则第二次从中抽取了1张红桃和2张方片的概率为 ( ) A .15B .25C .325D .4256.已知向量213(,cos ),(2cos ,sin )(0)2x x x ωωωω==+>a b ,函数()f x =⋅a b 在区间[],m n 上单调,且m n -的最大值是2π,则()2f π= ( ) A .2B .74 C .54D .17.如图所示的程序框图,若输入的5n =,则输出的i = ( )A .10B .11C .12D .138.设M 是ABCD Y 的对角线的交点,三角形ABD 的高AP 为2,O 为任意一点,则(3)()OB OC OD OA OP OA ++-⋅-=u u u r u u u r u u u r u u u r u u u r u u u r( ) A .6B .16C .24D .489.设,x y 满足约束条件02346x y x y x y -⎧⎪+⎨⎪--⎩≤≤≥,则22(1)(1)z x y =-++的取值范围为( ) A .[2,13]B .[4,13]C .13]D .13]10.已知数列{}n a 满足113,1n n a a a +==,012123164n nn n n n a C a C a C a C +++++=L ,则21(1)(2)n x x x--展开式中的常数项为 ( )A .160-B .80-C .80D .16011.如图,已知六个直角边均为1和3的直角三角形围成的两个正六边形,则该图形绕着L 旋转一周得到的几何体的体积为 ( )A .154πB .174πC .194πD .214π12.已知函数1,0()ln ,0x xf x x x x⎧<⎪⎪=⎨⎪>⎪⎩,若函数()()F x f x kx =-在R 上有3个零点,则实数k 的取值范围为 ( )A .1(0,)eB .1(0,)2eC .1(,)2e-∞ D .11(,)2e e第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知抛物线2:8C y x =,Q 是C 上的一点,若焦点F 关于Q 的对称点P 落在y 轴上,则FP = .14.南宋数学家杨辉研究了垛积与各类多面体体积的联系,由多面体体积公式导出相应的垛积术公式.例如方亭(正四梭台)体积为22()3h V a b ab =++ 其中a 为上底边长,b 为下底边长,h 为高.杨辉利用沈括隙积术的基础上想到:若由大小相等的圆球垛成类似于正四棱台的方垛,上底由a a ⨯个球组成,以下各层的长、宽依次各增加一个球,共有n 层,最下层(即下底)由b b ⨯个球组成,杨辉给出求方垛中物体总数的公式如下:22()32n b aS a b ab -=+++根据以上材料,我们可得22212n +++=L .15.某一几何体三视图如图所示,已知几何体的体积为3,则俯视图的面积为 .16.在ABC △中,,E F 分别是,AC AB 的中点,且4,6AB AC ==,若ABC △的面积不小于63BECF的最小值为 . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{}n a 的前n 项和记为n T ,121(1)n n a T n +=+≥,11a =; 等差数列{}n b 中,且{}n b 的前n 项和为n S ,1333,27b a S =+=. (1)求{}n a 与{}n b 的通项公式; (2)设数列{}n c 满足1313log n n n c b a ++=,求{}n c 的前n 项和.18.(12分)京剧是我国的国粹,是“国家级非物质文化遗产”,为纪念著名京剧表演艺术家,京剧艺术大师梅兰芳先生,某电视台《我爱京剧》的一期比赛中,2位“梅派”传人和4位京剧票友(资深业余爱好者)在幕后登台演唱同一曲目《贵妃醉酒》选段,假设6位演员的演唱水平相当,由现场40位大众评委和“梅派”传人的朋友猜测哪两位是真正的“梅派”传人.(1)此栏目编导对本期的40位大众评委的年龄和对京剧知识的了解进行调查,根据调查得到的数据如下:试问:在犯错误的概率不超过多少的前提下,可以认为年龄的大小与对京剧知识的了解有关系?(2)若在一轮中演唱中,每猜出一位亮相一位,且规定猜出2位“梅派”传人”或猜出5人后就终止,记本轮竞猜一共竞猜X 次,求随机变量X 的分布列与期望. 参考数据:参考公式:2()()()()()n ac bd K a b c d a c b d -=++++19.(12分)在如图(1)梯形ABCD 中,9,10,:1:2AB AD DC EB ===,过D 作DE AB ⊥于E ,1DE =,沿DE 翻折后得图(2),使得23AEB π∠=,又点F 满足EA EB EF +=u u u r u u u r u u u r ,连接,,AF BF CF ,且2EM MF =u u u u r u u u u r .(1)证明://CF 平面BDM ;(2)求平面BMD 与平面AED 所成的二面角的余弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点为12,F F ,左右两顶点,A B ,点M 为椭圆C 上任意一点,满足直线,MA MB 的斜率之积为34-,且12MF MF ⋅的最大值为4.(1)求椭圆C 的标准方程;(2)已知直线2a x c=与x 轴的交点为S ,过S 点的直线l 与椭圆C 相交与,P Q 两点,连接点2QF 并延长,交轨迹C 于一点P '.求证:22'P F PF =.21.(12分)已知函数()m x f x e n -=+在点(1,1)处的切线方程为20x y +-=.(1)若函数()()(cos )()F x f x a x a =-+∈R 存在单调递减区间,求实数a 的取值范围;(2)设2()(1)[(1)1]G x f x x t x =++-+,对于[0,1]x ∈,()G x 的值域为[,]N M ,若2M N >,求实数t 的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(10分)选修4—4坐标系与参数方程已知直线l 的普通方程为20x y -+=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的参数方程为2cos2sin x y θθ⎧⎪⎨=⎪⎩,将直线向右平移2个单位后得到直线'l ,又点P 的极坐标)2π.(1)求直线'l 以及曲线C 的极坐标方程;(2)若直线'l 与曲线C 交于,A B 两点,求三角形PAB 的面积值.23.(10分)选修4—5不等式选讲 已知函数()||||f x x a x b c =++-+(1)若1,2,3a b c ===,求不等式8()10f x <<的解集; (2)当0,0,0.a b c >>>时,若()f x 的最小值为2,求111a b c++的最小值.理科数学答案与解析1.【答案】B 【解析】因为{}1U B x x =≤ð,所以{|01}U A B x x =<I ≤ð. 2.【答案】C 【解析】由i 1i z z =-得i i(1+i)1i 1i (1i)(1+i)22z ===-+--,所以1i22z =--,所以z 对应的点在第三象限.3.【答案】A 【解析】因为幂函数1()n f x mx +=在区间[2,]n -上是奇函数,所以1,2m n ==,即3()f x x =,因为222cossin tan 777πππ<<,又()f x 为增函数,所以b a c <<. 4.【答案】A 【解析】根据题意,120CA CA ⋅<u u u r u u u u r,所以12ACA ∠为钝角,所以a b >,所以22222,2,1c a c e a>∴<∴<<5.【答案】C 【解析】设A={抽取1张红桃和2张其他纸牌};B={第二次从中抽取1张红桃和2张方片};21111112116333323323333996159(),()28140C C C C C C C C C C P A P AB C C C +====, 所以9()3140()15()2528P AB P B A P A ===. 6.【答案】D【解析】21()(2cos )sin 2f x x x x ωωω=⋅=+ab 211cos 22x x ωω=+1cos2124x x ωω+=+511(cos22)422x x ωω=+15sin(2)264x πω=++,由题意:T π=,22ππω∴=,1ω∴=,即15()sin(2)264f x x π=++, 所以15()1244f π=-+=.7.【答案】C 【解析】输入的5n =,程序框图运行如下:1i =,1(1)115S =-⨯=-<;2i =,21(1)21215S =-+-⨯=-+=<;3i =,31(1)31325S =+-⨯=-=-<;4i =,42(1)42425S =-+-⨯=-+=<L ; 10i =,(12)(34)(56)(78)(910)5S =-++-++-++-++-+=; 11i =,115(1)1151165S =+-⨯=-=-<;12i =,126(1)1265S n =-+-⨯=>=;所以输出的12.i =8.【答案】B 【解析】因为AP BD ⊥,AM u u u u r在向量AP u u u r 的射影为AP u u u r , 所以2(3)()24416OB OC OD OA OP OA AC AP AM AP AP ++-⋅-=⋅=⋅=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u r u u u r u u u r . 9.【答案】A 【解析】由约束条件02346x y x y x y -⎧⎪+⎨⎪--⎩≤≤≥作出可行域如图,令22(1)(1)t x y =-++,则表示点(,)x y 和(1,1)D -两点的距离,由图可得,max t DC =,联立4623x y x y -=-⎧⎨+=⎩,解得(1,2)C -,所以max 13t DC ==过(1,1)D -作DH BD ⊥于H ,则min 22t DH ===,故[2,13]z ∈. 10.【答案】D 【解析】因为13n n a a +=,所以数列{}n a 为等比数列,所以13n n a -=,所以01200112212313333(13)464,3n n n n n n n n n n n n n n a C a C a C a C C C C C n +++++=++++=+==∴=L L ,所以61(1)(2)x x x --,其中61(2)x x -展开式的第r +1项为66621661(2)()(1)2r r r r r r rr T C x C xx---+=-=-⋅⋅⋅,令621r -=-,得72r =(舍去),令3r =可得33346(1)2160T C =-⋅=-,所以二项式2321(1)(44)x x x-+-展开式中常数项为1(160)160-⨯-=.11.【答案】B 【解析】外面的六边形旋转得到的几何体的体积为22221333212[()(3)()(3)]3224πππππ⨯⨯++⨯=,内部的六边形旋转得到的几何体的体积为2211332()()132πππ⨯⨯+⨯=,所以几何体的体积为174π. 12.【答案】B 【解析】当0x >时,ln ()x f x x =,所以21ln ()xf x x -'=,又(0,)x e ∈时,()0f x '>,∴()f x 在(0,)e 上单调递增,(,)x e ∈+∞时,()0f x '<,∴()f x 在(,)e +∞上单调递减,(0,1),()0x f x '∈>()(1)0f x f <<.(1,),'()0,()(1)0x e f x f x f ∈>>=;(,),'()0,()0x e f x f x ∈+∞<>,所以()f x 的值域为1(,)e -∞,设y kx =与ln xy x=相切时的切点为00(,)x y ,所以切线方程为0002200ln 1ln ()x x y x x x x --=-,代入(0,0),得0x e =, 故切线的斜率为12e,所以()f x 与y kx =的图象如下:根据题意,120k e k ⎧<⎪⎨⎪>⎩,故102k e <<,所以实数k 的取值范围为1(0,)2e .13.【答案】6【解析】根据题意,Q 为FP 的中点,所以Q 的横坐标为1x =,所以2(12)6FP =+=. 14.【答案】1(1)(21)6n n n ++【解析】观察规律令1,a b n ==,可得222112(1)(21)6n n n n +++=++L .15.【答案】3【解析】这个几何体为一个四棱锥,直观图如下,设四棱锥的高为h ,几何体的体积为11223,332h h +⨯⨯=∴=,即点E 到平面ABCD 的距离为3,俯视图为一个正三角形,边长为2,所以俯视图的面积为3,16.【答案】91【解析】根据题意,画出图形,如图所示:又点,E F 分别为,AC AB 的中点,则3,2AE AF ==, 所以在ABE △中,由余弦定理得2224324cos 2524cos BE A A =+-=-,2222624cos 4024cos CF A A =+-=-, 所以2524cos 1514024cos 4024cos BEA CFA A----又若ABC △的面积不少于6, 所以1311sin 12sin 3,sin cos [,]222ABC S AB AC A A A A =⋅=∴∈-△≥ 当cos A 取最大时,BE CF 9117.【解析】(1)111121(1)21(2),2(2),3(2)n n n n n n n n n a T n a T n a a a n a a n +-++=+∴=+∴-=∴=Q ≥≥≥≥, 又11a =,2213,3a a a =∴=,所以数列{}n a 为等比数列,13n n a -∴=(3分) 设数列{}n b 的公差为d ,33127,6,3a S b d d +=∴+=∴=Q 3n b n ∴=.(6分) (2)由题意得:()1313111log 11n n n c b a n n n n ++===-++(9分)所以前n 项和11111(1)()()22311n nA n n n =-+-++-=++L .(12分) 18.【解析】(1)因为222()40(301512) 6.061 5.024()()()()18221525n ac bd K a b c d a c b d --⨯==≈>++++⨯⨯⨯,(3分) 所以在犯错误的概率不超过2.5%的前提下可以认为年龄与对京剧知识的了解有关系.(5分)(2)由题意,随机变量X的取值分别为2,3,4,5.(6分)22261(2)15AP XA===,112242362(3)15C C AP XA===,12342434464(4)15C C A AP XA+===,1248(5)115151515P X==---=,(10分)∴随机变量X的分布列为:X 2 3 4 5P115215415815(11分)∴随机变量X的期望为:12486423451515151515EX=⨯+⨯+⨯+⨯=.(12分)19.【解析】(1)连接DB与EC交于点N,:1:2DC EB=,则:2:1EN CN=Q2,:2:1EM MF EM MF=∴=u u u u r u u u u r,∴//MN CF,(2分)又MN⊂平面BDM,CF⊄平面BDM,∴//CF平面BDM.(4分)(2)证明:由EA EB EF+=u u u r u u u r u u u r,得四边形AFBE为平行四边形,所以6AF BE==,3EAFπ∠=,所以222cos333EF AE AF AE AFπ=+-⋅=,所以222,AF AE EF AE EF=+∴⊥,(6分)又,,DE EB DE EA EB EA E⊥⊥=I,所以DE⊥平面AFBE,所以DE EF⊥,又EA ED E=I,EF∴⊥平面ADE ADE.(8分)以点E为原点,EA为x轴,EF为y轴,ED为z轴,建立空间直角坐标系,则(0,0,0),(0,0,1),(3,33,0),(0,23,0)E D B M-,所以(3,33,1),(3,3,0)BD BM=-=-u u u r u u u u r,(9分)设平面BMD的一个法向量为(,,)x y z=n,所以(,,)(3,33,1)03330,(,,)(3,3,0)0330BD x y z x y zBM x y z x y⎧⎧⋅=⋅-=-+=⎪⎪∴⎨⎨⋅=⋅-==⎪⎪⎩⎩u u u ru u u u rnn令y=n ,(10分)又平面AED 得一个法向量为(0,1,0)=m ,(10分)所以cos ,⋅<>==⋅n m n m n m 又平面BMD 与平面AED 所成的二面角显然为锐角, 所以平面BMD 与平面AED.(12分) 20.【解析】(1)根据题意122212()4,22MF MF MF MF a a +⋅==∴=≤,(1分)又设00(,)M x y ,所以000022222002222200(1)x b y y y b a x a x a x a x a a-⋅===-+---,所以2234b a -=-,(3分) 故23b =,从而椭圆C 的标准方程为22143x y +=.(4分) (2)根据题意,(4,0)S ,所以设直线l 的方程4x ky =+, 联立224143x ky x y =+⎧⎪⎨+=⎪⎩,消x 得22(34)24360k y ky +++=,222(24)436(34)144(4)0k k k ∆=-⨯+=->,即24k >. 设1122(,),(,)P x y Q x y ,则00'(,)P x y . 由根与系数的关系得,1212222436,3434k y y y y k k +=-=++.(7分) 设直线2QF 的方程为2211x x y y -=+, 所以222222111434x x y y xy x ky -⎧=+⎪⎪⎪⎪+=⎨⎪⎪=+⎪⎪⎩,得2222222(3)6(3)[34]90ky ky y y y y ++++-=, 220022222222222999,27(34)1827(3)(34)1834y y y y k y ky ky k y k y y ---=∴==++++++++12221199273621(34)181827()3y k y k k k y y y --===-+++++--.(10分)所以20111112213321()1()()1[3()]()143ky x y k y k k y ky x y y y +=-+=+-+=+---+=+= 故11'(,)P x y -,所以22'P F PF =.(12分) 21.【解析】因为'()m x f x e -=-,所以1'(1)1,1m f e m -=-=-∴=,又11(1)1,0f e n n -=+=∴=,故1()x f x e -=.(2分)(1)由题意得1()(sin cos )x f x e a x x -'=--++,若函数()f x 存在单调减区间, 则1()(sin cos )0x f x e a x x -'=--++≤即sin cos 0a x x -++≥存在取值区间,即)4a x π+存在取值区间,所以a (5分) (2)因为2(1)1()xx t x G x e +-+=,所以()(1)'()x x t x G x e ---= ①当1t ≥时,()0h x '≤,()G x 在[0,1]上单调递减,由2N M <, 所以2(1)(0)G G <,即321t e -⋅<,得32et >-;(7分) ②当0t ≤时,'()0G x ≥,()G x 在[0,1]上单调递增, 所以2(0)(1)G G <,即32te-<,得32t e <-,(8分) ③当01t <<时,在[0,)x t ∈,'()0G x <,()G x 在[0,]t 上单调递减, 在(,1]x t ∈,'()0G x >,()G x 在[,1]t 上单调递增, 所以2()max{(0),(1)}G t G G <,即132max{1,}()t t te e+-⋅<*.(10分) 令1()t t p t e +=,(0,1)t ∈,则()0t t p t e -'=<,所以1()tt p t e +=在(0,1)t ∈上单调递减,故1421t t e e +⨯>>,而334t e e e-<<,所以不等式(*)无解, 综上所述,(,32)(3,)2et e ∈-∞--+∞U .(12分)22.【解析】(1)直线'l 的普通方程为0x y -=,直线'l 的极坐标方程4πρ=,(3分)曲线C的普通方程22((4x y +-=,所以2cos sin 60ρθθ--+=.(5分) (2)由(1)得2660ρρ-+=,所以12AB ρρ=-8分) 点P 到直线'l 的距离d为34π=,所以132PAB S =⨯=(10分) 23.【解析】 (1)根据题意,22,2()|1||2|36,1242,1x x f x x x x x x +⎧⎪=++-+=-<<⎨⎪--⎩≥≤,(3分)解210228x x ⎧⎨>+>⎩≥,或110428x x -⎧⎨>->⎩≤,得34x <<或32x -<<-, 所以解集为(3,2)(3,4)--U .(5分)(2)因为()f x x a x b c =++-+()()x a x b c a b c +--+=++≥,当且仅当a x b -≤≤时,等号成立,(8分) 又0,0a b >>,所以a b a b +=+,所以()f x 的最小值为a b c ++,所以2a b c ++=.所以1111111119()()(3)(3222)2222b a ac c b a b c a b c a b c a b c a b c ++=++++=+++++++++=≥.(10分)。
2020届河北衡水密卷新高考押题仿真模拟(一)理数试题★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数51i i-+(i 是虚数单位)的虚部是( ) A. 3i B. 6iC. 3D. 6【答案】C 【解析】 【分析】直接利用复数的除法的运算法则化简求解即可.【详解】解:复数()()()()515111i i i i i i ---==-++-2+3i .复数51i i-+(i 是虚数单位)的虚部是3. 故选C .【点睛】本题考查复数的除法的运算法则以及复数的基本概念,是基础题.2.已知集合{}21M x x =<,{}2|log ,2N y y x x ==>,则下列结论正确的是( )A. M N N =IB. ()R C M N ⋂=∅C. M N U =ID. ()R C M N ⊆【答案】D 【解析】 【分析】分别对集合M 和集合N 进行化简,然后对选项分别研究,得到正确答案. 【详解】集合M 中:21x <,解得11x -<<,集合N 中:2log y x =是单调递增函数2x >,所以1y > 即{}11M x x =-<<,{}1N y y => A 选项中,M N N ⋂=∅≠,所以错误;B 选项中,{}1R C N y y =≤,所以{}11R M C N x x ⋂=-<<≠∅,所以错误; C 选项中,M N U ⋂=∅≠,所以错误D 选项中,{}11M x x =-<<,{}1R C N y y =≤,所以()R C M N ⊆正确. 故选D 项.【点睛】本题考查集合的交集运算,集合与集合之间的关系,属于简单题. 3.在等差数列{}n a 中,若351024a a a ++=,则13S =( ) A. 13 B. 14C. 15D. 16【答案】A 【解析】 【分析】因为数列是{}n a 是等差数列,所以可将351024a a a ++=用首项和公差表示为14a 24d 4+=,即1a 6d 1+=,然后用首项和公差表示13S ,即()13111312S 13a d 13a 6d 2⨯=+=+,进而整体代入便可得结果.【详解】解:因为数列是{}n a 是等差数列,设首项为1a ,公差为d所以351024a a a ++=可转化为14a 24d 4+=,即1a 6d 1+=所以()13111312S 13a d 13a 6d 132⨯=+=+= 故选A【点睛】等差数列问题常见的解法是利用等差数列的基本量(,,)1a d n 来进行求解,也可以利用等差数列的性质来进行解题,解题时应灵活运用.4.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是( )A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018二本达线人数增加了0.5倍C. 2015年与2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加 【答案】D 【解析】 【分析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案.【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S .对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=,显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C 错误;对于选项D ,2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D.【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.5.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A. 240-B. 60-C. 60D. 240【答案】D 【解析】 【分析】写出622x x ⎛⎫- ⎪⎝⎭展开式的通项,整理后令x 的指数为0,得到项数,然后计算出常数项,得到答案.【详解】622x x ⎛⎫- ⎪⎝⎭的二项展开式的通项为()()6212316622rrr r rr r T C xC x x --+⎛⎫=-=- ⎪⎝⎭其常数项为,令1230r -=得4r = 即()44562240T C =-= 故选D 项.【点睛】本题考查二项展开式的通项,求二项展开式中的常数项,属于简单题. 6.函数log ||()||a x x f x x =(01a <<)图象的大致形状是( )A. B.C. D.【答案】C 【解析】()f x 是奇函数,故排除B ,D ;因为01a <<,所以令x =2,则()20f <,故排除A ,故答案为C.点睛:点睛:本题考查函数的图象的判断与应用,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括,,0,0x x x x +-→+∞→-∞→→等.7.已知10sin 10α=,0,2a π⎛⎫∈ ⎪⎝⎭,则cos 26a π⎛⎫+ ⎪⎝⎭的值为( ) A.433- B.43+3C.433- D.334- 【答案】A 【解析】分析:根据同角三角函数关系由10sin α=310cos α=,于是可得sin2,cos 2αϕ,然后再根据两角和的余弦公式求解即可.详解:∵10sin 10α=,0,2a π⎛⎫∈ ⎪⎝⎭,∴2310cos 1sin αα=-=, ∴103103sin22sin cos 25ααα==⨯⨯=, 22104cos 212sin 12()5ϕα=-=-⨯=. ∴313413433cos 2cos 2sin 262525πααα-⎛⎫+=-=⨯-⨯= ⎪⎝⎭. 故选A .点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.8.如图是某几何体的三视图,则该几何体的体积为( )A. 6B. 9C. 12D. 18【答案】C 【解析】由题设中提供的三视图可以看出这是一个底面边长为2的正方形高为1的四棱柱与一个底面是边长为4的等腰直角三角形高为1的三棱柱的组合体,其体积1441221122V =⨯⨯⨯+⨯⨯=,应选答案C . 9.已知0a b >>,b x a be =+,a y b ae =+,b z b ae =+,则( ) A. x z y << B. z x y << C. z y x <<D. y z x <<【答案】A 【解析】 【分析】利用作差法,结合指数函数的图像与性质可得结果. 【详解】∵bax a be y b ae =+=+,,b z b ae =+, ∴()a by z a e e-=-又0e 1a b >>,>,∴a b e e > ∴y z >()()()()x 1b b z b a a b e a b e -=-+-=--,又01b a b e ,>>> ∴x z > 综上:x z y << 故选A【点睛】本题考查三个数的大小的判断,考查作差法,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.10.已知双曲线22221x y a b-=的左右焦点为12,,F F O 为它的中心,P 为双曲线右支上的一点,12PF F ∆的内切圆圆心为I ,且圆I 与x 轴相切于A 点,过2F 作直线PI 的垂线,垂足为B ,若双曲线的离心率为e ,则( ) A. OB OA = B. OB e OA =C. OA e OB =D. ||OB 与||OA 关系不确定 【答案】A 【解析】F 1(﹣c ,0)、F 2(c ,0),内切圆与x 轴的切点是点A ∵|PF 1|﹣|PF 2|=2a ,及圆的切线长定理知, |AF 1|﹣|AF 2|=2a ,设内切圆的圆心横坐标为x , 则|(x+c )﹣(c ﹣x )|=2a ∴x=a; |OA|=a ,在△PCF 2中,由题意得,F 2B⊥PI 于B ,延长交F 1F 2于点C ,利用△PCB≌△PF 2B ,可知PC=PF 2, ∴在三角形F 1CF 2中,有:OB=12CF 1=12(PF 1﹣PC )=12(PF 1﹣PF 2)=12×2a=a.∴|OB|=|OA|. 故选A .点睛:这个题目考查了双曲线的几何意义和双曲线的第一定义;用到了焦三角形的的内切圆的性质和结论.一般无论双曲线还是椭圆,和焦三角形的有关的可以想到,焦三角形的的周长,余弦定理,定义的应用,面积公式等. 11.已知函数()sin(2)3f x x π=-,若方程1()3f x =在(0,)π的解为1212,()x x x x <,则12sin()x x -=( )A. 22-B. 3-C. 12-D. 13-【答案】A 【解析】 【分析】结合正弦型函数的图像与性质可得125212x x π+=,进而可得()121sin ?cos 23x x x π⎛⎫-=-- ⎪⎝⎭,明确1x 的范围得到结果.【详解】因为0x π<<,所以52,333x πππ⎛⎫-∈- ⎪⎝⎭,又因为12,x x 是1sin 233x π⎛⎫-= ⎪⎝⎭的两根,结合图像可知125212x x π+=,所以2156x x π=-, 所以()12115sin sin 2cos 263x x x x ππ⎛⎫⎛⎫-=-=-- ⎪ ⎪⎝⎭⎝⎭,又因为122156x x x x π<=-,,所以15012x π<<, 所以12,332x πππ⎛⎫-∈- ⎪⎝⎭,所以122cos 233x π⎛⎫-= ⎪⎝⎭, 所以()1222sin 3x x -=-. 故选A【点睛】本题考查正弦型函数的图像与性质,考查函数的对称性及取值范围,属于中档题.12.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且6BD BE =,过点E 作球O 的截面,则所得截面圆面积的取值范围是( ) A. 5,44ππ⎡⎤⎢⎥⎣⎦B. 7,44ππ⎡⎤⎢⎥⎣⎦C. 9,44ππ⎡⎤⎢⎥⎣⎦D. 11,44ππ⎡⎤⎢⎥⎣⎦【答案】A 【解析】分析:过E 作球O 的截面中,面积最大的是过球心O 的截面,最小的是垂直于OE 的截面,求出球的半径,以及垂直于OE 的截面半径,从而可得结果. 详解:显然过E 作球O 的截面中,面积最大的是过球心O 的截面,最小的是垂直于OE 的截面, 设三棱锥的外接球半径为R ,()2233R R +-=,解得2R =,截面面积最大为4π,如图,1OH =,2222cos30EH BH BE BH BE =+-⋅⋅o11332342=+-1367444=-=, 222711144OE EH OH ∴=+=+=, ∴垂直于OE 的截面半径r 满足2221152444r OE =-=-=, 254S r ππ∴==,即截面最小面积为54π,截面圆面积的取值范围是5,44ππ⎡⎤⎢⎥⎣⎦,故选A.点睛:本题主要考球的性质及圆内接三角形的性质、棱锥的体积公式及球的体积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质2221R r OO=+.第II卷二、填空题:本小题共4小题,每小题共5分13.若整数,x y满足不等式组022020xx yx y≤≤⎧⎪+->⎨⎪-+>⎩,则yzx=的最小值为_______.【答案】12【解析】【分析】画出可行域,由此判断出可行域内的点和原点连线的斜率的最小值.【详解】画出可行域如下图所示,依题意只取坐标为整数的点.由图可知,在点()2,1处,目标函数取得最小值为12.【点睛】本小题主要考查简单的线性规划问题,要注意不等式等号是否能取得,还要注意,x y为整数,属于基础题.14.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是________. 【答案】23【解析】从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为22339n C C =⋅=,左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙左边对应的关系有:丙甲乙、甲乙丙;丙甲乙 、甲乙丙;甲丙乙、丙甲乙,∴经过两次这样的调换后,甲在乙左边包含的基本事件个数6m =,∴经过这样的调换后,甲在乙左边的概率:6293m p n ===,故答案为23. 15.已知点A 是抛物线214y x =的对称轴与准线的交点,点F 为该抛物线的焦点,点P 在抛物线上且满足PF m PA =,则m 的最小值为 .【答案】2 【解析】过P 作准线的垂线,垂足为N , 则由抛物线的定义可得|PN|=|PF|,∵|PF|=m|PA|,∴|PN|=m|PA|,则PN m PA= ,设PA 的倾斜角为α,则sinα=m,当m 取得最小值时,sinα最小,此时直线PA 与抛物线相切, 设直线PA 的方程为y=kx ﹣1,代入x 2=4y ,可得x 2=4(kx ﹣1), 即x 2﹣4kx+4=0,∴△=16k 2﹣16=0,∴k=±1, ∴m的最小值为2.故答案点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.16.已知函数()ln f x x a x =+,若()()()12121212111,,1,2x x x x f x f x x x ⎛⎫∀∈≠->- ⎪⎝⎭,则正数a 的取值范围是_______.【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】a >0,f (x )=x+alnx ,()f 1ax x='+>, ∴f(x )在1,12⎛⎫⎪⎝⎭上单调递增,不妨设12x x < 则()()120f x f x -<,12110x x -> ()12121,,12x x x x ⎛⎫∀∈≠ ⎪⎝⎭,()()121211f x f x x x ->-,即()()211211f x f x x x ->-,∴()()212111f x f x x x +>+,即()()1g x f x x =+在1,12⎛⎫⎪⎝⎭上单调递增 ∴()21g 10a x x x -'=+≥,即1a x x ≥-,又13x 2x -≤ 故3a 2≥三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知等差数列{}n a 的前n 项的和为n S ,35a =,10100S =. (1)求数列{}n a 的通项公式; (2)设2(5)n n b n a =+,记数列n b 的前n 项和n T ,求使得n T m <恒成立时m 的最小正整数.【答案】(1) 21n a n =- (2)1 【解析】 【分析】(1)先设设等差数列{}n a 的公差为d ,由35a =,10100S =列出方程组求出首项和公差即可;(2)由(1)先求出n b ,再由裂项相消法求数列的前n 项和即可.【详解】解:(1)设等差数列{}n a 的公差为d ,因为35a =,10100S =,所以11251045100a d a d +=⎧⎨+=⎩ 解得112a d =⎧⎨=⎩所以数列{}n a 的通项公式为21n a n =-. (2)由(1)可知()()22524n n b n a n n ==++ ()1111222n n n n ⎛⎫==- ⎪++⎝⎭∴12n n T b b b =+++=L111111[1232435⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 1111]112n n n n ⎛⎫⎛⎫-+- ⎪ ⎪-++⎝⎭⎝⎭()()13232212n n n ⎡⎤+=-⎢⎥++⎢⎥⎣⎦, ∴34n T <,∴34m ≥,∴m 的最小正整数为1【点睛】本题主要考查等差数列的通项公式,以及裂项相消法求数列前n 项和的问题,熟记公式即可,属于基础题型.18.如图,五边形ABSCD 中,四边形ABCD 为长方形,SBC ∆为边长为2的正三角形,将SBC ∆沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当2AB =,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值. 【答案】(Ⅰ)证明见解析;(Ⅱ)13. 【解析】 试题分析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,则,SO AB AB AD ⊥⊥,AB ⊥平面SAD ,AB SD ⊥,结合勾股定理可得SA SD ⊥,则SD ⊥平面SAB ,平面SAB ⊥平面SCD .(Ⅱ)由几何关系,以,,OA OE OS 为,,x y z 轴建立空间直角坐标系,由题意可得平面SCD 的法向量()2,0,1m =-v ,平面SBC 的法向量()2,1n =v.计算可得平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 试题解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥利用勾股定理得22422SA SB AB =-=-=2SD =在SAD ∆中,2,2,AD SA SD SA SD ===∴⊥SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD(Ⅱ)连结,BO CO ,SB SC =Q ,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,3SE SE ∴=, 其中1OE =,1OA OD ==,2312OS =-=由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系.1,2OE OS =∴=Q ,()()()0,1,0,1,1,2,2,0,0DC SC BC ∴==--=-u u u v u u u v u u u v,设()111,,m x y z =v是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 即1111020y x y z =⎧⎪⎨-+-=⎪⎩, 令11z =得()2,0,1m =-v设()222,,n x y z =v是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 即22222020x x y z -=⎧⎪⎨-+=⎪⎩ 令11z =得()2,1n =v.则1,333m ncosm n m n v vv v v v ⋅===⋅ 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13. 19.已知点)3,0F是椭圆()2222:10x y C a b a b+=>>的一个焦点,点13,2M ⎫⎪⎭ 在椭圆 C 上.(Ⅰ)求椭圆 C 的方程;(Ⅱ)若直线l 与椭圆 C 交于不同的,A B 两点,且12OA OB k k +=- ( O 为坐标原点),求直线l 斜率的取值范围.【答案】(1)2214x y +=(2)()1,01,4k ⎡⎫∈-⋃+∞⎪⎢⎣⎭ 【解析】 【分析】(1)由题可知,椭圆的另一个焦点为(),利用椭圆的定义,求得2a =,再理由椭圆中222c a b =-,求得b 的值,即可得到椭圆的方程;(2)设l 直线的方程为y kx m =+,联立方程组,利用根与系数的关系,求得1212,x x x x +,在由12OA OB k k +=-,进而可求解斜率的取值范围,得到答案.【详解】(1)由题可知,椭圆的另一个焦点为(),所以点M142=. 所以2a =.又因为c =,所以1b =,则椭圆C 的方程为2214x y +=.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,0OA OB k k +=,不符合题意. 故设l 直线的方程为y kx m =+,()11,A x y ,()22,B x y ,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得()()222418410k x kmx m +++-=. 所以()12221228,4141,41km x x k m x x k -⎧+=⎪+⎪⎨-⎪=⎪+⎩而()()()()212211212221212128222141OA OBkx m x kx m x m x x y y km k k k k k x x x x x x m m ++++--+=+==+=+=--,由12OA OB k k +=-,可得241m k =+. 所以14k ≥-,又因为()2216410k m -+>,所以2440k k ->. 综上,()1,01,4k ⎡⎫∈-⋃+∞⎪⎢⎣⎭. 【点睛】本题主要考查椭圆的定义及标准方程、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()y g 与尺寸()x mm 之间近似满足关系式by c x =⋅(,b c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下: 尺寸()x mm 384858687888质量()y g16.8 18.8 20.7 22.4 24 25.5质量与尺寸的比yx0.442 0.392 0.357 0.329 0.308 0.290(Ⅰ)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望; (Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:(ⅰ)根据所给统计量,求y 关于x 的回归方程;(ⅱ)已知优等品的收益z (单位:千元)与,x y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1)附:对于样本(,)i i v u (1,2,,)i n =L ,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:1122211()()()n niii ii i nni i i i v v u u v unvub v v v nv∧====---==--∑∑∑∑,a u bv ∧∧=-, 2.7182e ≈.【答案】(1)见解析(2)12y ex =,x=72.3 【解析】 【分析】()1由题意,首先确定ξ的取值,然后求解相应的分布列和数学期望即可 ()2 ()i 结合题中所给的数据计算回归方程即可()ii 结合计算求得的回归方程得到收益函数,讨论函数的最值即可求得最终结果【详解】(1)解:由已知,优等品的质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内,即()0.302,0.388y x ∈ 则随机抽取的6件合格产品中,有3件为优等品,3件为非优等品现从抽取的6件合格产品中再任选3件,则取到优等品的件数0,1,2,3ξ=()0333361020C C P C ξ===, ()1233369120C C P C ξ===, ()2133369220C C P C ξ===, ()3033361320C C P C ξ=== ξ的分布列为()199130123202020202E ξ∴=⨯+⨯+⨯+⨯= (2)解:对b y c x =⋅(,0b c >)两边取自然对数得ln ln ln y c b x =+,令ln ,ln i i i i v x u y ==,得u b v a =⋅+,且ln a c =, (ⅰ)根据所给统计量及最小二乘估计公式有,1222175.324.618.360.271101.424.660.542ni i i n i i v u nvu b v nv ∧==--⨯÷====-÷-∑∑- 118.324.6612a u b v ∧∧⎛⎫=-=-⨯÷= ⎪⎝⎭,得ln 1ˆˆa c ==,故ˆc e = 所求y 关于x 的回归方程为12y ex = (ⅱ)由(ⅰ)可知,12ˆy e x =⋅,则.ˆ2032zx =由优等品质量与尺寸的比()12,7,97ˆ9y ex e e xx⎛⎫==⇒⎪⎝⎭,即()49,81x ∈令()7,9t =,()2220.3220.320.32ˆ0.32e e z t t et t ⎛⎫=-+=--+⎪⎝⎭当()8.57,90.32et ==≈∈时,ˆz 取最大值 - 即优等品的尺寸72.3x ≈(mm ),收益ˆz 的预报值最大.【点睛】本题考查了线性回归方程的实际运用,依据已知条件计算出随机变量ξ的分布列和期望;通过公式计算求得线性回归方程,本题为常考题型,注意解题方法.21.已知函数()()ln x e f x a x x x=+-,a R ∈.(Ⅰ)当a e =-时,求()f x 的最小值; (Ⅱ)若()f x 有两个零点,求参数a 的取值范围 【答案】(Ⅰ)0; (Ⅱ)a e <-. 【解析】 【分析】(Ⅰ)求函数的定义域,再求导,判别导函数的正负可得原函数的单调性,可求得最小值;(Ⅱ)对a 进行分类讨论,分别利用其导函数的应用,判别其单调性,求其最值,可得参数a 的范围.【详解】(Ⅰ)()(ln )xe f x a x x x=+-,定义域(0,)+∞ ()22(1)(1)(1)()x x x e ax e x x f x a x x x '-+--=+= 当a e =-时, ()2(1)()x x e exf x x '--=,由于x e ex > 在(0,)+∞恒成立故()f x 在(0,1)单调递减, ()f x 在(1,)+∞单调递增.故 min ()(1)0f x f a e ==+=(Ⅱ)()2(1)()x x e axf x x '-+=当a e =-时, ()f x 在(0,1)单调递减, ()f x 在(1,)+∞单调递增min ()(1)0f x f a e ==+=,()f x 只有一个零点当a e >-时,ax ex >- ,故0x x e ax e ex +>-≥ 在(0,)+∞恒成立,故()f x 在(0,1)单调递减, ()f x 在(1,)+∞单调递增min ()(1)0f x f a e ==+=,故当a e >-时, ()f x 没有零点.当a e <-时,令 0xe ax +=,得2(1),(),()x x x e e x e a x x x x x ϕϕ-'=-==, ()x ϕ在(0,1)单调递减, ()f x 在(1,)+∞单调递增. min ()(1)x e ϕϕ==,()x ϕ在(0,)+∞有两个零点,1212,,01x x x x <<<()f x 在1(0,)x 单调递减,在1(,1)x 单调递增,在2(1,)x 单调递减,在2(,)x +∞单调递增,(1)0f a e =+< ,又0,(),,(),x f x x f x →→+∞→+∞→+∞此时()f x 有两个零点,综上()f x 有两个零点,则a e <-【点睛】本题考查了导函数的应用,掌握好分类讨论思想和导函数的应用是解题的关键,属于难题.(二)选考题:共10分.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.【答案】(1)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)12. 【解析】试题分析:(1)将cos ,sin x y ρθρθ==代入12,C C 的直角坐标方程,化简得cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=得12ρρ==, 所以MN =12. 试题解析:(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=得240ρ-+=得12ρρ== 所以MN =因为2C 的半径为1,则2C MN ∆的面积为111sin 4522⨯=o 考点:坐标系与参数方程.【此处有视频,请去附件查看】选修4-5:不等式选讲23.已知()()f x x a a R =+∈.(1)若()21f x x ≥-的解集为[]0,2,求a 的值;(2)若对任意x ∈R ,不等式()1)4f x x π=+'恒成立,求实数a 的取值范围.【答案】(1)1a =;(2)(]-2∞,【解析】【分析】(1)利用两边平方法解含有绝对值的不等式,再根据根与系数的关系求出a 的值;(2)利用绝对值不等式求出()f x x a +-的最小值,把不等式()1)4f x x π=+'化为只含有a 的不等式,求出不等式解集即可.【详解】(1)不等式()21f x x ≥-,即21x a x +≥-两边平方整理得()2232410x a x a -++-≤由题意知0和2是方程()2232410x a x a -++-=的两个实数根 即2240231023a a +⎧+=⎪⎪⎨-⎪⨯=⎪⎩,解得1a =(2)因为()()()2f x x a x a x a x a x a a +-=++-≥+--=所以要使不等式()1)4f x x π=+'恒成立,只需232a a ≥-当0a ≥时,232a a ≥-,解得2a ≤,即02a ≤≤;当0a <时,232a a -≥-,解得25a ≤,即0a <;综上所述,a 的取值范围是(],2-∞【点睛】本题考查了含有绝对值的不等式解法与应用问题,也考查了分类讨论思想,是中档题.。
2020届河北省衡水密卷新高考原创冲刺模拟试卷(一)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P ={0,1,2},Q ={x |x <2},则P ∩Q =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}答案 B解析 因为集合P ={0,1,2},Q ={x |x <2},所以P ∩Q ={0,1}.2.已知复数z 满足|z |=2,z +z -=2(z -为z 的共轭复数)(i 为虚数单位),则z =( )A .1+iB .1-iC .1+i 或1-iD .-1+i 或-1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,z +z -=2a , 所以⎩⎨⎧ a 2+b 2=2,2a =2,得⎩⎨⎧a =1,b =±1,所以z =1+i 或z =1-i.3.若a>1,则“a x>a y”是“log a x>log a y”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 A解析由a>1,得a x>a y等价为x>y,log a x>log a y等价为x>y>0,故“a x>a y”是“log a x>log a y”的必要不充分条件.4.已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为() A.a<c<b B.a<b<cC.b<c<a D.c<a<b答案 A解析因为a=log52<log55=1 2,b=log0.50.2>log0.50.25=2,0.51<c=0.50.2<0.50,即12<c<1,所以a<c<b.5.执行如图所示的程序框图,则输出的i的值为()A.4 B.5C.6 D.7答案 C解析由题可得S=3,i=2→S=7,i=3→S=15,i=4→S=31,i=5→S=63,i=6,此时结束循环,输出i=6.6.已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=9,b7=21,则由{a n},{b n}公共项组成新数列{c n},则c10=()A.18 B.24C.30 D.36答案 C解析 (直接法)由题意,根据等差数列的通项公式得,数列{a n }的首项为3,公差为1,a n =n +2,数列{b n }的首项为3,公差为3,b n =3n ,则易知两个数列的公共项组成的新数列{c n }即为数列{b n },由此c 10=b 10=30,故选C.7.已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AO →·AB →=32,则实数m =( )A .±1B .±32C .±22D .±12答案 C解析 联立⎩⎨⎧y =x +m ,x 2+y 2=1,得2x 2+2mx +m 2-1=0,∵直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,∴Δ=-4m 2+8>0,解得-2<m <2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-12,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO →=(-x 1,-y 1),AB →=(x 2-x 1,y 2-y 1),∵AO →·AB →=32,∴AO →·AB →=x 21-x 1x 2+y 21-y 1y 2=1-m 2-12-m 2-12+m 2-m 2=2-m 2=32,解得m =±22.8.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若△ABC 的面积为S ,且43S =(a +b )2-c 2,则sin ⎝ ⎛⎭⎪⎫C +π4=( )A .1B .22C .6-24D .6+24 答案 D解析 由43S =(a +b )2-c 2,得43×12ab sin C =a 2+b 2-c 2+2ab ,∵a 2+b 2-c 2=2ab cos C ,∴23ab sin C =2ab cos C +2ab ,即3sin C -cos C =1,即2sin ⎝ ⎛⎭⎪⎫C -π6=1,则sin ⎝ ⎛⎭⎪⎫C -π6=12,∵0<C <π, ∴-π6<C -π6<5π6,∴C -π6=π6,即C =π3,则sin ⎝ ⎛⎭⎪⎫C +π4=sin ⎝ ⎛⎭⎪⎫π3+π4=sin π3cos π4+cos π3sin π4=32×22+12×22=6+24.9.关于函数f (x )=x -sin x ,下列说法错误的是( ) A .f (x )是奇函数B .f (x )在(-∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数 答案 D解析 f (-x )=-x -sin(-x )=-x +sin x =-f (x ),则f (x )为奇函数,故A 正确;由于f ′(x )=1-cos x ≥0,故f (x )在(-∞,+∞)上单调递增,故B 正确;根据f (x )在(-∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确;根据f (x )在(-∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误.10.已知log 2(a -2)+log 2(b -1)≥1,则2a +b 取到最小值时,ab =( ) A .3 B .4 C .6 D .9答案 D解析 由log 2(a -2)+log 2(b -1)≥1,可得a -2>0,b -1>0且(a -2)(b -1)≥2.所以2a +b =2(a -2)+(b -1)+5≥22(a -2)(b -1)+5≥22×2+5=9,当2(a -2)=b -1且(a -2)(b -1)=2时等号成立,解得a =b =3.所以2a +b 取到最小值时,ab =3×3=9.11.已知实数a >0,函数f (x )=⎩⎪⎨⎪⎧e x-1+a2,x <0,e x -1+a 2x 2-(a +1)x +a 2,x ≥0,若关于x 的方程f [-f (x )]=e -a +a2有三个不等的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,2+2e B .⎝ ⎛⎭⎪⎫2,2+2eC.⎝ ⎛⎭⎪⎫1,1+1e D .⎝ ⎛⎭⎪⎫2,2+1e答案 B解析 当x <0时,f (x )为增函数,当x ≥0时,f ′(x )=e x -1+ax -a -1, f ′(x )为增函数,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,最小值为f (1)=0. 由此画出函数f (x )的大致图象如图所示.令t =-f (x ),因为f (x )≥0,所以t ≤0, 则有⎩⎪⎨⎪⎧f (t )=e -a+a 2,f (t )=e t -1+a 2,解得-a =t -1,所以t =-a +1,所以f (x )=a -1. 所以方程要有三个不同的实数根, 则需a 2<a -1<1e +a2, 解得2<a <2e +2.12.已知△ABC 的顶点A ∈平面α,点B ,C 在平面α同侧,且AB =2,AC=3,若AB ,AC 与α所成的角分别为π3,π6,则线段BC 长度的取值范围为( )A .[2-3,1]B .[1,7]C .[7, 7+23]D .[1,7+23]答案 B解析 如图,过点B ,C 作平面的垂线,垂足分别为M ,N ,则四边形BMNC为直角梯形.在平面BMNC内,过C作CE⊥BM交BM于点E.又BM=AB·sin∠BAM=2sin π3=3,AM=2cosπ3=1,CN=AC·sin∠CAN=3sin π6=32,AN=3cosπ6=32,所以BE=BM-CN=32,故BC2=MN2+34.又AN-AM≤MN≤AM+AN,即12=AN-AM≤MN≤AM+AN=52,所以1≤BC2≤7,即1≤BC≤7,故选B.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a=(1,λ),b=(3,1),c=(1,2),若向量2a-b与c共线,则向量a在向量c方向上的投影为________.答案0解析向量2a-b=(-1,2λ-1),由2λ-1=-2,得λ=-12.∴向量a=⎝⎛⎭⎪⎫1,-12,∴向量a在向量c方向上的投影为|a|cos〈a,c〉=a·c|c|=1-2×125=0.14.在△ABC中,a,b,c分别为内角A,B,C的对边,且2ab sin C=3(b2+c2-a2),若a=13,c=3,则△ABC的面积为________.答案3 3解析 由题意得2ab sin C2bc =3·b 2+c 2-a 22bc , 即a sin Cc =3cos A ,由正弦定理得sin A =3cos A,所以tan A =3,A =π3.由余弦定理得13=32+b 2-2×3b cos π3,解得b =4,故面积为12bc sin A =12×4×3×32=3 3.15.已知点M 为单位圆x 2+y 2=1上的动点,点O 为坐标原点,点A 在直线x =2上,则AM →·AO →的最小值为________.答案 2解析 设A (2,t ),M (cos θ,sin θ),则AM→=(cos θ-2,sin θ-t ),AO →=(-2,-t ),所以AM →·AO →=4+t 2-2cos θ-t sin θ. 又(2cos θ+t sin θ)max =4+t 2, 故AM →·AO→≥4+t 2-4+t 2. 令s =4+t 2,则s ≥2,又4+t 2-4+t 2=s 2-s ≥2, 当s =2,即t =0时等号成立,故(AM →·AO →)min=2. 16.已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________.答案 (3,+∞)解析 当m >0,x <1时,g (x )<0, 所以f (x )<0在(-∞,1)上有解,则⎩⎨⎧f (1)<0,m >0或⎩⎨⎧m >0,Δ>0,f (1)≥0,m <1,即m >3或⎩⎨⎧m >0,m 2-m -2>0,3-m ≥0,m <1,故m >3.当m <0,x >1时,g (x )<0, 所以f (x )<0在(1,+∞)上有解, 所以⎩⎨⎧f (1)<0,m <0,此不等式组无解.综上,m 的取值范围为(3,+∞).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=cos x (3sin x -cos x )+12.(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin2x -12cos2x =sin ⎝ ⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫π3=1.(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.由不等式c <f (x )<c +2恒成立,得⎩⎪⎨⎪⎧c <-12,c +2>1,解得-1<c <-12.所以实数c 的取值范围为⎝ ⎛⎭⎪⎫-1,-12. 18.(本小题满分12分)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且AEAC=AFAD=λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF⊥平面ABC;(2)是否存在实数λ,使得平面BEF⊥平面ACD.解(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.∵CD⊥BC,AB∩BC=B,AB,BC⊂平面ABC,∴CD⊥平面ABC.又∵AEAC=AFAD=λ(0<λ<1),∴无论λ为何值,恒有EF∥CD,∴EF⊥平面ABC.又∵EF⊂平面BEF,∴无论λ为何值,总有平面BEF⊥平面ABC.(2)假设存在λ,使得平面BEF⊥平面ACD.由(1)知BE⊥EF,∵平面BEF⊥平面ACD,平面BEF∩平面ACD=EF,BE⊂平面BEF,∴BE⊥平面ACD.又∵AC⊂平面ACD,∴BE⊥AC.∵BC=CD=1,∠BCD=∠ABD=90°,∠ADB=60°,∴BD=2,∴AB=2tan60°=6,∴AC=AB2+BC2=7.由Rt△AEB∽Rt△ABC,得AB2=AE·AC,∴AE=67,∴λ=AEAC=67.故当λ=67时,平面BEF⊥平面ACD.19.(本小题满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y-=1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=1100i=15n i(y i-y-)2=1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.0296,s=0.0296=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.(本小题满分12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知|DF1|=5 2.(1)求椭圆C 的标准方程;(2)求点E 的坐标.解 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以|F 1F 2|=2,c =1.又因为|DF 1|=52,AF 2⊥x 轴,所以|DF 2|=|DF 1|2-|F 1F 2|2=⎝ ⎛⎭⎪⎫522-22=32, 因此2a =|DF 1|+|DF 2|=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为x 24+y 23=1. (2)解法一:由(1)知,椭圆C :x 24+y 23=1,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1)2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由⎩⎨⎧y =2x +2,(x -1)2+y 2=16,得5x 2+6x -11=0, 解得x =1或x =-115.将x =-115代入y =2x +2,得y =-125,因此B 点坐标为⎝ ⎛⎭⎪⎫-115,-125.又F 2(1,0),所以直线BF 2:y =34(x -1).由⎩⎪⎨⎪⎧ y =34(x -1),x 24+y 23=1,得7x 2-6x -13=0,解得x =-1或x =137.又因为E 是线段BF 2与椭圆的交点,所以x =-1.将x =-1代入y =34(x -1),得y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32. 解法二:由(1)知,椭圆C :x 24+y 23=1.如图,连接EF 1.因为|BF 2|=2a ,|EF 1|+|EF 2|=2a ,所以|EF 1|=|EB |,从而∠BF 1E =∠B .因为|F 2A |=|F 2B |,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由⎩⎪⎨⎪⎧ x =-1,x 24+y 23=1,得y =±32.又因为E 是线段BF 2与椭圆的交点,所以y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32.21.(本小题满分12分)已知函数f (x )=ln x -x e x +ax (a ∈R ).(1)若函数f (x )在[1,+∞)上单调递减,求实数a 的取值范围;(2)若a =1,求f (x )的最大值.解 (1)由题意知,f ′(x )=1x -(e x +x e x )+a =1x -(x +1)e x +a ≤0在[1,+∞)上恒成立,所以a ≤(x +1)e x -1x 在[1,+∞)上恒成立.令g (x )=(x +1)e x -1x ,则g ′(x )=(x +2)e x +1x 2>0, 所以g (x )在[1,+∞)上单调递增,所以g (x )min =g (1)=2e -1,所以a ≤2e -1.(2)当a =1时,f (x )=ln x -x e x +x (x >0).则f ′(x )=1x -(x +1)e x +1=(x +1)⎝ ⎛⎭⎪⎫1x -e x , 令m (x )=1x -e x ,则m ′(x )=-1x 2-e x <0,所以m (x )在(0,+∞)上单调递减.由于m ⎝ ⎛⎭⎪⎫12>0,m (1)<0,所以存在x 0>0满足m (x 0)=0,即e x 0=1x 0. 当x ∈(0,x 0)时,m (x )>0,f ′(x )>0;当x ∈(x 0,+∞)时,m (x )<0,f ′(x )<0. 所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.所以f (x )max =f (x 0)=ln x 0-x 0e x 0+x 0,因为e x 0=1x 0,所以x 0=-ln x 0, 所以f (x 0)=-x 0-1+x 0=-1,所以f (x )max =-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为⎩⎨⎧x =2t ,y =2+t(t 为参数),曲线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求|MN |.解 (1)因为ρcos 2θ=8sin θ,所以ρ2cos 2θ=8ρsin θ,即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线.(2)设点M (x 1,y 1),点N (x 2,y 2),直线l 过抛物线的焦点(0,2),则直线的参数方程⎩⎨⎧x =2t ,y =2+t化为一般方程为y =12x +2,代入曲线C 的直角坐标方程,得x 2-4x -16=0,所以x 1+x 2=4,x 1x 2=-16,所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1-x 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122·42-4×(-16)=10. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +4|,不等式f (x )>8-|2x -2|的解集为M .(1)求M ;(2)设a ,b ∈M ,证明:f (ab )>f (2a )-f (-2b ).解 (1)将f (x )=|x +4|代入不等式,整理得|x +4|+|2x -2|>8.①当x ≤-4时,不等式转化为-x -4-2x +2>8,解得x <-103,所以x ≤-4;②当-4<x <1时,不等式转化为x +4+2-2x >8,解得x <-2,所以-4<x <-2;③当x ≥1时,不等式转化为x +4+2x -2>8,解得x >2,所以x >2.综上,M ={x |x <-2或x >2}.(2)证明:因为f (2a )-f (-2b )=|2a +4|-|-2b +4|≤|2a +4+2b -4|=|2a +2b |, 所以要证f (ab )>f (2a )-f (-2b ),只需证|ab +4|>|2a +2b |,即证(ab +4)2>(2a +2b )2,即证a2b2+8ab+16>4a2+8ab+4b2,即证a2b2-4a2-4b2+16>0,即证(a2-4)(b2-4)>0,因为a,b∈M,所以a2>4,b2>4,所以(a2-4)(b2-4)>0成立,所以原不等式成立.。
2020届河北省衡水密卷新高考原创冲刺模拟试卷(一)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P ={0,1,2},Q ={x |x <2},则P ∩Q =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}答案 B解析 因为集合P ={0,1,2},Q ={x |x <2},所以P ∩Q ={0,1}.2.已知复数z 满足|z |=2,z +z -=2(z -为z 的共轭复数)(i 为虚数单位),则z =( )A .1+iB .1-iC .1+i 或1-iD .-1+i 或-1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,z +z -=2a , 所以⎩⎨⎧ a 2+b 2=2,2a =2,得⎩⎨⎧a =1,b =±1,所以z =1+i 或z =1-i.3.若a>1,则“a x>a y”是“log a x>log a y”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案 A解析由a>1,得a x>a y等价为x>y,log a x>log a y等价为x>y>0,故“a x>a y”是“log a x>log a y”的必要不充分条件.4.已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为() A.a<c<b B.a<b<cC.b<c<a D.c<a<b答案 A解析因为a=log52<log55=1 2,b=log0.50.2>log0.50.25=2,0.51<c=0.50.2<0.50,即12<c<1,所以a<c<b.5.执行如图所示的程序框图,则输出的i的值为()A.4 B.5C.6 D.7答案 C解析由题可得S=3,i=2→S=7,i=3→S=15,i=4→S=31,i=5→S=63,i=6,此时结束循环,输出i=6.6.已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=9,b7=21,则由{a n},{b n}公共项组成新数列{c n},则c10=()A.18 B.24C.30 D.36答案 C解析 (直接法)由题意,根据等差数列的通项公式得,数列{a n }的首项为3,公差为1,a n =n +2,数列{b n }的首项为3,公差为3,b n =3n ,则易知两个数列的公共项组成的新数列{c n }即为数列{b n },由此c 10=b 10=30,故选C.7.已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AO →·AB →=32,则实数m =( )A .±1B .±32C .±22D .±12答案 C解析 联立⎩⎨⎧y =x +m ,x 2+y 2=1,得2x 2+2mx +m 2-1=0,∵直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,∴Δ=-4m 2+8>0,解得-2<m <2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-12,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO →=(-x 1,-y 1),AB →=(x 2-x 1,y 2-y 1),∵AO →·AB →=32,∴AO →·AB →=x 21-x 1x 2+y 21-y 1y 2=1-m 2-12-m 2-12+m 2-m 2=2-m 2=32,解得m =±22.8.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若△ABC 的面积为S ,且43S =(a +b )2-c 2,则sin ⎝ ⎛⎭⎪⎫C +π4=( )A .1B .22C .6-24D .6+24 答案 D解析 由43S =(a +b )2-c 2,得43×12ab sin C =a 2+b 2-c 2+2ab ,∵a 2+b 2-c 2=2ab cos C ,∴23ab sin C =2ab cos C +2ab ,即3sin C -cos C =1,即2sin ⎝ ⎛⎭⎪⎫C -π6=1,则sin ⎝ ⎛⎭⎪⎫C -π6=12,∵0<C <π, ∴-π6<C -π6<5π6,∴C -π6=π6,即C =π3,则sin ⎝ ⎛⎭⎪⎫C +π4=sin ⎝ ⎛⎭⎪⎫π3+π4=sin π3cos π4+cos π3sin π4=32×22+12×22=6+24.9.关于函数f (x )=x -sin x ,下列说法错误的是( ) A .f (x )是奇函数B .f (x )在(-∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数 答案 D解析 f (-x )=-x -sin(-x )=-x +sin x =-f (x ),则f (x )为奇函数,故A 正确;由于f ′(x )=1-cos x ≥0,故f (x )在(-∞,+∞)上单调递增,故B 正确;根据f (x )在(-∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确;根据f (x )在(-∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误.10.已知log 2(a -2)+log 2(b -1)≥1,则2a +b 取到最小值时,ab =( ) A .3 B .4 C .6 D .9答案 D解析 由log 2(a -2)+log 2(b -1)≥1,可得a -2>0,b -1>0且(a -2)(b -1)≥2.所以2a +b =2(a -2)+(b -1)+5≥22(a -2)(b -1)+5≥22×2+5=9,当2(a -2)=b -1且(a -2)(b -1)=2时等号成立,解得a =b =3.所以2a +b 取到最小值时,ab =3×3=9.11.已知实数a >0,函数f (x )=⎩⎪⎨⎪⎧e x-1+a2,x <0,e x -1+a 2x 2-(a +1)x +a 2,x ≥0,若关于x 的方程f [-f (x )]=e -a +a2有三个不等的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,2+2e B .⎝ ⎛⎭⎪⎫2,2+2eC.⎝ ⎛⎭⎪⎫1,1+1e D .⎝ ⎛⎭⎪⎫2,2+1e答案 B解析 当x <0时,f (x )为增函数,当x ≥0时,f ′(x )=e x -1+ax -a -1, f ′(x )为增函数,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,最小值为f (1)=0. 由此画出函数f (x )的大致图象如图所示.令t =-f (x ),因为f (x )≥0,所以t ≤0, 则有⎩⎪⎨⎪⎧f (t )=e -a+a 2,f (t )=e t -1+a 2,解得-a =t -1,所以t =-a +1,所以f (x )=a -1. 所以方程要有三个不同的实数根, 则需a 2<a -1<1e +a2, 解得2<a <2e +2.12.已知△ABC 的顶点A ∈平面α,点B ,C 在平面α同侧,且AB =2,AC=3,若AB ,AC 与α所成的角分别为π3,π6,则线段BC 长度的取值范围为( )A .[2-3,1]B .[1,7]C .[7, 7+23]D .[1,7+23]答案 B解析 如图,过点B ,C 作平面的垂线,垂足分别为M ,N ,则四边形BMNC为直角梯形.在平面BMNC内,过C作CE⊥BM交BM于点E.又BM=AB·sin∠BAM=2sin π3=3,AM=2cosπ3=1,CN=AC·sin∠CAN=3sin π6=32,AN=3cosπ6=32,所以BE=BM-CN=32,故BC2=MN2+34.又AN-AM≤MN≤AM+AN,即12=AN-AM≤MN≤AM+AN=52,所以1≤BC2≤7,即1≤BC≤7,故选B.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a=(1,λ),b=(3,1),c=(1,2),若向量2a-b与c共线,则向量a在向量c方向上的投影为________.答案0解析向量2a-b=(-1,2λ-1),由2λ-1=-2,得λ=-12.∴向量a=⎝⎛⎭⎪⎫1,-12,∴向量a在向量c方向上的投影为|a|cos〈a,c〉=a·c|c|=1-2×125=0.14.在△ABC中,a,b,c分别为内角A,B,C的对边,且2ab sin C=3(b2+c2-a2),若a=13,c=3,则△ABC的面积为________.答案3 3解析 由题意得2ab sin C2bc =3·b 2+c 2-a 22bc , 即a sin Cc =3cos A ,由正弦定理得sin A =3cos A,所以tan A =3,A =π3.由余弦定理得13=32+b 2-2×3b cos π3,解得b =4,故面积为12bc sin A =12×4×3×32=3 3.15.已知点M 为单位圆x 2+y 2=1上的动点,点O 为坐标原点,点A 在直线x =2上,则AM →·AO →的最小值为________.答案 2解析 设A (2,t ),M (cos θ,sin θ),则AM→=(cos θ-2,sin θ-t ),AO →=(-2,-t ),所以AM →·AO →=4+t 2-2cos θ-t sin θ. 又(2cos θ+t sin θ)max =4+t 2, 故AM →·AO→≥4+t 2-4+t 2. 令s =4+t 2,则s ≥2,又4+t 2-4+t 2=s 2-s ≥2, 当s =2,即t =0时等号成立,故(AM →·AO →)min=2. 16.已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________.答案 (3,+∞)解析 当m >0,x <1时,g (x )<0, 所以f (x )<0在(-∞,1)上有解,则⎩⎨⎧f (1)<0,m >0或⎩⎨⎧m >0,Δ>0,f (1)≥0,m <1,即m >3或⎩⎨⎧m >0,m 2-m -2>0,3-m ≥0,m <1,故m >3.当m <0,x >1时,g (x )<0, 所以f (x )<0在(1,+∞)上有解, 所以⎩⎨⎧f (1)<0,m <0,此不等式组无解.综上,m 的取值范围为(3,+∞).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=cos x (3sin x -cos x )+12.(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin2x -12cos2x =sin ⎝ ⎛⎭⎪⎫2x -π6,所以f ⎝ ⎛⎭⎪⎫π3=1.(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6,所以-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.由不等式c <f (x )<c +2恒成立,得⎩⎪⎨⎪⎧c <-12,c +2>1,解得-1<c <-12.所以实数c 的取值范围为⎝ ⎛⎭⎪⎫-1,-12. 18.(本小题满分12分)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且AEAC=AFAD=λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF⊥平面ABC;(2)是否存在实数λ,使得平面BEF⊥平面ACD.解(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD.∵CD⊥BC,AB∩BC=B,AB,BC⊂平面ABC,∴CD⊥平面ABC.又∵AEAC=AFAD=λ(0<λ<1),∴无论λ为何值,恒有EF∥CD,∴EF⊥平面ABC.又∵EF⊂平面BEF,∴无论λ为何值,总有平面BEF⊥平面ABC.(2)假设存在λ,使得平面BEF⊥平面ACD.由(1)知BE⊥EF,∵平面BEF⊥平面ACD,平面BEF∩平面ACD=EF,BE⊂平面BEF,∴BE⊥平面ACD.又∵AC⊂平面ACD,∴BE⊥AC.∵BC=CD=1,∠BCD=∠ABD=90°,∠ADB=60°,∴BD=2,∴AB=2tan60°=6,∴AC=AB2+BC2=7.由Rt△AEB∽Rt△ABC,得AB2=AE·AC,∴AE=67,∴λ=AEAC=67.故当λ=67时,平面BEF⊥平面ACD.19.(本小题满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y-=1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=1100i=15n i(y i-y-)2=1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.0296,s=0.0296=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.(本小题满分12分)如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知|DF1|=5 2.(1)求椭圆C 的标准方程;(2)求点E 的坐标.解 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以|F 1F 2|=2,c =1.又因为|DF 1|=52,AF 2⊥x 轴,所以|DF 2|=|DF 1|2-|F 1F 2|2=⎝ ⎛⎭⎪⎫522-22=32, 因此2a =|DF 1|+|DF 2|=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为x 24+y 23=1. (2)解法一:由(1)知,椭圆C :x 24+y 23=1,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1)2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由⎩⎨⎧y =2x +2,(x -1)2+y 2=16,得5x 2+6x -11=0, 解得x =1或x =-115.将x =-115代入y =2x +2,得y =-125,因此B 点坐标为⎝ ⎛⎭⎪⎫-115,-125.又F 2(1,0),所以直线BF 2:y =34(x -1).由⎩⎪⎨⎪⎧ y =34(x -1),x 24+y 23=1,得7x 2-6x -13=0,解得x =-1或x =137.又因为E 是线段BF 2与椭圆的交点,所以x =-1.将x =-1代入y =34(x -1),得y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32. 解法二:由(1)知,椭圆C :x 24+y 23=1.如图,连接EF 1.因为|BF 2|=2a ,|EF 1|+|EF 2|=2a ,所以|EF 1|=|EB |,从而∠BF 1E =∠B .因为|F 2A |=|F 2B |,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由⎩⎪⎨⎪⎧ x =-1,x 24+y 23=1,得y =±32.又因为E 是线段BF 2与椭圆的交点,所以y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32.21.(本小题满分12分)已知函数f (x )=ln x -x e x +ax (a ∈R ).(1)若函数f (x )在[1,+∞)上单调递减,求实数a 的取值范围;(2)若a =1,求f (x )的最大值.解 (1)由题意知,f ′(x )=1x -(e x +x e x )+a =1x -(x +1)e x +a ≤0在[1,+∞)上恒成立,所以a ≤(x +1)e x -1x 在[1,+∞)上恒成立.令g (x )=(x +1)e x -1x ,则g ′(x )=(x +2)e x +1x 2>0, 所以g (x )在[1,+∞)上单调递增,所以g (x )min =g (1)=2e -1,所以a ≤2e -1.(2)当a =1时,f (x )=ln x -x e x +x (x >0).则f ′(x )=1x -(x +1)e x +1=(x +1)⎝ ⎛⎭⎪⎫1x -e x , 令m (x )=1x -e x ,则m ′(x )=-1x 2-e x <0,所以m (x )在(0,+∞)上单调递减.由于m ⎝ ⎛⎭⎪⎫12>0,m (1)<0,所以存在x 0>0满足m (x 0)=0,即e x 0=1x 0. 当x ∈(0,x 0)时,m (x )>0,f ′(x )>0;当x ∈(x 0,+∞)时,m (x )<0,f ′(x )<0. 所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.所以f (x )max =f (x 0)=ln x 0-x 0e x 0+x 0,因为e x 0=1x 0,所以x 0=-ln x 0, 所以f (x 0)=-x 0-1+x 0=-1,所以f (x )max =-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为⎩⎨⎧x =2t ,y =2+t(t 为参数),曲线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求|MN |.解 (1)因为ρcos 2θ=8sin θ,所以ρ2cos 2θ=8ρsin θ,即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线.(2)设点M (x 1,y 1),点N (x 2,y 2),直线l 过抛物线的焦点(0,2),则直线的参数方程⎩⎨⎧x =2t ,y =2+t化为一般方程为y =12x +2,代入曲线C 的直角坐标方程,得x 2-4x -16=0,所以x 1+x 2=4,x 1x 2=-16,所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1-x 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122·42-4×(-16)=10. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +4|,不等式f (x )>8-|2x -2|的解集为M .(1)求M ;(2)设a ,b ∈M ,证明:f (ab )>f (2a )-f (-2b ).解 (1)将f (x )=|x +4|代入不等式,整理得|x +4|+|2x -2|>8.①当x ≤-4时,不等式转化为-x -4-2x +2>8,解得x <-103,所以x ≤-4;②当-4<x <1时,不等式转化为x +4+2-2x >8,解得x <-2,所以-4<x <-2;③当x ≥1时,不等式转化为x +4+2x -2>8,解得x >2,所以x >2.综上,M ={x |x <-2或x >2}.(2)证明:因为f (2a )-f (-2b )=|2a +4|-|-2b +4|≤|2a +4+2b -4|=|2a +2b |, 所以要证f (ab )>f (2a )-f (-2b ),只需证|ab +4|>|2a +2b |,即证(ab +4)2>(2a +2b )2,即证a2b2+8ab+16>4a2+8ab+4b2,即证a2b2-4a2-4b2+16>0,即证(a2-4)(b2-4)>0,因为a,b∈M,所以a2>4,b2>4,所以(a2-4)(b2-4)>0成立,所以原不等式成立.。