高中数学必修四3.2简单的三角恒等变换习题1新人教A版必修4
- 格式:pdf
- 大小:75.69 KB
- 文档页数:4
自我小测1.设5π<θ<6π,cos 2a θ=,则sin 4θ等于( ).A .2B .2C .2-D .2.若 sin (α-β)cos α-cos (α-β) sin α=45,且3π(π,)2β∈,则cos 2β为( ).A . B. . C . D .3.函数22ππcos ()sin ()11212y x x =-++-是( ). A .周期是2π的奇函数 B .周期是π的偶函数C .周期是π的奇函数D .周期是2π的偶函数4.函数y =2sin x ( sin x +cos x )的最大值是( ).A .1+B 1-CD .25. 22π(sincos )2sin ()2242ααα++-的值等于______. 6.(2011上海高考,理8)函数ππsin()cos()26y x x =+-的最大值为______. 7.已知θ为钝角,且ππ1cos()cos()448θθ-+=,求tan θ的值.8.已知函数2π()sin sin()2f x x x x ωωω=++ (ω>0)的最小正周期为π. (1)求ω的值;(2)求函数f (x )在区间2π0,3⎡⎤⎢⎥⎣⎦上的取值范围.参考答案1答案:D解析:由2cos 12sin 24θθ=-,得21cos 2sin 42θθ-=又5π<θ<6π,∴21cos 2sin 42θθ-=,sin 04θ<,∴sin 4θ= D. 2答案:A解析:由题意, 4sin()5αβα--=, ∴4sin 5β=-, 又3π(π,)2β∈,∴3cos 5β=-, 由2cos 2cos 12ββ=-, 可得2311cos 15cos 2225ββ-+===. ∵3ππ2β<<,∴π3π224β<<,∴cos 02β<,∴cos 25β==- A. 3答案:C 解析:22ππcos ()sin ()11212y x x =-++- ππ1cos(2)1cos(2)66122x x +--+=+- ππcos(2)cos(2)662x x --+= ππππcos2cos sin 2sin cos2cos sin 2sin 66662x x x x +-+= sin 22x =.∵2ππ2=,且 sin (-2x )=- sin 2x .故选C. 4答案:A解析:2π2sin 2sin cos 1cos2sin 21)4y x x x x x x =+=-+=+-,∴max 1y =+ A.5答案:2 解析:原式=π1cos()221sin 21sin 1sin 22αααα--++⋅=++-=. 612+ 解析:π1ππcos cos()cos cos(2)6266y x x x ⎡⎤=-=+-⎢⎥⎣⎦1πcos(2)426x =+-. 当πcos(2)16x -=时,max 12y =+. 7解:由条件可知1cos 24θ=. 又2θ∈(π,2π),∴sin 2θ=,∴sin 2tan 1cos2θθθ==+8解:(1)1cos211()22cos2222x f x x x x ωωωω-==-+ π1sin(2)62x ω=-+. 因为函数f (x )的最小正周期为π,且ω>0, 所以2ππ2ω=,解得ω=1. (2)由(1)得π1()sin(2)62f x x =-+. 因为2π03x ≤≤,所以ππ7π2666x-≤-≤.所以1πsin(2)126x-≤-≤.因此,π130sin(2)622x≤-+≤,即f(x)的取值范围为3 0,2⎡⎤⎢⎥⎣⎦.。
2018-2019学年高中数学第三章三角恒等变换3.2 简单的三角恒等变换课后习题新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第三章三角恒等变换3.2 简单的三角恒等变换课后习题新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第三章三角恒等变换 3.2 简单的三角恒等变换课后习题新人教A 版必修4的全部内容。
3。
2简单的三角恒等变换课后篇巩固探究1。
cos2的值为()A.B。
C.D。
解析cos2.答案B2.已知α为第一象限角,且tan α=,则sin 的值为()A。
B.—C。
± D。
解析因为α为第一象限角,且tan α=,所以cos α=,而是第一或第三象限角.当是第一象限角时,sin ;当是第三象限角时,sin =—=-,故sin =±.答案C3.若函数f(x)=(1+tan x)cos x,则f=()A。
B.-C。
1 D.解析∵f(x)=cos x=cos x+sin x=2sin,∴f=2sin=2sin.答案D4。
设a=cos 7°+sin 7°,b=,c=,则有()A.b〉a>c B。
a〉b>c C。
a〉c>b D.c>b>a解析因为a=cos 7°+sin 7°=sin 30°·cos 7°+cos 30°·sin 7°=sin 37°,b==tan 38°,c==sin 36°,又tan 38°〉sin 38°>sin 37°>sin 36°.所以b〉a〉c.答案A5。
3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
一.选择题1. 函数sin 322x x y =+的图像的一条对称轴方程是 ( ) A.113x π= B.53x π= C.53x π=- D .3x π=- 2.函数)cos (sin sin 2x x x y +=的最大值为( ) A.21+ B.12- C.2 D.23.函数x x y cos sin 21++=的最大值是( ) A .122- B .122+ C .221- D .1+2 4.已知α,β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是( )1tan tan .A <⋅βα2sin sin .B <+βα 1cos cos .C >+βα2tan )tan(21.D βαβα+<+ 5.在△ABC 中,已知tan A +tan B =3tan A ·tan B -3,且sin B cos B =43,则△ABC 是( )A.正三角形B.直角三角形C.正三角形或直角三角形D.直角三角形或等腰三角形 6.函数22()sin ()sin ()44f x x x ππ=+--是( ) A.周期为π的偶函数 B.周期为π的奇函数C.周期为2π的偶函数D.周期为2π的奇函数7. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为( ) 1010.A 1010.B - 10103.C 10103.D - 8.当04x π<<时,函数22cos ()cos sin sin x f x x x x=-的最小值是 ( ) A.4 B.12 C.2 D.14二.填空题9.已知a 是第二象限的角,4tan(2)3a π+=-,则tan a = .10. ABC ∆的三个内角为A 、B 、C ,当A =_______时,cos 2cos2B C A ++取得最大值,且这个最大值为____________.11.函数xx y sin 12tan -=的最小正周期是___________________。
(完整)必修四简单的三角恒等变换(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)必修四简单的三角恒等变换(附答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)必修四简单的三角恒等变换(附答案)的全部内容。
简单的三角恒等变换[学习目标] 1。
能用二倍角公式导出半角公式以及万能公式,体会其中的三角恒等变换的基本思想方法,以及进行简单的应用.2.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法.理解方程思想、换元思想在整个变换过程中所起的作用.3。
了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式及其推导(1)2S α:sin 错误!=± 错误!;(2)2C α:cos 错误!=± 错误!;(3)2T α:tan 错误!=± 错误!(无理形式)=错误!=错误!(有理形式).思考1 试用cos α表示sin 错误!、cos 错误!、tan 错误!。
答案 ∵cos α=cos 2错误!-sin 2错误!=1-2sin 2错误!,∴2sin 2错误!=1-cos α,∴sin 2错误!=错误!,∴sin 错误!=± 错误!;∵cos α=2cos 2错误!-1,∴cos 2错误!=错误!,∴cos 错误!=± 错误!;∵tan 2α2=错误!=错误!=错误!,∴tan 错误!=± 错误!.思考2 证明tan 错误!=错误!=错误!。
2017-2018学年高中数学第三章三角恒等变换3.2 简单的三角恒等变换练习新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第三章三角恒等变换3.2 简单的三角恒等变换练习新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第三章三角恒等变换3.2 简单的三角恒等变换练习新人教A版必修4的全部内容。
3.2 简单的三角恒等变换题号1234567891011得分答案一、选择题(本大题共7小题,每小题5分,共35分)1.函数y=错误!的最小正周期等于( )A.错误! B.πC.2π D.3π2。
错误!=()A.1 B.2C. 2 D。
错误!3.函数y=3sin 4x+错误!cos 4x的最大值是( )A. 3 B.2 错误!C.3 D.64.函数f(x)=(1+tan x)cos x的最小正周期为()A.2π B.错误!C.π D.错误!5.函数y=cos2错误!+sin2错误!-1是()A.最小正周期为2π的奇函数B.最小正周期为π的偶函数C.最小正周期为π的奇函数D.最小正周期为2π的偶函数6.如果函数f(x)=sin 2x+acos 2x的图像关于直线x=-错误!对称,则实数a的值为()A.2 B.-2C.1 D.-17.已知函数f(x)=错误!sin ωx+cos ωx(ω〉0),y=f(x)的图像与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是( )A.错误!,k∈ZB。
错误!,k∈ZC.错误!,k∈ZD。
错误!,k∈Z二、填空题(本大题共4小题,每小题5分,共20分)8.函数f(x)=sin x-cos x的单调递增区间是____________________.9.已知sin(α+错误!)+sin α=-错误!,-错误!<α<0,则cos α=________.10.函数y=sin 2x3+cos(错误!+错误!)的图像中相邻的两条对称轴之间的距离是________.11.已知函数f(x)=cos 2x-2 3sin xcos x,给出下列结论:①存在x1,x2,当x1-x2=π时,f(x1)=f(x2)成立;②f(x)在区间[-错误!,错误!]上单调递增;③函数f(x)的图像关于点(错误!,0)中心对称;④将函数f(x)的图像向左平移错误!个单位后所得图像与g(x)=2sin 2x的图像重合.其中正确结论的序号为________.三、解答题(本大题共2小题,共25分)得分12.(12分)已知函数f(x)=4cos xsin 错误!-1.(1)求f(x)的最小正周期;(2)求f(x)在区间错误!上的最大值和最小值.13。