(word完整版)《整式的加减》测试题及答案,推荐文档
- 格式:doc
- 大小:165.11 KB
- 文档页数:4
《整式的加减测试题》姓名 ___________班级 _____一、选择题(每题 3 分,计 24 分)1.下列各式中不是单项式的是()a1C . 03A .B.- D .35a2.甲数比乙数的 2 倍大 3,若乙数为x,则甲数为()A .2x- 3B. 2x+31x- 31x+3 C. D .223.如果 2x3n y m+4与 -3x9 y2n是同类项,那么m、 n 的值分别为()A. m=-2, n=3 B . m=2,n=3C. m=-3 , n=2D. m=3, n=24.已知A a32ab21, B a3ab23a2b ,则 A B( )A .2a33ab 23a2b1B .2a3ab23a2 b1C.2a3ab23a2b 1 D. 2a3ab 23a2b 15.从减去的一半,应当得到().A. B. C. D.6.减去 -3m 等于 5m2 -3m-5 的式子是()A. 5( m2-1)B. 5m2-6m-5C. 5( m2 +1)D. -( 5m2+6m-5 )8.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题( x23xy1y2 )(1x24xy3y2 )1x22222 +_____________ +y2空格的地方被钢笔水弄污了,那么空格中的一项是()A .7 xyB .7xy C.xy D .xy二、填空题(每题 4 分,计 32 分)9.单项式r 2的系数是y 10.当x=5,y=4 时,式子x-2,次数是.的值是.11.按下列要求,将多项式x3-5x 2-4x+9 的后两项用 ( )括起来 .要求括号前面带有“—”号,则 x3—5x 2— 4x+9=___________________12.把(x— y)看作一个整体,合并同类项: 5( x— y)+2( x— y)— 4( x—y)=_____________ .13.一根铁丝的长为5a 4b ,剪下一部分围成一个长为 a 宽为b的长方形,则这根铁丝还剩下 _____________________ .15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有 a 个座位,后面每一排都比前一排多一个座位,若第n 排有 m 个座位,则a、 n 和 m 之间的关系为.16.小明在求一个多项式减去x2— 3x+5 时,误认为加上 x2— 3x+5 ,?得到的答案是5x2— 2x+4,则正确的答案是_______________.三、解答题(共28 分)17.化简:( 1)3x22xy 4 y2 (3xy 4 y2 3x2 ) ;(2)4( x25x) 5( 2x23x) .18.( 6 分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n?个正方形组成.n=1n=2n=3n=4( 1)第 2 个图形中,火柴棒的根数是________;( 2)第 3 个图形中,火柴棒的根数是________;( 3)第 4 个图形中,火柴棒的根数是_______;( 4)第 n 个图形中,火柴棒的根数是________19.( 8 分)证明:代数式7a36a3b 3a2b 3a36a3b 3a2 b10a3+2010的值与 a, b 的取值无关。
整式的加减(40题)及答案一.去掉下列各式中的括号(1)(a +b )+(c +d )=_______________(2)(a-b)-(c -d )=_____________(3)-(a +b )+(c -d )=_________________(4)-(a -b )-(c -d )=_________________(5)(a +b)-3(c -d )=_____________________(6)(a +b )+5(c -d )=_______________________(7)(a -b )-2(c +d )=___________________(8)(a -b -1)-3(c -d +2)=_______________(9)0-(x -y -2)=__________________(10)a -[b -2a -(a +b )]=____________________二、先去括号,再合并同类项(1)8x +2y +2(5x -2y ) (2)3a -(4b -2a +1)(3)7m +3(m +2n ) (4)(x 2-y 2)-4(2x 2-3y 2)(5)5(x -y)+2(x -y)-3(x -y) (6) )(2)2(333c b a c b a b a ---+;(7)323722+-++a a a a ; (8)、a+(5a-3b )-(a-2b);(9))23(2)3(12b ab a ab +--; (10)、2a - [a + 2(a-b)] + b.(11))231(34x xy xy -+- (12)b a b a b a 2222132-+ (13)32328476a a a a a a -++--- (14)()()222243258ab b a ab b a ---(15)2()[])2(2324)(22222b ab a a ab a ab a +------三、先化简,再求值1、4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314。
整式及其加减一、选择题1.下列各组中的两项是同类项的是 ( )(A )ab 与 abc . (B )35-与3x -.(C )y x 25与 x y 23. (D )xy 2-与.yx 5-2.下列运算中正确的是 ( )(A )ab b a 532=+; (B )532532a a a =+;(C )06622=-ab b a ; (D )022=-ba ab .3.若m xy 2-和331y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .4.下列运算中,正确的是 ( )(A )c b a c b a 25)2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-.5.)]([c b a ---去括号应得 ( )(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.6.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )(A ))()23(22a b ab b a +-+++. (B ))()23(22a b ab b a -----+.(C ))()23(22a b ab b a --+-+. (D ))()23(22a b ab b a --+++.7.两个5次多项式相加,结果一定是 ( )(A )5次多项式. (B )10次多项式.(C )不超过5次的多项式. (D )无法确定.8.化简)2()2()2(++---x x x 的结果等于 ( )(A )63-x (B )2-x (C )23-x (D )3-x9.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )10.下列等式成立的是 ( )(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-.二、填空题11.去括号填空:=+--)(3c b a x .12._____)(_________422-=-+-a b ab aa . 13.减去26xy 等于25xy 的代数式是 .14.已知a 是正数,则=-a a 73 .15.三个连续自然数中最小的一个数是14+n ,则它们的和是 .16.大客车上原有)5(b a -人,中途上车若干人,车上共有乘客)58(b a -人,则中途上车的乘客是_____人.三、解答题17.合并同类项(1)a a a 653+- . (2)y x y ax y x 2226-+.(3)n m mn n m mn 2222783+-+-. (4)89266233++---x x x x .18.已知14+-n xy 与425y x m 是同类项,求n m +2的值.19.有一个两位数,它的十位数字是各位数字的8倍,则这个两位数一定是9的倍数,试说明理由.20.已知c b a ,,在数轴上的对应点如图所示,化简 c b a c b a a ++-++-.a b d c四、解答题21.化简(1))69()3(522x x x +--++-. (2))324(2)132(422+--+-x x x x .(3)]2)34(7[522x x x x ----.(4)222)(3)()(4)()(2n m n m n m n m n m +++-+++-+.22.先化简,再求值(1))35()2143(3232a a a a a a ++--++- 其中 1-=a .(2)y x y x xy y x 22227.03.05.02.0+-- 其中 32,1=-=y x .23.已知122+-=x x A ,3622+-=x x B . 求 : (1)B A 2+. (2)B A -2.24.已知01)1(2=-++y x ,求)3()5(222xy xy xy xy ---的值.25.把多项式y x y x 3222-+-写成两个二项式的和.26.已知 32=+ab a ,12=+b ab ,试求 222b ab a ++,22b a -的值.27.如图所示,是两种长方形铝合金窗框已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?(1) (2)答案:一、选择题1.D2.D3.C4.D5.A6.C7.C8.C9.B 10.B二、填空题11.c b a x -+-3 12.224b ab a +- 13.211xy 14.a 4- 15.612+n 16.b a 43-三、解答题17.(1)a 4 (2)y x 2- (3)n m mn 22910+- (4)6343++-x x 18.52,3,1=+==n m n m 19.设个位数字为a ,则十位数字为a 8,则这个两位数可以表示成a a a 8180=+,故是9的倍数。
整式的加减单元测试题姓名: 得分:一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份元的价格购进了a 份报纸,以每份元的价格售出了b 份报纸,剩余的以每份元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2016642()201553(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 , π-3= 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 。
二、选择题(每题3分,共30分) 13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x 14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍 15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a -- 17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( ) A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x 19、代数式,21a a +43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、6 20、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 21、已知y x x n m n m 2652与-是同类项,则( ) A 、1,2==y x B 、1,3==y x C 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+ 题号 13 14 15 16 17 18 19 20 21 22 得分 答案三、化简下列各题(每题3分,共18分) 23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
七年级数学整式的加减水平测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学整式的加减水平测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学整式的加减水平测试题及答案(word版可编辑修改)的全部内容。
2018冀教版七年级数学上册七年级数学上册合并同类项水平测试班级 学号 姓名 成绩跟踪反馈,挑战自我(共100分)一、选择题(每题3分,共24分)1.下列说法中正确的是( ).A .2t不是整式; B .y x 33-的次数是4;C .ab 4与xy 4是同类项; D .y 1是单项式 2.ab 减去22b ab a +-等于 ( ).A .222b ab a ++;B .222b ab a +--;C .222b ab a -+-;D .222b ab a ++-3.下列各式中与a —b —c 的值不相等的是( )A .a —(b+c ) B.a —(b-c ) C 。
(a-b )+(-c ) D.(-c )—(b-a )4.将2(x+y)—3(x —y )—4(x+y)+5(x-y)-3(x —y )合并同类项得( )A.-3x —yB.—2(x+y ) C 。
—x+y D.-2(x+y )—(x-y )5。
若—4x2y 和-23xmyn 是同类项,则m ,n 的值分别是( )A.m=2,n=1 B 。
m=2,n=0 C 。
m=4,n=1 D.m=4,n=06.下列各组中的两项属于同类项的是( )A 。
25x2y 与-23xy3 ;B 。
-8a2b 与5a2c ;C 。
人教版七年级数学 整式的加减综合测试题(附答案)一、选择题(本大题共10小题,每小题3分,共30分)1.用语言叙述1a -2表示的数量关系,下列表述不正确的是( ) A .比a 的倒数小2的数 B .比a 的倒数大2的数C .a 的倒数与2的差D .1除以a 的商与2的差2.有下列各式:m ,-12,x -2,1x ,x 2,-2x 2y 33,2+a 5,其中单项式有( ) A .5个 B .4个 C .3个 D .2个3.在下列式子中,次数为3的单项式是( )A .xy 2B .x 3+y 3C .x 3y D. 3xy4.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .2,35.下列各组单项式中,是同类项的一组是() A .3x 2y 与3xy 2 B.51abc 与51ac C. -2xy 与-3ab D. xy 与-xy 6.下列计算正确的是( )A. 6a -5a=1B. a+2a 2=3a 3C. -(a -b )=-a+bD. 2(a+b )=2a+b7.化简-16(x -0.5)的结果是( )A. -16x -0.5B. 16x+0.5C. 16x -8D. -16x+88.若多项式3x 2-2xy-y 2减去多项式M 所得的差是-5x 2+xy-2y 2,则多项式M 是( )A. -2x 2-xy-3y 2B. 2x 2+xy+3y 2C. 8x 2-3xy+y 2D. -8x 2+3xy-y 29.某企业今年3月份的产值为a 万元,4月份比3月份的产值减少了10%,5月份比4月份的产值增加了15%,则该企业5月份的产值是( )A.(a-10%)(a+15%)万元B.(1-10%)(1+15%)a 万元C.(a-10%+15%)万元D. (1-10%+15%)a 万元10.已知a ,b 两数在数轴上的位置如图1所示,化简式子|a+b |-|a -1|+|b+2|的结果是( )A.1B. 2b+3C. 2a -3D. -1图1 二、填空题(本大题共8小题,每小题4分,共32分)11. 当x=-1时,整式x 3-x 2+4的值为 .12. 多项式3m 2-5m 3+2-m 是 次 项式.13.请你写出一个多项式,使它含有字母m ,n ,最高次项的系数为-2,次数为3,你写出的多项式是 . 14.若多项式3x 2+kx-2x+1(k 为常数)中不含有x 的一次项,则k= .15.单项式-3x 2加上单项式-4x 2y ,-5x 2,2x 2y 的和,列算式为________,计算后的结果是________.16. 已知a 2+2ab =-8,b 2+2ab =14,则a 2+4ab +b 2=________;a 2-b 2=________.17.一个两位数,十位上的数字是2,个位上的数字是x ,这个两位数是___.18. 有一组按规律排列的单项式:2a ,4a 3,6a 5,8a 7,…,第25个单项式是___. 19.多项式2x 3-x 2y 2-3xy+x-1是 次 项式.20.若单项式3a 5b m+1与-2a n b 2是同类项,则m-n= .21.若2x -3y -1=0,则5-4x+6y 的值为 .三、解答题(本大题共5小题,共58分)22.(没小题6分,共12分)计算:(1)4x 2-8x +5-3x 2+6x -2; (2)156()3a a a +--. 23.(10分)化简并求值:(a 2-ab +2b 2)-2(b 2-a 2),其中a =-13,b =5.24. (10分)如图4所示,某长方形广场的四角都有一块半径相同的41圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米. (1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).图425. (12分)玲玲做一道题:“已知两个多项式A 、B ,其中A=x 2+3x -5,计算A -2B的值.”她误将“A -2B ”写成“2A -B ”,得到的答案是x 2+8x -7,你能帮助她求出A -2B 的值吗?26.(7分)已知多项式-5x 2y m+1+xy 2-3x 3-6是六次四项式,且3x 2n y 5-m 的次数与它相同.(1)求m ,n 的值;(2)写出该多项式的常数项以及各项的系数.第二章 整式的加减测试题(二)一、1. B 2.B 3. A 4. A 5. D6. C 提示:合并同类项,只把系数相加减,字母与字母的次数不变,6a -5a=a ,选项A 错误;a 与2a 2 不是同类项,不能合并,选项B 错误;根据去括号法则,-(a -b )=-a+b ,选项C 正确;2(a+b )=2a+2b ,选项D 错误.7. D8. C 提示:M =3x 2-2xy-y 2-(-5x 2+xy-2y 2)=3x 2-2xy-y 2+5x 2-xy+2y 2=8x 2-3xy+y 2.9. B 提示:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a 万元, 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a 万元.10.B 提示:由数轴可知-2<b <-1,1<a <2,且|a |>|b |,所以a+b >0,故|a+b |-|a -1|+ |b+2|=a+b -(a -1)+(b+2)=2b+3.二、11.2 12.三 四 13. 答案不唯一,如-2mn 2+mn -114. 14. 215. -3x 2 -4x 2y -5x 2+2x 2y -8x 2-2x 2y16. 6 -22 17. 20+x 18. 50a 49提示:这组单项式的分母为从2开始的连续的偶数,分子中a 的次数为从1开始的连续的奇数.19. 四 五 20.-4 21. 3三、22.解:(1)原式=(4x 2-3x 2)+(-8x +6x )+(5-2)=x 2-2x +3;(2)原式=5a -6a+2(a+1)=5a -6a+2a+2=a+2.23. 解:原式=a 2-ab +2b 2-2b 2+2a 2=(a 2+2a 2)+(2b 2-2b 2)-ab =3a 2-ab .当a =-13,b =5时,原式=3×⎝⎛⎭⎫-132-⎝⎛⎭⎫-13×5=13+53=2. 24. 解:(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.25. 解:能,如下:B=2A -(x 2+8x -7)=2(x 2+3x -5)-(x 2+8x -7)=2x 2+6x -10-x 2-8x+7=x 2-2x -3.所以A -2B=x 2+3x -5-2(x 2-2x -3)=x 2+3x -5-2x 2+4x+6=-x 2+7x+1.26. 解:(1)由题意,得2+m+1=6,所以m=3.因为3x 2n y 5-m 的次数也是六次,可得2n+5-m=6,所以n=2.所以m ,n 的值分别为3,2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项是-6,各项的系数分别为:-5,1,-3.。
整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。
整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
10、 11、 A 、 12、 A 、6/48 B 、x^y C 、a(x+y) D 、 一(a — b + c )变形后的结果是(A 、— a + b + cB 、— a + h — c下列说法止确的是() 0不是单项式B 、x 没有系数 C 、— a-h + c D 、 C 、- + X 3是多项式 代数式0 +丄,4小,凹,0,2009丄0%,-处中单项式的个数是(2。
• 3 2 4D 、 A 、3 B 、4 C 、5D 、6 整式加减一、填空题1、 单项式-3/减去单项式—4/”一5兀2,2兀2丁的和,化简后的结果是 ________2、 当 x = -2 时,代数式一x 2 + 2x — 1 = ______ , x 2 —2x + l = ________ o3、 写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项 式为 ______________________ O4、 张大伯从报社以每份0.4元的价格购进了。
份报纸,以每份0.5元的价格售出 了 b 份报纸,剩余的以每份0.2元的价格退冋报社,则张大伯卖报收入 _____ 元。
5、 一 a + 2bc 的相反数是 _________ ,3 -龙= ______________ 6、若多项式2X 2+3X + 7的值为10,贝I 」多项式6X 2+9X -7的值为 _____________ 17、若(加+ 2)宁)厂2是关丁乂y 的六次单项式则加工 ____________ , n =二、选择题8、下而的叙述错误的是( )A 、(a + 2疔的意义是Q 与b 的2倍的和的平方。
B 、 a + 2b 啲意义是a 与决的2倍的和C 、 (―)3的意义是。
的立方除以2b 的商 2bD 、 2@+疔的意义是a 与b 的和的平方的2倍9、下列代数式书写止确的是()13、若A 和B 都是4次多项式,则A+B-定是() A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 14、已知-2加怯与5x m lx n y 是同类项,贝lj () A 、x = 2,y = 1r 3 丨 C> x = —,y = \三、化简下列各题15、5-6(2。
人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。
《整式的加减测试题》 姓名___________班级_____
一、选择题(每题3分,计24分) 1.下列各式中不是单项式的是( ) A .
3a B .-51 C .0 D .a
3
2.甲数比乙数的2倍大3,若乙数为x ,则甲数为( ) A .2x -3 B . 2x+3 C .
21
x -3 D .2
1x+3 3.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )
A .m=-2,n=3
B .m=2,n=3
C .m=-3,n=2
D .m=3,n=2 4.已知3
2
21A a ab =-+,3
2
2
3B a ab a b =+-,则A B +=( ) A .3
2
2
2331a ab a b --+ B .3
2
2
231a ab a b +-+ C .3
2
2
231a ab a b +-+ D .3
2
2
231a ab a b --+ 5.从
减去
的一半,应当得到( ).
A. B. C. D.
6.减去-3m 等于5m 2-3m-5的式子是( )
A .5(m 2-1)
B .5m 2-6m-5
C .5(m 2+1)
D .-(5m 2+6m-5)
8.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题2
22221131(3)(4)2222
x xy y x xy y x -+-
--+-=- +_____________+2
y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A .7xy - B .7xy C .xy - D .xy 二、填空题(每题4分,计32分)
9.单项式2
r π-的系数是 ,次数是 . 10.当 x =5,y =4时,式子x -
2
y
的值是 . 11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来.
要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________ 12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________.
13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.
15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .
16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________. 三、解答题(共28分)
17.化简:(1))343(4232
2
2
2
x y xy y xy x +---+; (2))32(5)5(42
2
x x x x +--. 18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.
n=4
n=3n=2
n=1
(1)第2个图形中,火柴棒的根数是________; (2)第3个图形中,火柴棒的根数是________; (3)第4个图形中,火柴棒的根数是_______; (4)第n 个图形中,火柴棒的根数是________ 19.(8分)证明:代数式
332332376336310a a b a b a a b a b a -+++--+2010的值与b a , 的取值无关。
20.(8分)一个三角形一边长为a+b ,另一边长比这条边大•b ,•第三边长比这条边小a —b . (1)求这个三角形的周长;(2)若a =5,b =3,求三角形周长的值.
四、拓广探索(共16分)
21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……
(1)请你写出第100个单项式;(2)请你写出第n个单项式.
22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.
(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;
(2)若要得到152个等腰三角形,应画_______个正方形;
23.(7分)已知x2—xy=21,xy-y2=12,分别求式子x2-y2与x2—2xy+y2的值.
24.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c)
正方形个数 1 2 3 4 …n
等腰三角形个数
参考答案: 1. D 2. B 3. B 4. D 5. D
6. A
7.
8. C
9. π-,2 10. 3 11. )94(52
3
---x x x
12. 3(x-y)
13. 3a+ab
14.
15. 1-+=n a m
16.6432
-+x x 17.(1)xy -
(2)x x 3562
-- 18.(1)7 (2)10
(3)13 (4)3n+1
19. 2010
20.(1)2a+5b (2)25
21. (1)100
100x
-
(2)n n nx 1
)
1(--
22. (1)56
(2)39
23. 33 9
24. (1)4a+4b+8c
(2)4a+4b+4c (3)6a+6b+4c
第(3)种方法使用的绳子最长。