模糊控制器的设计与MATLAB仿真
- 格式:pdf
- 大小:435.45 KB
- 文档页数:14
模糊控制及其MATLAB仿真教学设计一、模糊控制简介1.1 模糊控制的概念模糊控制是一种基于模糊逻辑思想的控制方法。
与传统的精确控制方法不同,它允许在处理不确定性和模糊性时采用一种定性的方法。
在模糊控制中,运用了模糊集合论的理论和方法,能很好地解决那些传统方法难以解决的非线性、时变、模糊等问题。
1.2 模糊控制的原理模糊控制的基本原理是将问题抽象为一些模糊集合,然后通过模糊推理和模糊逻辑运算实现模糊控制。
模糊控制的输入是经过模糊化后的模糊变量,输出是某个或某些经过去模糊化的控制变量。
1.3 模糊控制的优点模糊控制在面对复杂、非线性的控制问题时往往比传统控制方法更为有效。
其主要优点有: - 基于定性的知识 - 可以有效处理模糊、不确定性问题 - 快速响应和适应性强二、MATLAB仿真教学设计2.1 MATLAB仿真工具MATLAB是一种强大、多功能的科学计算软件,可以在其中进行模拟仿真实验。
在仿真实验中,MATLAB提供了多种工具来方便用户模拟不同的控制算法。
其中,使用Simulink可以创建模型,在其中加入不同的模块来构建模拟仿真实验。
2.2 模糊控制仿真实验可以使用Simulink在MATLAB中创建一个模糊控制的仿真实验。
具体步骤如下:1. 打开MATLAB,点击Simulink新建一个模型; 2. 在Simulink中选择Fuzzy Logic Toolbox,并将Fuzzy Logic Controller加入模型; 3. 加入Fuzzy Logic Controller后,可以进入FIS Editor编辑器,设置输入和输出变量,构建模糊控制规则; 4. 设置好规则之后,添加输入信号源和输出信号源; 5. 进行仿真和调试。
2.3 仿真教学设计为了更好地进行模糊控制的MATLAB仿真教学,可以采用以下设计方案: - 设计实验1:基础概念实验,通过模拟一个简单的控制过程,让学生了解模糊控制基本概念和原理。
模糊控制Matlab仿真说明:a.控制对象为一阶系统,目的是为了简单,调通后可以修改控制对象,控制参数体会各个量对控制效果的影响。
b.一阶系统直接施加输入,如图1所示的控制对象,上升时间会很大。
完全可以使用PID 控制使控制效果满足需要。
这里使用模糊控制来代替PID控制器。
比较一下!模糊控制器设计模糊控制器的计算量是非常大的,我不从数学推导介绍。
讲一下利用matlab的模糊工具箱(Fuzzy logical toolbox)建立基本模糊控制器的方法。
在命令行输入fuzzy,就可以进入模糊推理系统编辑器(fis editor)。
利用这个工具制作一个*.fis的文件。
这个文件就是模糊控制器的核心!在simulink中和以往进行PID控制一样建立模型。
如图1,在simulink 的库里点击Fuzzy Logical toolbox,拖一个Fuzzyl logical controller with rule viewer,双击这个环节,在弹出的对话框的fis Matrix里填入你自己起的*.fis的名字,不需输入后缀fis。
在设计模糊控制器(*.fis)前,要想好,你设计的控制器需要几个输入,几个输出。
比如,本例中拟采用偏差E和偏差变化率Ec这两个量作为模糊控制器的输入,模糊控制器有一个输出。
很明显,这是利用模糊控制器代替PD控制的。
对应的模糊控制器的设计也要具有两个输入一个输出。
利用matlab的Fuzzy logical toolbox 设计模糊控制器(生成*.fis文件)的关键步骤:a.添加输入输出。
图3.fis编辑器默认的具有一个输出,添加第二个输入,并且分别命名为E,Ec,U。
b.确定隶属函数。
双击黄色和绿色的方框就可以进入隶属函数编辑对话框了。
设置E,Ec 的range为[-6,6],u的range为[-1,1]。
然后每一个变量再添加4个输入隶属函数,总共7个。
matlab提供了11种隶属函数,第一次用选择常用的三角形trimf,区别不大的。
简易模糊控制器的设计及仿真摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理 为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。
本文利用MATLAB/SIMULIN 与FUZZYTOOLBO 对给定的二阶动态系统,确定模糊控制器的 结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规 控制器的控制效果,用MATLA 实现模糊控制的仿真。
关键词:模糊控制参数整定MATLAB 仿真二阶动态系统模型:120 30s 1 140s 1采用simulink 图库,实现常规PID 和模糊自整定PID 一.确定模糊控制器结构模糊自整定PID 为2输入3输出的模糊控制器。
在MATLAB 勺命令窗口中键 入fuzzy 即可打开FIS 编辑器,其界面如下图所示。
此时编辑器里面还没有FIS系统,其文件名为Un titled ,且被默认为Man da ni 型系统。
默认的有一个输入, 一个输出,还有中间的规则处理器。
在FIS 编辑器界面上需要做一下几步工作。
Ready首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择 Edit 菜单下的Add Variable/Input菜单项<F1S Name: Untitled FIS Type: And method Or method implicertionAggregationDefuzzificatiorHelpJ{ Close ]File S.A11¥j. ez:Unt it leduntitled (mamdani)output 1Current VariableType Rangeoutputloutput [01]最后,保存系统。
单击File 菜单,选择Export 下的To Disk 项 建的系统命名为PID_auot.fi•定义输入、输出模糊集及隶属函数如下图-FIS Editor: UntitledFile Edit Vie*FJS Mame:Anci mrthod Or method Implication AggregationDetuzzificatioroutputsoutput[01]. dose IReady其次,给输入输出变量命名。
基于MATLAB的模糊控制器的设计与仿真摘要:本文对模糊控制器进行了主要介绍。
提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。
关键词:模糊控制,隶属度函数,仿真,MA TLAB1 引言模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。
与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。
因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。
模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。
本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。
2 模糊控制器简介模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。
显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。
本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。
随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。
长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。
而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。
同时还很容易被实现的,简单而灵活的控制方式。
于是模糊控制理论极其技术应运而生。
3 模糊控制的特点模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。
模糊控制器的设计与MATLAB仿真模糊控制器的设计与MATLAB仿真王桥( 安庆师范学院物理与电气工程学院安徽安庆246011)指导教师:吴文进摘要:随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象与控制器以及控制任务和目的的日益复杂化。
系统的复杂性主要表现在,被控对象模型的不确定性、系统信息的模糊性、高度非线性、输入信息多样化、多层次和多目标的控制要求、计算复杂性和庞大的数据处理以及严格的性能指标。
该设计分析了模糊控制理论原理,给出了常规模糊控制器的设计方法,并在MATLAB中进行仿真实验,实验结果验证了控制器的有效性。
关键词:模糊控制,PID控制,MATLAB仿真1引言智能控制是当前国内外人工智能,自动化,计算机技术领域中的热门话题,受到学术界、工程界和企业界的广泛关注。
正在积极进行有关智能控制的理论方法和应用技术的研究与开发工作,取得了许多新进展和新成果。
智能控制系统的发展,为智能自动化提供了理论基础,必将推动自动化向前发展。
智能控制主要包括以下几个方面,基于知识系统的专家控制、基于模糊系统的智能控制、基于学习及适应性的智能控制、基于神经网络的智能控制系统。
模糊控制指的是应用模糊集合理论统筹考虑控制的一种控制方式。
模糊控制的基本思想是把人类专家对特定的被控对象或过程的控制策略总结成一系列以:“IF(条件)…THEN(作用)”形式表示的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程。
控制作用集为一组条件语句,状态条件和控制作用均为一组被量化了的模糊语言集,如”正大”、”负大”、”高”等。
它们共同构成控制过程的模糊算法,定义模糊子集与建立模糊控制规则、由基本论域转变为模糊集合论域、模糊关系矩阵运算、模糊推理合成与求出控制输出模糊子集、进行清晰化运算,得到精确控制量。
本论文主要是对基于模糊系统的智能控制器中的常规模糊控制器和模糊自整定PID控制器进行设计。
课程名称:智能控制理论与技术授课老师:徐华中学院:自动化学院专业名称:控制科学与控制工程姓名:廖桂潘学号:班级:自研0902班导师姓名:刘教瑜2010年9月1.一个三阶系统201232123b b ba a as ss s s+++++,其中a,b的值由自己设定,该系统具有非线性环节,如下图所示:依据上述条件设计一个模糊控制器:①用MATLAB仿真,得出仿真结果,②并通过改变a、b值对仿真结果的影响;③改变隶属度函数,从仿真结果图分析隶属度函数,模糊化对系统的影响;解:①(1)取b0=0,b1=0,b2=1.5,a1=4,a2=2,a3=0,在SIMULINK里建模如下图所示(2)用GUI建立FISE和EC分别为系统输出误差和误差的变化量,U为控制输出,编辑其隶属度函数如下编辑模糊推理规则如下(3)仿真结果如下2自己选定一个对象,设计一个神经网络控制系统。
解:被控对象为y(k)=0.3y(k-1)+0.2y(k-2)+0.1u(k-1)+0.6u(k-2),采用单神经元PID 控制,控制结构如下图所示:采用有监督的Hebb 学习规则,控制算法及学习算法如下:3131111222333()(1)()()()()/()()(1)()()()()(1)()()()()(1)()()()i i i i i i i I P D u k u k K w k x k w k w k w k w k w k z k u k x k w k w k z k u k x k w k w k z k u k x k ηηη=='=-+'==-+=-+=-+∑∑式中,2123()();()()(1);()()()2(1)(2);x k e k x k e k e k x k e k e k e k e k ==--=∆=--+-K K>0I P D ηηη﹑﹑分别为积分﹑比例﹑微分的学习速率,为神经元比例系数,。
基于MATLAB的模糊PID-Smith控制器的设计与仿真摘要:针对工业控制中大惯性、纯滞后、参数时变非线性受控对象难于控制问题,结合Smith预估算法能有效克服纯滞后、模糊控制鲁棒性较强以及PID控制稳态精度高这三者的优点,提出了一种模糊PID Smith控制器的设计方法,并将其应用于电机网络控制系统中。
MATLAB仿真结果表明,新的控制方案与传统的Smith控制器、Fuzzy PID控制器相比,不仅具有满意的控制性能,而且具有较强鲁棒性和抗干扰性能,稳态精度高,对时变滞后对象具有良好的控制效果。
关键词:网络控制系统;纯滞后;模糊PID;Smith控制;模糊PID Smith控制器0 引言PID控制是一种典型的传统反馈控制器,具有结构简单、鲁棒性好和易于实现等优点,被广泛地应用于工业过程控制。
在网络化控制系统中,传统PID控制器的参数的调整对被控对象的数学模型依赖较大,并且控制过程中的滞后性、控制参数的非线性和高阶性也增加了对控制参数的调整难度。
而模糊控制系统正是由于它不依赖于工业对象模型,具有较强的鲁棒性,近年来被广泛的应用到网络化控制系统领域。
本文在模糊PID控制的基础上,结合传统的Smith控制对时滞过程控制的有效性,提出了模糊PID Smith控制方案,并对直流伺服电机控制系统进行实例仿真分析,证明了该方案的有效性。
1 模糊PID控制器的设计1.1 模糊PID控制器PID参数模糊自整定是在常规PID控制的基础上,应用模糊集合理论建立参数K\-p、K\-i、K\-d与偏差e和偏差变化率ec 间的函数关系。
其结构图如图1所示。
参数K\-p、K\-i、K\-d与偏差e和偏差变化率ec间的函数关系如下:K\-p= K′\- p+ΔK\-p= K′\-p+{e,ec }\-pK\-i = K′\-i+ΔK\-i= K′\-i+{e,ec }\-iK\-d= K ′\-d+ΔK\-d= K′\-d+{e,ec }\-d其中,K′\-p,K′\-i,K′\-dΔK\-pΔK\-iΔK\-d为参数的修正值。