模糊控制在MATLAB中的实现
- 格式:ppt
- 大小:856.50 KB
- 文档页数:40
用 Matlab 的 Fuzzy 工具箱实现模糊控制Matlab, Fuzzy, 模糊控制, 工具箱用Matlab 中的Fuzzy 工具箱做一个简单的模糊控制,流程如下:1、创建一个FIS (Fuzzy Inference System ) 对象,a = newfis(fisName,fisType,andMethod,orMethod,impMethod, aggMethod,defuzzMethod)一般只用提供第一个参数即可,后面均用默认值。
2、增加模糊语言变量a = addvar(a,'varType','varName',varBounds)模糊变量有两类:input 和output。
在每增加模糊变量,都会按顺序分配一个index,后面要通过该index 来使用该变量。
3、增加模糊语言名称,即模糊集合。
a = addmf(a,'varType',varIndex,'mfName','mfType',mfParams)每个模糊语言名称从属于一个模糊语言。
Fuzzy 工具箱中没有找到离散模糊集合的隶属度表示方法,暂且用插值后的连续函数代替。
参数mfType 即隶属度函数(Membership Functions),它可以是Gaussmf、trimf、trapmf等,也可以是自定义的函数。
每一个语言名称也会有一个index,按加入的先后顺序得到,从 1 开始。
4、增加控制规则,即模糊推理的规则。
a = addrule(a,ruleList)其中ruleList 是一个矩阵,每一行为一条规则,他们之间是ALSO 的关系。
假定该FIS 有N 个输入和M 个输出,则每行有N+M+2 个元素,前N 个数分别表示N 个输入变量的某一个语言名称的index,没有的话用0 表示,后面的M 个数也类似,最后两个分别表示该条规则的权重和个条件的关系,1 表示AND,2 表示OR。
1.模糊控制的相关理论和概念1.1 模糊控制的发展模糊控制理论是在美国加州伯克利大学的L. A.Zadeh教授于1965年建立的模糊集合论的数学基础上发展起来的。
之后的几年间Zadeh又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了基础。
1975年, Mamdan和Assilian创立了模糊控制器的基本框架,并用于控制蒸汽机。
1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。
20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。
到20世纪90年代初,市场上已经出现了大量的模糊消费产品。
近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。
1.2 模糊控制的一些相关概念用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数,用A(x) 表示,它满足:A(x)用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函数A(x)模糊系统是一种基于知识或基于规则的系统。
它的核心就是由所谓的IF-THEN规则所组成的知识库。
一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。
例如:如果一辆汽车的速度快,则施加给油门的力较小。
这里的“快”和“较小”分别用隶属度函数加以描述。
模糊系统就是通过组合IF-THEN规则构成的。
构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。
不同的模糊系统可采用不用的组合原则。
模糊控制在matlab中的实例
MATLAB 是一种广泛使用的数学软件,可以用于模糊控制的研究和应用。
以下是一些在 MATLAB 中的模糊控制实例:
1. 模糊控制器的设计:可以通过建立模糊控制器的数学模型,使用 MATLAB 进行建模和优化,以实现精确的控制效果。
2. 模糊控制应用于电动机控制:可以使用 MATLAB 对电动机进行模糊控制,以实现精确的速度和位置控制。
3. 模糊控制在工业过程控制中的应用:在工业过程中,可以使用模糊控制来优化生产过程,例如温度控制、流量控制等。
4. 模糊控制在交通运输中的应用:在交通运输中,可以使用模糊控制来优化车辆的行驶轨迹和速度,以提高交通运输的安全性和效率。
5. 模糊控制在机器人控制中的应用:可以使用模糊控制来优化机器人的运动和操作,以实现更准确和高效的操作。
这些实例只是模糊控制应用的一部分,MATLAB 作为一种强大的数学软件,可以用于各种模糊控制的研究和应用。
如何利用Matlab进行模糊控制引言近年来,随着科技的不断发展,模糊控制作为一种重要的控制方法,在各个领域得到了广泛的应用。
而Matlab作为一款功能强大的数学工具软件,对于模糊控制的实现提供了便捷的支持。
本文将介绍如何利用Matlab进行模糊控制,以及其在实际应用中的优势和局限性。
一、模糊控制简介模糊控制是一种基于模糊逻辑的控制方法,它通过将模糊规则应用于控制系统,使其能够对不确定性和模糊信息进行处理。
与传统的精确控制方法相比,模糊控制更适用于处理复杂系统或无法精确建模的系统。
二、Matlab中的模糊控制工具箱Matlab提供了专门的模糊控制工具箱,可以方便地实现模糊控制系统的建模、仿真和优化等操作。
在Matlab的模糊控制工具箱中,主要包括两个核心部分:模糊推理引擎和模糊控制器。
1. 模糊推理引擎模糊推理引擎是模糊控制系统的核心部分,它负责根据输入和模糊规则,对系统进行推理和输出控制量。
在Matlab中,可以使用命令"newfis"来创建一个新的模糊控制系统,然后通过定义输入和输出变量、设定隶属函数和模糊规则等步骤,来构建一个完整的模糊控制系统。
2. 模糊控制器模糊控制器是模糊控制系统的具体实现,它将模糊推理引擎与输入输出之间的映射关系结合起来。
在Matlab中,可以使用命令"newfis"创建一个新的模糊控制系统,然后使用"addInput"和"addOutput"来添加输入和输出变量,最后通过设定隶属函数和模糊规则等步骤,来实现模糊控制器的搭建。
三、模糊控制的实际应用模糊控制在实际应用中有着广泛的应用领域,例如机器人控制、汽车导航、电力系统等。
下面将以一个模拟小车控制的实例来介绍如何利用Matlab进行模糊控制。
假设有一个小车需要根据距离和角度来控制其行驶方向和速度。
首先要定义输入和输出变量,这里我们将距离划分为近、中、远三个模糊集,角度划分为左、中、右三个模糊集,行驶方向划分为左转、直行、右转三个模糊集,行驶速度划分为慢、中、快三个模糊集。
引用如何在MATLAB下把模糊推理系统转化为查询表(原创)Matlab 2009-12-26 22:05:01 阅读161 评论0 字号:大中小订阅引用foundy的如何在MATLAB下把模糊推理系统转化为查询表(原创)李会先摘要:该文论述了将MATLAB下调试成功的模糊逻辑转换为查询表的一种技巧,这种技巧不直接使用MATLAB的矩阵计算方法,操作者多数情况下只需点击鼠标就可完成任务,效率比较高,该方法使用MATLAB下的系统测试工具,收集构造查询表所需的数据资料,文中以MATLAB中的水位模糊控制演示模型为例,把该系统的模糊控制推理模块用在其基础上生成的查询表代替后再进行水位控制仿真,控制效果与模糊推理模块在线推理控制是一致的。
关键词:模糊控制;查询表;MATLAB;Simulink; 系统测试Abstract:This article discuss a skill that make a translation from fuzzy logic system to Lookup Table in Matlab,It doesn't use matrix computing, user need only to drag and draw the mouse completing this task,It's a efficiency method which to collect data for Lookup Table construction from a fuzzy controller by SystemTest Toolbox in Matlab,in the article,I will discuss the skill by a demo which is the Water Level Control in Tank in the Fuzzy logic Toolbox,at last,I simulate the Water Control in Tank instead of the Fuzzy Controller with the Lookup Table which I have constructed,the test results is verywell.Keywords: Fuzzy Logic, Matlab,Simulink,Lookup Table,SystemTest1. 引言在MATLAB/Simulink下,构建模糊逻辑系统模型和调试其推理规则都是很方便的[3][4],我们当然不希望在MATLAB下的仿真工作仅仅用于仿真目的,如果实际产品设计能继承仿真的工作成果,将事半功倍。
模糊控制matlab模糊控制是一种基于模糊数学理论的控制方法,它可以有效地处理非线性系统和模糊系统的控制问题。
在模糊控制中,通过将输入、输出和中间变量用模糊集合表示,设计模糊逻辑规则以实现控制目标。
本文将介绍如何用Matlab实现模糊控制,并通过实例讲解其应用和效果。
1. 模糊集合的表示在Matlab中,我们可以使用fuzzy工具箱来构建和操纵模糊系统。
首先,我们需要定义输入和输出的模糊集合。
例如,如果我们要控制一个直线行驶的自动驾驶汽车,可以定义速度和方向作为输入,定义方向盘角度作为输出。
我们可以将速度和方向分别划分为缓慢、中等、快速三个模糊集合,将方向盘角度划分为左转、直行、右转三个模糊集合。
可以使用Matlab的fuzzy工具箱中的fuzzy集合函数实现:slow = fuzzy(fis,'input',[-10 -10 0 20]);gap = fuzzy(fis,'input',[0 20 60 80 100]);fast = fuzzy(fis,'input',[60 80 110 110]);其中,fis为模糊系统对象,输入和输出的模糊集合分别用fuzzy函数定义,分别用输入或输出、模糊集合变量名、模糊集合界限参数表示,如fuzzy(fis,'input',[-10 -10 0 20])表示定义一个输入模糊集合,变量名为slow,其界限参数为[-10 -10 0 20],即表示此模糊集合上下界是[-10,-10]和[0,20]。
2. 设计模糊控制规则在Matlab中,可以使用fuzzy工具箱的ruleviewer函数来设计模糊控制的规则库。
规则库由模糊条件和模糊结论构成,用if-then形式表示。
例如,定义类别均为slow和keep的输入,输出为类别均为left的控制操作的规则如下:rule1 = "if (slow is slow) and (keep is keep) then (left is left);";其中,slow和keep为输入的模糊变量名,left为输出的模糊变量名。
使用Matlab技术进行模糊控制的基本方法随着科技的不断发展,控制系统越来越广泛地应用于各个领域,帮助我们解决实际问题。
在控制系统中,模糊控制技术因其适应性强、鲁棒性好等特点而备受关注。
而Matlab作为一个强大的计算工具,为我们提供了许多实现模糊控制的功能。
本文将介绍使用Matlab技术进行模糊控制的基本方法。
一、模糊控制的基本理论在介绍使用Matlab进行模糊控制的方法之前,我们先来了解一下模糊控制的基本理论。
模糊控制是一种基于模糊逻辑的控制方法,它模拟人类的思维方式进行控制,通过建立模糊规则库来实现对系统的控制。
在模糊控制中,输入和输出之间的关系由一组模糊规则来描述,这些模糊规则可以通过模糊推理进行计算得到系统的输出。
模糊控制主要有三个基本步骤:模糊化、模糊推理和去模糊化。
模糊化是将输入的实际值通过模糊隶属函数映射成模糊集合。
模糊推理则是根据模糊规则库进行推理计算,得到模糊输出。
最后,去模糊化将模糊输出转换为实际的控制量。
二、使用Matlab进行模糊控制的步骤1. 定义模糊集合和模糊规则库使用Matlab进行模糊控制的第一步是定义模糊集合和模糊规则库。
模糊控制中的模糊集合可以通过Matlab的fuzzymf函数来定义,它可以根据实际问题选择三角形、梯形、高斯函数等不同形状的隶属函数。
模糊规则库则是描述输入和输出之间关系的集合,它由一组模糊规则构成。
在Matlab中,可以使用fuzzylut函数来定义模糊规则库。
这个函数需要指定输入和输出的隶属函数以及规则的后件。
2. 模糊化和模糊推理定义好模糊集合和模糊规则库之后,接下来就是进行模糊化和模糊推理的计算了。
在Matlab中,可以使用fuzzy函数进行模糊化的计算。
这个函数需要输入模糊集合、输入的隶属函数和对应的输入值,然后计算得到模糊输入。
模糊推理可以通过fuzzy函数结合模糊规则库进行计算。
这个函数需要输入模糊规则库、模糊输入和输出的隶属函数,然后计算得到模糊输出。
模糊控制在matlab中的实例模糊控制是一种应用广泛的控制方法,它可以处理那些难以精确建立数学模型的系统。
在Matlab中,使用Fuzzy Logic Toolbox工具箱可以方便地实现模糊控制系统。
以下是一个简单的模糊控制器示例,控制一个小车的速度和方向,使得其能够沿着预设的轨迹行驶。
1. 首先,定义输入和输出变量。
这里我们需要控制小车的速度和转向角度。
代码如下:```speed = newfis("speed");speed = addvar(speed,"input","distance",[0 10]);speed = addmf(speed,"input",1,"slow","trimf",[0 0 5]);speed = addmf(speed,"input",1,"fast","trimf",[5 10 10]); speed = addvar(speed,"output","velocity",[-10 10]);speed = addmf(speed,"output",1,"reverse","trimf",[-10-10 -2]);speed = addmf(speed,"output",1,"stop","trimf",[-3 0 3]); speed = addmf(speed,"output",1,"forward","trimf",[2 10 10]);angle = newfis("angle");angle = addvar(angle,"input","position",[-1 1]);angle = addmf(angle,"input",1,"left","trimf",[-1 -1 0]);angle = addmf(angle,"input",1,"right","trimf",[0 1 1]); angle = addvar(angle,"output","steering",[-1 1]);angle = addmf(angle,"output",1,"hard_left","trimf",[-1 -1 -0.5]);angle = addmf(angle,"output",1,"soft_left","trimf",[-1 -0.5 0]);angle = addmf(angle,"output",1,"straight","trimf",[-0.5 0.5 0.5]);angle = addmf(angle,"output",1,"soft_right","trimf",[0 0.5 1]);angle = addmf(angle,"output",1,"hard_right","trimf",[0.5 1 1]);```2. 然后,定义模糊规则。