汽车起重机-液压部分
- 格式:pptx
- 大小:2.18 MB
- 文档页数:45
汽车起重机支腿液压系统设计引言汽车起重机是一种能够进行货物起升、搬运的重型机械设备。
为了确保其安全运行和稳定性,起重机上配备了支腿系统,用于支撑整个机身,使机身保持平衡和稳定。
支腿液压系统是起重机支腿的重要组成部分,本文将介绍汽车起重机支腿液压系统的设计。
液压系统工作原理液压系统采用液体的流动来传递信号和能量,主要由液压泵、液压缸、液压阀和液压油箱等组成。
在汽车起重机支腿液压系统中,液压泵通过驱动液压油流动,产生压力,将能量传递给液压缸,从而实现支腿的伸缩和支撑。
液压系统设计要点1.液压泵选择为了满足起重机支腿液压系统的工作需求,需要选择合适的液压泵。
液压泵的选择应根据液压系统的工作流量和工作压力来确定。
工作流量与液压缸的活塞面积和速度相关,工作压力与液压系统的负荷和阻力相关。
2.液压缸设计液压缸是起重机支腿液压系统的核心部件,主要用于驱动支腿的伸缩和支撑。
液压缸的设计应考虑到起重机的用途和工作条件。
液压缸的活塞直径和行程决定了液压缸的工作力和位移,需要根据起重机的负荷和高度来选择合适的液压缸。
3.液压阀选择液压阀是液压系统中的控制元件,主要用于调节液压系统的压力和流量,实现液压缸的伸缩和支撑等功能。
液压阀的选择应根据液压系统的需求来确定,常见的液压阀有溢流阀、比例阀和换向阀等。
4.液压油选用液压油是液压系统中的工作介质,负责传递能量和冷却液压系统。
液压油的选用应考虑到起重机的工作环境和温度,一般应选择具有良好的抗氧化性、抗磨性和粘温性的液压油。
5.液压系统的安全措施为了确保起重机支腿液压系统的安全运行,需要在设计中考虑相应的安全措施。
例如,在液压系统中加装过载保护装置,当超负荷时能够自动停止液压泵的运行,避免对起重机和人员的伤害。
此外,还需要在液压系统中设置液压缸行程限位开关,防止液压缸过度伸缩或缩回,影响起重机的工作效果和安全性。
总结汽车起重机支腿液压系统是重要的功能性系统,能够实现起重机的支撑和平衡。
汽车起重机支腿结构液压支腿的几种形式
1.单支腿结构:单支腿结构是最简单的液压支腿形式,它由一个液压
支柱和一个支腿组成。
支柱通过液压系统控制,可以实现液压缸的伸缩,
从而调整支腿的高度。
这种结构形式适用于吊臂较短、起重能力较小的小
型汽车起重机。
2.两支腿结构:两支腿结构是常见的汽车起重机液压支腿形式,它由
两个液压支柱和两个支腿组成。
两个支柱可以独立控制,分别调整两个支
腿的高度,以保证机身的平衡和稳定性。
这种结构形式适用于起重能力较
大的中型汽车起重机。
3.四支腿结构:四支腿结构是用于大型汽车起重机的常见液压支腿形式。
它由四个液压支柱和四个支腿组成,每个支柱可以独立控制,以调整
相应支腿的高度。
四支腿结构能够提供更好的平衡和稳定性,确保起重机
在起重时不会倾斜或晃动。
4.可伸缩支腿结构:可伸缩支腿结构是一种特殊的液压支腿形式,它
可以根据工作环境的需要调整支腿的长度。
这种结构通常由多段组合而成,每段的长度可以通过液压系统的控制实现伸缩。
可伸缩支腿结构适用于在
不同地形、不同高度的工作环境中使用的汽车起重机。
总的来说,液压支腿的结构形式多样,不同形式适用于不同类型和规
格的汽车起重机。
通过液压系统的控制,可以灵活调整支腿的高度和长度,以提供更好的支撑和稳定性,保证起重机的安全和效率。
汽车起重机液压系统在吊车将物体调起回升工作过程中发挥关键性的作用。
为了保证汽车起重机液压系统的工作的稳定性,吊车司机在实际操作中要做到液压系统的分流方式之间转换的流畅。
只有保证这个的前提下,才能保证汽车起重机在工作全程中的安全性。
汽车起重机液压系统的稳定型设计液压系统的启动升起的过程,是根据调整液压油泵和换向按键来实现调速的;这样既能确保液压机的正常工作又不容易发生意外情况。
这种设计既简易又安全可靠,也可保持起吊机构工作速度的细调。
为了稳定操作过程中液压传动系统,有效的开展吊装工作,往往在传送过程中对液压设备的马达供油系统进行调整。
当吊车起重操作系统的升起力度较大时,还要应用到马达降速作用来开展适度的调整,具体的实际操作中还会应用到作用力降低设。
液压系统一般情况下,吊车厂家的液压传动由起升机构,回转机构,变幅机构,伸缩机构和支腿部分等构成。
液压传动系统中的执行机构是根据阀门来完成控制的,换向阀的阀芯和阀体之间会存在这一些缝隙,这会造成换向阀门內部出现泄漏,只是依靠换向阀门是不可能让执行机构在处在不工作状况之下而不受外界影响的,因而还要运用单向阀来操纵液压油的流动,进而安全可靠地使操纵执行元件能停在某处而没受外界影响。
液压汽车起重机的回路设计汽车起重机回转回路的过程中的工作主要是由液压泵、换向阀、平衡阀、液压离合器和液压马达组成。
在这些过程中,回转回路可以充当是吊臂平移物体的功效。
但是在这操作过程中物体移动范围有限。
在采用低速大扭矩液压马达可以省去或减小减速装置,因此机构很紧凑。
但低速大扭矩液压马达成本高,使用可靠性不如高速液压马达,加之可以采用结构紧凑、传动比大的蜗轮传动,高速液压马达在起重机的回转机构中使用非常广泛。
所以总的来说,汽车起重机的回转机构设计为高速液压马达加装制动器的回转。
依据各起重机厂家回路的分析和试验总结,动力源采用双联齿轮泵,是由起重机发动机通过底盘上的分动箱驱动所造成的。
液压泵从油箱中吸油,输出的液压油经手动阀组输送到各个执行元件。
QY16型汽车起重机下车液压系统优化设计汽车起重机的液压系统是其重要组成部分,起着保证起重机正常运行以及实现起重操作的关键作用。
针对QY16型汽车起重机的液压系统进行优化设计,可以提高其工作效率和运行稳定性。
本文将从液压系统的元件选择、系统参数设计、液压系统工作原理等方面进行优化设计。
首先,对于液压系统的元件选择,应选择具有优良性能、稳定可靠的元件。
例如选择高品质的液压泵,能够提供充足的液压力和流量,保证起重机的起重能力。
同时,选用优质的液压油缸和阀门,以提高系统的稳定性和可靠性。
其次,对于系统参数设计,应根据QY16型汽车起重机的具体需求和工作环境进行合理的设计。
液压系统的工作压力、流量和速度等参数需要根据实际情况进行调整,以满足起重机的工作要求。
同时,还应注重系统的安全性设计,如设置安全阀、溢流阀等保护装置,以预防系统超载和压力过高的情况发生。
此外,液压系统的工作原理对于优化设计也非常重要。
液压系统主要由液压泵、液压缸、控制阀和液压油箱等组成。
在起重过程中,液压泵从液压油箱吸油,通过控制阀将液压油送入液压缸,从而实现起重操作。
因此,优化液压系统的工作原理,可以提高系统的工作效率和运行稳定性。
例如,采用双泵并联工作模式,可以提高系统的流量和起重速度;通过合理调整液压缸的尺寸,可以提高系统的起重能力和稳定性。
最后,对于液压系统的优化设计,还需要进行实际的测试和验证。
通过在实际起重场景下的验证测试,可以进一步确认液压系统的性能和可靠性,以及针对优化设计提出合理的改进建议。
综上所述,QY16型汽车起重机下车液压系统的优化设计,需要在元件选择、系统参数设计、工作原理等方面进行综合考虑,以提高起重机的工作效率和运行稳定性。
通过科学合理地设计液压系统,可以提高起重机的负载能力、运行速度和操作稳定性,提升起重机的整体性能,满足实际工作需求。
汽车起重机的液压系统设计1.液压系统的基本组成液压泵负责将液压油从油箱中吸出,通过压力油路输送至执行元件,实现起重机的各种功能。
液压泵的选择应根据起重机的动力需求和工作压力来确定。
执行元件主要包括液压缸和液压马达,用于转化液压能为机械能。
液压缸负责推动伸缩臂的伸缩和旋转平台的旋转,液压马达则用于提供旋转力矩。
控制元件主要包括液控阀、压力阀、流量阀等,用于控制液压系统的流量、压力和方向。
液控阀用于控制执行元件的运动方向,压力阀用于控制系统的工作压力,流量阀用于调节系统的流量。
2.系统设计考虑的主要因素(1)起重机的工作负荷和工作范围:根据起重机的工作负荷确定液压系统的工作压力和流量,根据起重机的工作范围确定液压缸和液压马达的尺寸。
(2)系统的平稳性和安全性:起重机的运行要求平稳性高,液压系统设计应考虑减少振动和冲击的因素,采用减压阀和缓冲装置等来保证系统的稳定性。
同时,系统设计应考虑到安全性,通过设置安全装置来保护起重机在紧急情况下的安全运行。
(3)系统的能效:液压系统的工作效率对于起重机的能耗和功率需求有着重要影响。
设计时应合理选择液压泵和马达的类型和规格,以提高系统的能效。
(4)系统的维护和保养:液压系统的维护和保养是确保系统长期稳定运行的关键。
设计时应考虑到易于维护和保养的因素,如设备的布局合理化、易于更换和维修的部件等。
3.系统设计步骤(1)确定起重机的工作要求和技术指标,包括工作负荷、工作范围、速度等。
(2)根据需求计算液压系统的工作压力、流量和功率等参数。
(3)选择适合的液压泵、液压缸和液压马达等执行元件,并计算其尺寸。
(4)选择合适的液控阀、压力阀、流量阀等控制元件,并设计其控制电路。
(5)设计液压系统的油路,包括油箱容积、油管路的布置和连接方式等。
(6)制定液压系统的维护保养计划,包括定期更换液压油、清洗油路、检查和更换部件等。
总之,汽车起重机的液压系统设计需要全面考虑起重机的工作要求和技术指标,并根据液压原理和技术规范来选择和设计各个组成部分,以实现系统的高效、平稳和安全运行。
汽车起重机液压系统工作原理首先,液压泵是液压系统的动力源,通过转动传动装置和输入端的动力源(如发动机)相连,将机械能转变为液体能量。
液压泵将液体从液压油箱抽取出来,通过液压管路输送到液压缸。
液压缸是起重机液压系统的执行机构,在液压系统中起到将液压能量转换为机械能量的作用。
液压缸一般由活塞、活塞杆和缸体组成。
当液体从液压泵进入液压缸的一侧时,液压缸的另一侧将存储在其中的液体排出。
液体在液压缸中的压力会使活塞向外移动,驱动起重机移动或提升物体。
液压阀是起重机液压系统的控制装置,用于控制液体的流动和液压系统的工作。
液压阀根据液体的压力和流量,来控制液体进出液压缸的速度、方向和压力。
例如,当需要控制起重机提升速度时,液压阀会调整液压泵输送的液体流量;当需要控制起重机移动方向时,液压阀会控制液压缸的液体进出口。
液压油箱是液压系统的储液装置,用于储存液体并对其进行冷却。
液压油箱是一个密封的容器,内部装有液压油,用于向液压泵提供液体。
液压油箱还设有油温传感器和油液过滤器,用于监测和调节液压油的温度和质量,保证液压系统的正常运行。
在汽车起重机液压系统的工作过程中,液压泵抽取液体从液压油箱进入液压缸,使活塞移动,从而实现吊运物体的目的。
液体的压力和流量通过液压阀控制,可以根据需求进行调节。
当液体进入液压缸的一侧时,另一侧的液体被排出液压缸,并返回液压油箱循环使用。
总结起来,汽车起重机液压系统的工作原理是利用液压泵将机械能转换成液体能量,通过液压阀控制液体的压力和流量,驱动液压缸实现起重机的移动和吊运物体的功能。
液压油箱用于储存液体并对其进行冷却,确保液压系统的正常运行。
这种工作原理使得起重机具有稳定、高效、精确的起重能力,广泛应用于各个领域。
汽车起重机液压系统工作原理以QL2-8型汽车起重机的液压系统为例,说明其工作原理。
1.液压系统的功能起重机的起升机构、变幅机构、旋转机构、臂架伸缩机构和支腿收放机构均采用液压传动,其原理参见液压系统图10-4。
ZBD40型定量泵由装在底盘上的取力箱带动,直接从油箱中吸油,经过滤油器2,输出压力油。
改变发动机的转速,可改变泵的排出油量,从而对各机构的工作速度进行调节。
手动换向阀3可控制压力油的流向。
联合阀4操纵上车各机构(起升、变幅、旋转和臂架伸缩机构),二联阀5操纵支腿收放。
系统工作压力由溢流阀6,7控制。
上车机构的油路相互串联,可实现一个机构单独动作或几个机构的组合动作。
二联阀3和主控四联阀4中的各手动换向阀都有节流作用,因而可在一定范围内实现机构运动的无级调速。
护作用。
(6)平衡阀10、12、14都采用同一结构。
平衡阀10,12保证变幅和伸缩臂机构匀速运动,同时起液压锁的作用。
一旦与油缸连接的管路破裂,可防止吊臂突然下落或缩回造成事故。
平衡阀14保证吊载匀速下降,防止在重力作用下运动速度过快,造成事故。
现以起升机构为例,说明平衡阀的工作原理(见图10-5)。
平衡阀是由单向阀1和内泄漏的远控顺序阀2组成。
当手动换向阀拨至左位时,油泵输出压力油项开单向阀,无阻碍地进入油马达,马达带动卷筒旋转来起升吊载,回油经换向阀返回油箱。
当换向阀拨到右位时(如图10-5所示状态),油泵输出的压力油直接经换向阀进入油马达的另一端。
而马达回油无法再经单向阀1返回,必须打开顺序阀2才能将回路接通。
顺序阀2的控制油路与马达进油的管路相通,这时控制管路中的高压油进入D腔。
将顺序阀2中的阀杆B向左推移,打开阀杆上锥形体E处的环形通道,于是马达回油经此流出,再经换向阀返回油箱,马达带动卷筒反向旋转下降吊物。
由于重力作用,吊物有加速下降并带动马达加速旋转的趋势。
当马达的排油量大于油泵的供油量时,马达的进油压力减小,甚至出现负压,顺序阀2控制油路的油压也相应变化,顺序阀2的阀杆B在弹簧C的作用下,阀杆锥体E处的环形通道变小,使马达经此通道返回油箱的流量减小,直到与泵的供油量相适应时为止,从而使马达的转速(相关吊载的下降速度〕始终保持匀速。
汽车起重机液压系统工作原理及性能概述液压起重机系统主要由液压泵、液压缸、控制阀、油箱、油管路等组成。
系统通过泵将液体从油箱中抽取并提供给液压缸,通过控制阀调节液体的流动方向和流量,进而实现起重机各种动作,比如起升、变幅、回转和伸缩等。
起重机液压系统相比其他传动系统具有几个优点:一是可靠性高,液压元件工作稳定可靠,容易维护;二是传动效率高,液体传递压力时能量损失较小;三是运动平稳,液体的压力传递和控制较为快速灵活;四是适应性广,液压系统可以根据不同的工况和工作要求调节工作流量和压力。
液压泵是液压系统的动力源,它产生流体的流动和压力。
液压泵通常采用齿轮泵、柱塞泵或液压马达等,能够将外界输送来的动力源转化为液压系统所需要的流体流动,从而提供力量进行起重机的工作。
液压缸是液压系统中的执行元件,它将液压能转化为机械能。
液压系统中的液压缸主要有升降液压缸、伸缩液压缸和变幅液压缸等,它们通过液压系统的工作产生不同的驱动力和动作。
控制阀是液压系统的控制元件,它根据起重机的工作需求控制液体的流动和压力。
控制阀通常有单向阀、调速阀、电磁阀、换向阀等不同类型,通过连通或切断液压系统的通道,控制液体的流向和流量,从而实现起重机的各种动作。
液压油箱是液压系统中贮存液压油的容器,同时也起到散热、过滤和减压的作用。
液压系统会产生大量的热量,液压油箱通过尺寸适当和散热装置来散热,防止液压油的温度过高。
同时,液压油箱还配有滤油器和回油管路,通过过滤和回收使用的液压油,保持液压油的净化程度和流动性能。
液压油管路是液压系统的血管系统,它将液压泵的输出压力传递到液压缸和控制阀。
液压油管路通常采用高强度和耐磨损的钢管制作,通过液压油管和接头连接,实现液体的传递和控制。
总之,汽车起重机液压系统是利用液体传递压力实现起重机各种动作的重要组成部分。
它的工作原理和性能直接影响到起重机的运行效果和安全性。
一个稳定和有效的液压系统需要具备压力稳定、流量合理、密封可靠、反应灵敏等特点,并需要定期维护和检查,以确保液压系统的可靠性和稳定性。
目录摘要 (1)第1章绪论 (2)1.1国内轮式起重机发展现状 (2)1.2国外轮式起重机发展过程及主要机种 (3)1.3轮式起重机产品的发展趋势 (4)1.4主要工作 (5)第2章起重机技术参数的确定 (6)2.1主要性能参数 (6)2.2Q2-8型汽车起重机参数确定 (6)第3章各液压回路组成原理和性能分析 (8)3.1支腿液压缸收放回路 (8)3.2回转机构液压回路 (10)3.3伸缩机构液压回路 (11)3.4变幅机构液压回路 (12)3.5起升机构液压回路 (13)3.6液压系统的特点 (14)3.7汽车起重机液压系统总成 (15)第4章液压系统计算 (16)4.1汽车起重机液压系统主要液压元件的选择 (16)4.2主要液压辅助装置的选择 (19)总结 (20)参考文献 (21)摘要本次设计的系统是为Q2-8汽车起重机液压系统,它是单作用定量泵系统,采用多路换向阀的串联油路、手动换向阀的合流方式。
本设计论文主要论述了国内外轮式起重机发展概况和发展趋势,并对Q2-8起重机的液压系统进行了设计、计算。
设计的液压系统将泵、马达、液压缸和各种阀有机的组合在一起,以最大化的满足整机的性能。
关键词:汽车起重机;液压系统;设计第1章绪论1.1国内轮式起重机发展现状我国在1957年生产第一台5t机械式汽车起重机到现在己有50年历史,它的生产大致经历了以下几个阶段:1957~1966年以生产5t机械式汽车起重机为主;1967~1976年以生产12t以下小型液压汽车起重机为主;1977~1996,16~50t中大吨位液压汽车起重机产品发展较快。
自1979年开始,我国采用进口汽车底盘和关键液压件自行设计生产出了6t、20t液压汽车起重机之后,国内一些起重机生产厂家采用技贸结合方式,分别引进日本多田野、加藤、美国格鲁夫和德国利勃海尔、克虏伯的起重机产品技术,以合作生产的方式相继制造出25t、35t、45t、50t、80t、125t汽车起重机和25t越野轮胎起重机以及32t、50t、70t全路面起重机。
汽车起重机液压系统的设计1. 概述汽车起重机液压系统是起重机的重要部分,它通过利用液体的特性来实现起重机的升降、回转和伸缩等功能。
本文将介绍汽车起重机液压系统的设计原理、组成部分以及系统的工作流程。
2. 设计原理汽车起重机液压系统的设计基于以下几个原理:2.1. 液体传动原理液压系统利用液体的压力传递力量。
当液体在密闭管道中被压缩时,压力会均匀传递到液体中,使得液体产生推力。
通过将液体推力传递到不同的液压缸或液压马达上,可以实现起重机的升降、回转和伸缩等动作。
2.2. 流体力学原理液压系统利用流体运动产生的能量来提供力量。
当液体通过窄缝或阀门等狭窄通道时,其速度会提高,同时压力也会增加。
通过合理地设计通道和阀门,可以实现流体的加速和减速,从而控制液压系统的动作速度和力量大小。
3. 组成部分汽车起重机液压系统主要由以下几个组成部分构成:3.1. 液压泵液压泵是液压系统的动力源,它通过驱动装置来产生液体压力。
液压泵的工作原理类似于发动机的工作原理,它利用柱塞或齿轮的运动产生压力,并将液体推送到液压系统中。
3.2. 液压缸液压缸是液压系统的执行机构,它通过液体的推力来实现机械部件的运动。
液压缸通常由液压缸筒、活塞和密封装置等部分组成。
当液压缸接受液体的压力作用时,活塞会产生线性运动,从而实现起重机的升降、回转和伸缩等动作。
3.3. 液压阀液压阀是液压系统的控制装置,它通过控制液体的流动方向、流量和压力来控制液压系统的运动。
液压阀通常由阀体、阀芯和操作机构等部分组成。
根据液压系统的需求,液压系统可能会有多个液压阀,用于实现不同的控制功能。
3.4. 液压油箱液压油箱是液压系统的储液装置,它用于存储液压系统所需的液压油。
液压油箱通常由油箱本体、滤油器和油箱盖等部分构成。
液压油箱还可以具备冷却系统,用于控制液压油的温度,以确保液压系统的稳定工作。
4. 系统工作流程汽车起重机液压系统的工作流程如下:4.1. 系统启动:当起重机启动时,液压泵开始工作,产生液体压力。
汽车起重机支腿液压系统设计汽车起重机支腿的液压系统是起重机的重要组成部分,通过液压系统可以实现起重机支腿的伸缩、固定和稳定的功能。
设计合理的液压系统可以提高起重机的稳定性和安全性。
下面,我们将介绍汽车起重机支腿液压系统的设计要点。
1.液压系统的基本原理液压系统是利用液体的不可压缩性来传递力和能量的系统。
在汽车起重机的液压系统中,液压油被泵送到液压缸中,通过液压缸的伸缩来实现支腿的升降。
液压系统还包括液压控制阀、油箱、管路和液压油等组成部分。
2.支腿液压系统的设计要点(1)选用合适的液压泵:液压泵的选择要根据所需的液压油流量和压力来确定。
一般情况下,起重机的支腿液压系统的要求较高,需要选择高压、大流量的液压泵,以满足系统的工作需求。
(2)选用合适的液压缸:液压缸的选用要根据支腿的负载和工作要求来确定。
液压缸的直径和行程要满足工作需求,同时还要考虑到液压缸的结构强度和工作寿命等因素。
(3)设置合适的液压控制阀:液压控制阀的选择和设置要根据支腿的操作方式和工作需求来确定。
一般情况下,需要设置液压控制阀来实现液压缸的伸缩、固定和升降等功能,以满足不同工况下的需要。
(4)设计合理的液压管路:液压管路的设计要考虑液压油的流量和压力损失等因素。
合理的管路设计可以减少液压系统的漏油和能量损失。
(5)选用合适的液压油:液压油的选用要考虑液压系统的工作温度、工作压力和环境条件等因素。
合适的液压油可以提高液压系统的工作效率和寿命。
3.其他注意事项(1)液压系统的设计要满足起重机支腿的工作需求,同时要考虑到安全性和维护性。
(2)液压系统的工作过程需要进行严格的检测和调试,确保系统的正常工作。
(3)定期对液压系统进行维护保养,更换液压油和密封件,以确保系统的可靠性和稳定性。
总结起来,汽车起重机支腿液压系统的设计要点包括选择合适的液压泵和液压缸、设置合适的液压控制阀、设计合理的液压管路、选用合适的液压油,同时还要考虑系统的安全性和维护性。