K MEANSK均值聚类算法
- 格式:ppt
- 大小:5.13 MB
- 文档页数:34
有关k-均值聚类算法的理解1.K-均值聚类算法的历史:聚类分析作为一种非监督学习方法,是机器学习领域中的一个重要的研究方向,同时,聚类技术也是数据挖掘中进行数据处理的重要分析工具和方法。
1967 年MacQueen 首次提出了K 均值聚类算法(K-means算法)。
到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。
它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数迄今为止,很多聚类任务都选择该经典算法,K-means算法虽然有能对大型数据集进行高效分类的优点,但K-means算法必须事先确定类的数目k,而实际应用过程中,k 值是很难确定的,并且初始聚类中心选择得不恰当会使算法迭代次数增加,并在获得一个局部最优值时终止,因此在实际应用中有一定的局限性。
半监督学习是近年来机器学习领域的一个研究热点,已经出现了很多半监督学习算法,在很多实际应用中,获取大量的无标号样本非常容易,而获取有标签的样本通常需要出较大的代价。
因而,相对大量的无标签样本,有标签的样本通常会很少。
传统的监督学习只能利用少量的有标签样本学习,而无监督学习只利用无标签样本学习。
半监督学习的优越性则体现在能同时利用有标签样本和无标签样本学习。
针对这种情况,引入半监督学习的思想,对部分已知分类样本运用图论知识迭代确定K-means 算法的K值和初始聚类中心,然后在全体样本集上进行K-均值聚类算法。
2. K-算法在遥感多光谱分类中的应用基于K-均值聚类的多光谱分类算法近年来对高光谱与多光谱进行分类去混的研究方法很多,K-均值聚类算法与光谱相似度计算算法都属于成熟的分类算法.这类算法的聚类原则是以数据的均值作为对象集的聚类中心。
均值体现的是数据集的整体特征,而掩盖了数据本身的特性。
无论是对高光谱还是对多光谱进行分类的方法很多,K-均值算法属于聚类方法中一种成熟的方法。
使用ENVI将多光谱图像合成一幅伪彩色图像见图1,图中可以看出它由标有数字1 的背景与标有数字2 和3的两种不同的气泡及标有数字4的两个气泡重叠处构成。
kmeans 算法K-Means算法,也称为K均值聚类算法,是一种无监督机器学习方法,用于将数据集分成K个簇群。
该算法的核心思想是将数据点划分为不同的簇群,使得同一簇群内的点相似度尽可能高,而不同簇群之间的相似度尽可能低。
该算法可用于许多领域,如计算机视觉、医学图像处理、自然语言处理等。
1.工作原理K-Means算法的工作原理如下:1. 首先,从数据集中随机选择K个点作为初始簇群的中心点。
2. 接下来,计算每个数据点与K个中心点之间的距离,并将它们归入距离最近的簇群中。
这个过程称为“分配”。
3. 在所有数据点都被分配到簇群后,重新计算每个簇群的中心点,即将簇群中所有数据点的坐标取平均值得出新的中心点。
这个过程称为“更新”。
4. 重复执行2-3步骤,直到簇群不再发生变化或达到最大迭代次数为止。
2.优缺点1. 简单易懂,实现方便。
2. 可用于处理大量数据集。
1. 随机初始化可能导致算法无法找到全局最优解。
2. 结果受到初始中心点的影响。
3. 对离群值敏感,可能导致簇群数量不足或簇群数量偏多。
4. 对于非球形簇群,K-Means算法的效果可能较差。
3.应用场景K-Means算法可以广泛应用于许多领域,如:1. 机器学习和数据挖掘:用于聚类分析和领域分类。
2. 计算机视觉:用于图像分割和物体识别。
3. 自然语言处理:用于文本聚类和词向量空间的子空间聚类。
4. 财务分析:用于分析财务数据,比如信用评分和市场分析。
5. 医学图像处理:用于医学影像分析和分类。
总之,K-Means算法是一种简单有效的聚类算法,可用于处理大量数据集、连续型数据、图像和文本等多种形式数据。
但在实际应用中,需要根据具体情况选择合适的簇群数量和初始中心点,在保证算法正确性和有效性的同时,减少误差和提高效率。
K均值聚类算法(K-means clustering algorithm)是一种常用的无监督机器学习算法,常用于将数据集划分成具有相似特征的类别。
K均值聚类算法的核心思想是根据样本之间的相似性(距离)将样本划分到不同的类别中,使得同一类别内的样本相似度最大,不同类别之间的样本相似度最小。
下面是一些关于K均值聚类算法的相关参考文献,讨论了K均值聚类算法的性质、改进方法以及在实际应用中的应用情况。
1.“A Comparative Study on K-means Algorithm” (2004) by M. Hamerlyand C. Elkan. 该文献通过对K均值算法进行了深入的研究,探讨了不同初始点对聚类效果的影响,同时比较了K均值算法与其他聚类算法的性能。
2.“K-means++: The Advantages of Careful Seeding” (2007) by D. Arthurand S. Vassilvitskii. 该文献提出了一种改进的K均值算法初始点选择方法,称为K-means++。
通过使用K-means++方法选择初始点,可以更快地收敛到全局最优解。
3.“A Kernel K-means Clustering Algorithm” (2004) by I. Gath and A. B.Geva. 该文献提出了一种基于核函数的K均值聚类算法,在处理非线性数据时表现出色。
通过将样本数据映射到高维特征空间,可以更好地解决非线性聚类问题。
4.“Robust K-means Clustering with Outliers” (2004) by C. C. Aggarwaland P. S. Yu. 该文献讨论了K均值聚类算法在存在离群点(outliers)情况下的性能问题,并提出了一种鲁棒性更强的K均值聚类算法。
5.“A Comparative Study of K-means Variants on Clustering Algorithm”(2012) by N. K. Jha and S. C. Tripathy. 该文献对多种K均值聚类算法进行了比较研究,包括K-means、K-medoids、K-harmonic means等,分析了它们在不同数据集上的性能差异。
请简述k-means算法的流程K均值聚类算法(k-means clustering algorithm)是数据挖掘中常用的一种聚类算法之一。
它是一种无监督学习算法,能够将样本数据分成K个不同的簇。
本文将简述K均值聚类算法的流程,包括初始中心点的选择、簇分配和中心点更新等步骤,具体分为以下几个部分进行描述。
一、初始中心点的选择K均值聚类算法的第一步是选择初始中心点。
中心点的选择对聚类结果有一定的影响,因此选择合适的初始中心点十分重要。
最常用的方法是随机选择K个样本作为初始中心点,也可以通过其他方法选择。
二、簇分配初始中心点确定后,下一步是将每个样本分配给最近的中心点所属的簇。
计算样本到每个中心点的距离,然后将样本分配给离它最近的中心点所属的簇。
三、中心点更新所有样本都被分配到了簇后,接下来的步骤是更新每个簇的中心点。
将属于同一簇的所有样本的坐标取平均值,得到该簇的新的中心点。
这个新的中心点将被用于下一次迭代的簇分配。
簇分配和中心点更新这两个步骤会不断重复,直到收敛。
四、收敛条件K均值聚类算法的收敛条件通常是中心点不再发生明显变动,即所有的样本分配到的簇不再发生变化,或者中心点的移动距离小于一个给定的阈值。
五、算法复杂度分析K均值聚类算法的时间复杂度主要取决于簇分配和中心点更新这两个步骤的计算量。
在每次簇分配中,对于每个样本需要计算与K个中心点的距离,因此时间复杂度为O(N*K*d),其中N为样本数目,K为簇的数目,d为样本的维度。
在每次中心点更新中,需要对每个簇中的样本进行平均计算,因此时间复杂度为O(N*d)。
总的时间复杂度为O(T*N*K*d),其中T为迭代次数。
当样本数目较大时,计算量会显著增加。
六、优化方法K均值聚类算法还有一些优化方法,可以提高算法的运行效率和准确性。
其中包括:修改初始中心点的选择方法,使用k-d 树等数据结构来加速簇分配过程,引入加权距离等。
总结而言,K均值聚类算法的流程包括初始中心点的选择、簇分配和中心点更新等步骤。
K均值聚类算法及其在轮廓系数方面的应用一、概述K均值聚类算法是一种常用的无监督学习算法,可以将数据集分成K 个不同的簇。
该算法的基本思想是通过迭代的方式不断更新簇的中心点,直到收敛为止。
K均值聚类算法在很多领域都有广泛的应用,比如数据挖掘、模式识别、图像分割等。
本文主要介绍K均值聚类算法的原理,以及它在轮廓系数方面的应用。
二、K均值聚类算法原理1. 初始化在K均值聚类算法中,首先需要确定要分成的簇的个数K,在一些特定的场景下,K的取值可以通过领域知识或者经验来确定。
然后随机选择K个数据点作为簇的中心点。
2. 分配数据点到最近的簇接下来的步骤是将所有的数据点分配到与其最近的簇中。
具体做法是计算每个数据点与各个簇中心点的距离,然后将数据点分配到距离最近的簇中。
3. 更新簇的中心点重新计算每个簇中所有数据点的均值,并将其作为新的簇中心点。
4. 重复迭代重复步骤2和步骤3,直到算法收敛为止。
通常情况下,可以根据簇的中心点的变化情况来判断算法是否收敛。
三、K均值聚类算法的优缺点1. 优点a. 算法简单,易于实现。
b. 可以用于大规模数据集的聚类。
c. 对异常点的鲁棒性较好。
2. 缺点a. 需要提前确定簇的个数K。
b. 对于不规则形状的簇,效果较差。
c. 需要多次运行算法来获得较好的结果。
四、K均值聚类算法在轮廓系数方面的应用轮廓系数是一种聚类有效性指标,用于衡量聚类结果的紧密度和簇的分离度。
对于每个数据点来说,轮廓系数是衡量其与同簇内其他数据点的相似度,以及与其他簇数据点的不相似度的综合指标。
对于整个聚类结果来说,轮廓系数综合了所有数据点的聚类效果,其取值范围为[-1,1],越接近1表示聚类效果越好。
K均值聚类算法在轮廓系数方面的应用主要包括以下几个方面:1. 根据轮廓系数确定K的取值在K均值聚类算法中,K的取值是一个重要的参数,通常需要根据具体的需求来确定。
轮廓系数可以作为一个参考来确定合适的K值。
具体做法是对不同的K值分别进行聚类,然后计算每个K值对应的聚类结果的轮廓系数,选择轮廓系数最大的K值作为最终的值。
kmeans色彩聚类算法
K均值(K-means)色彩聚类算法是一种常见的无监督学习算法,用于将图像中的像素分组成具有相似颜色的集群。
该算法基于最小
化集群内部方差的原则,通过迭代寻找最优的集群中心来实现聚类。
首先,算法随机初始化K个集群中心(K为预先设定的参数),然后将每个像素分配到最接近的集群中心。
接下来,更新集群中心
为集群内所有像素的平均值,然后重新分配像素直到达到收敛条件。
最终,得到K个集群,每个集群代表一种颜色,图像中的像素根据
它们与集群中心的距离被归类到不同的集群中。
K均值色彩聚类算法的优点是简单且易于实现,对于大型数据
集也具有较高的效率。
然而,该算法也存在一些缺点,例如对初始
集群中心的选择敏感,可能收敛于局部最优解,对噪声和异常值敏
感等。
在实际应用中,K均值色彩聚类算法常被用于图像压缩、图像
分割以及图像检索等领域。
同时,为了提高算法的鲁棒性和效果,
通常会结合其他技术和方法,如颜色直方图、特征提取等。
此外,
还有一些改进的K均值算法,如加权K均值、谱聚类等,用于解决
K均值算法的局限性。
总之,K均值色彩聚类算法是一种常用的图像处理算法,通过对图像像素进行聚类,实现了图像的颜色分组和压缩,具有广泛的应用前景和研究价值。
一、引言在机器学习和数据分析中,聚类是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。
而k均值(k-means)聚类算法作为一种经典的聚类方法,被广泛应用于各种领域的数据分析和模式识别中。
本文将介绍matlab中k均值聚类算法的实现和代码编写。
二、k均值(k-means)聚类算法简介k均值聚类算法是一种基于距离的聚类算法,它通过迭代的方式将数据集划分为k个簇,每个簇内的数据点与该簇的中心点的距离之和最小。
其基本思想是通过不断调整簇的中心点,使得簇内的数据点与中心点的距离最小化,从而实现数据的聚类分布。
三、matlab实现k均值聚类算法步骤在matlab中,实现k均值聚类算法的步骤如下:1. 初始化k个簇的中心点,可以随机选择数据集中的k个点作为初始中心点。
2. 根据每个数据点与各个簇中心点的距离,将数据点分配给距离最近的簇。
3. 根据每个簇的数据点重新计算该簇的中心点。
4. 重复步骤2和步骤3,直到簇的中心点不再发生变化或者达到预定的迭代次数。
在matlab中,可以通过以下代码实现k均值聚类算法:```matlab设置参数k = 3; 设置簇的个数max_iter = 100; 最大迭代次数初始化k个簇的中心点centroids = datasample(data, k, 'Replace', false);for iter = 1:max_iterStep 1: 计算每个数据点与簇中心点的距离distances = pdist2(data, centroids);Step 2: 分配数据点给距离最近的簇[~, cluster_idx] = min(distances, [], 2);Step 3: 重新计算每个簇的中心点for i = 1:kcentroids(i, :) = mean(data(cluster_idx == i, :)); endend得到最终的聚类结果cluster_result = cluster_idx;```四、代码解释上述代码实现了k均值聚类算法的基本步骤,其中包括了参数设置、簇中心点的初始化、迭代过程中的数据点分配和中心点更新。
kmean算法原理
k均值聚类算法(k-means)是一种常用的聚类分析算法,它的主要原理如下:
1. 初始化:首先选择k个初始中心点,可以是随机选择或者根据先验知识选择。
这些中心点将作为聚类的中心。
2. 分配样本:将每个样本点分配给距离最近的中心点所代表的聚类。
3. 更新中心点:重新计算每个聚类的中心点,即将每个聚类中的样本点的均值作为新的中心点。
4. 重复步骤2和步骤3,直到满足终止条件(如达到最大迭代次数或者中心点不再更新)。
5. 输出结果:得到k个聚类,每个聚类包含一组样本点,这些样本点在空间中相互靠近,并且与其他聚类的样本点相距较远。
k均值聚类算法的核心思想是通过最小化各个样本点与所属聚类中心点之间的距离来实现聚类。
在迭代过程中,不断更新中心点的位置,使得所有样本点尽可能地靠近自己所属的聚类中心。
最终的聚类结果取决于初始中心点的选择和更新中心点的策略。
需要注意的是,k均值聚类算法对离群点比较敏感,并且需要预先设定聚类数量k。
因此,在应用k均值聚类算法时,需要根据具体问题进行合理的调参和评估聚类结果的质量。
k均值算法
K均值(K-means)算法属于无监督学习中的聚类算法;聚类是根据样本特征向
量之间的相似度或距离,
将样本数据划分为若干个样本子集,每个子集定义为一个类;相似的样本聚集在相同的类,不相似的样本分散在不同的类。
由上面的定义可知,聚类算法只使用了样本的特征向量x xx,并没有使用样本的标签y yy,故聚类算法属于无监督学习
样本距离
样本距离越小,样本的相似性越大。
K均值聚类使用欧式距离的平方作为样本距离,计算公式如下:
如上所述,先计算向量对应元素的差值,然后取平方,最后求和;这个计算过程还可以表示为:先对两个样本的特征向量作差,然后求二范数的平方。
,1,。
K-均值聚类算法
1. K-均值聚类算法的工作原理:
K-means算法的工作原理:
算法首先随机从数据集中选取K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。
计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。
本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。
若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。
如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。
2.K-means聚类算法的一般步骤:
(1)从n个数据对象任意选择k个对象作为初始聚类中心;
(2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;
(3)重新计算每个(有变化)聚类的均值(中心对象);
(4)循环
(2)到
(3)直到每个聚类不再发生变化为止。
1/ 1。
kmeans++算法原理
K均值++(K-means++)算法是一种用于改进K均值聚类算法的初始化过程的方法。
在传统的K均值算法中,初始聚类中心是随机选择的,这可能导致算法收敛到局部最优解而非全局最优解。
K均值++算法通过一种智能的方式选择初始聚类中心,以期望更快地收敛到全局最优解。
具体来说,K均值++算法的原理如下:
1. 从输入的数据点中随机选择一个点作为第一个聚类中心。
2. 对于每个数据点,计算它与当前已选择的聚类中心的最短距离(即到最近的聚类中心的距离)。
3. 根据每个数据点与已选择的聚类中心的最短距离,以一定的概率选择下一个聚类中心,概率与距离的平方成正比。
距离越大的点,被选中的概率越大。
4. 重复步骤2和3,直到选择了K个聚类中心。
通过这种方式选择初始聚类中心,K均值++算法能够更好地避免陷入局部最优解,从而提高了K均值聚类算法的效率和准确性。
这种智能的初始化过程使得K均值++算法成为了K均值聚类的一个改进版本,被广泛应用于数据挖掘和机器学习领域。
kmeans算法公式K均值聚类算法(K-means clustering algorithm)是一种常用的无监督学习算法,用于将一组数据点划分为K个不同的组或聚类。
该算法的目标是最小化数据点与其所属聚类中心之间的平方距离。
算法步骤如下:1. 随机选择K个数据点作为初始聚类中心。
2. 将每个数据点分配给距离最近的聚类中心。
3. 更新每个聚类中心的位置,将其设为该聚类中所有点的均值。
4. 重复步骤2和3,直到聚类中心不再改变或达到最大迭代次数。
具体而言,K均值算法可用以下公式表示:1. 选择K个聚类中心:C = {c1, c2, ..., ck}其中,ci表示第i个聚类中心。
2. 分配数据点到最近的聚类中心:使用欧氏距离作为度量衡量数据点xi与聚类中心cj之间的距离:dist(xi, cj) = sqrt((xi1 - cj1)^2 + (xi2 - cj2)^2 + ... + (xid - cjd)^2)其中,d表示数据点的维度。
将每个数据点xi分配给最近的聚类中心:ci = arg minj(dist(xi, cj))3. 更新聚类中心的位置:计算每个聚类中心包含的数据点的均值,作为新的聚类中心的位置。
cj = (1/|ci|) * sum(xi)其中,|ci|表示聚类中心ci包含的数据点数量,sum(xi)表示所有聚类中心ci包含的数据点xi的和。
4. 重复步骤2和3,直到聚类中心不再改变或达到最大迭代次数。
K均值算法的优点是简单而高效,适用于大规模数据集。
然而,它也存在一些限制,比如对初始聚类中心的敏感性和对数据点分布的假设(即聚类簇的凸性)。
此外,当数据点的维度较高时,K均值算法的性能可能下降。
参考内容:- Christopher M. Bishop, "Pattern Recognition and Machine Learning". Springer, 2006.- Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification". Wiley, 2001.- Machine Learning, Tom Mitchell, "Machine Learning". McGraw-Hill, 1997.- Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective". MIT Press, 2012.- Sebastian Raschka, Vahid Mirjalili, "Python Machine Learning". Packt Publishing, 2017.这些参考内容提供了对K均值算法的详细解释、数学推导和实际应用示例,对于深入理解和使用该算法非常有帮助。
k-means 算法***************************************************************************一.算法简介k -means 算法,也被称为k -平均或k -均值,是一种得到最广泛使用的聚类算法。
它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。
这一算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
二.划分聚类方法对数据集进行聚类时包括如下三个要点:(1)选定某种距离作为数据样本间的相似性度量k-means 聚类算法不适合处理离散型属性,对连续型属性比较适合。
因此在计算数据样本之间的距离时,可以根据实际需要选择欧式距离、曼哈顿距离或者明考斯距离中的一种来作为算法的相似性度量,其中最常用的是欧式距离。
下面我给大家具体介绍一下欧式距离。
假设给定的数据集 ,X 中的样本用d 个描述属性A 1,A 2…A d 来表示,并且d 个描述属性都是连续型属性。
数据样本x i =(x i1,x i2,…x id ), x j =(x j1,x j2,…x jd )其中,x i1,x i2,…x id 和x j1,x j2,…x jd 分别是样本x i 和x j 对应d 个描述属性A 1,A 2,…A d 的具体取值。
样本xi 和xj 之间的相似度通常用它们之间的距离d(x i ,x j )来表示,距离越小,样本x i 和x j 越相似,差异度越小;距离越大,样本x i 和x j 越不相似,差异度越大。
欧式距离公式如下:(2)选择评价聚类性能的准则函数{}|1,2,...,m X x m total ==(),i j d x x =k-means 聚类算法使用误差平方和准则函数来评价聚类性能。
给定数据集X ,其中只包含描述属性,不包含类别属性。
k均值聚类(k-meansclustering)k均值聚类(k-means clustering)算法思想起源于1957年Hugo Steinhaus[1],1967年由J.MacQueen在[2]第⼀次使⽤的,标准算法是由Stuart Lloyd在1957年第⼀次实现的,并在1982年发布[3]。
简单讲,k-means clustering是⼀个根据数据的特征将数据分类为k组的算法。
k是⼀个正整数。
分组是根据原始数据与聚类中⼼(cluster centroid)的距离的平⽅最⼩来分配到对应的组中。
例⼦:假设我们有4个对象作为训练集,每个对象都有两个属性见下。
可根据x,y坐标将数据表⽰在⼆维坐标系中。
object Atrribute 1 (x):weight indexAttribute 2 (Y):pHMedicine A11Medicine B21Medicine C43Medicine D54表⼀原始数据并且我们知道这些对象可依属性被分为两组(cluster 1和cluster 2)。
问题在于如何确定哪些药属于cluster 1,哪些药属于cluster 2。
k-means clustering实现步骤很简单。
刚开始我们需要为各个聚类中⼼设置初始位置。
我们可以从原始数据中随机取出⼏个对象作为聚类中⼼。
然后k means算法执⾏以下三步直⾄收敛(即每个对象所属的组都不改变)。
1.确定中⼼的坐标2.确定每个对象与每个中⼼的位置3.根据与中⼼位置的距离,每个对象选择距离最近的中⼼归为此组。
图1 k means流程图对于表1中的数据,我们可以得到坐标系中的四个点。
1.初始化中⼼值:我们假设medicine A和medicine B作为聚类中⼼的初值。
⽤c1和c2表⽰中⼼的坐标,c1=(1,1),c2=(2,1)。
2对象-中⼼距离:利⽤欧式距离(d = sqrt((x1-x2)^2+(y1-y2)^2))计算每个对象到每个中⼼的距离。
kmeans算法例题应用K均值(K-Means)聚类算法是一种常用的无监督学习算法,用于将数据集划分为K个不同的组(簇),每个簇中的数据点彼此相似。
以下是一个简单的K均值算法的例子和应用场景:例子:假设我们有一个包含一些二维数据点的数据集,我们想将这些数据点分为两个簇。
我们可以使用K均值算法来实现这个任务。
```pythonfrom sklearn.cluster import KMeansimport matplotlib.pyplot as pltimport numpy as np#生成一些随机的二维数据np.random.seed(0)X=np.concatenate([np.random.normal(0,1,(20,2)),np.random.normal(5,1, (20,2))])#使用K均值算法将数据分为两个簇kmeans=KMeans(n_clusters=2,random_state=0)kmeans.fit(X)labels=bels_centroids=kmeans.cluster_centers_#绘制数据点和簇中心plt.scatter(X[:,0],X[:,1],c=labels,cmap='viridis',s=50,alpha=0.8)plt.scatter(centroids[:,0],centroids[:,1],marker='X',s=200,linewidths=3, color='red',zorder=10)plt.title('K-Means Clustering')plt.show()```在这个例子中,我们生成了两组二维数据点,然后使用K均值算法将它们分为两个簇,并绘制了数据点和簇中心。
应用场景:K均值算法在各种领域都有广泛的应用,包括但不限于:1.市场细分:在市场研究中,可以使用K均值算法对顾客进行细分,找到相似的市场群体。