基因工程复习材料
- 格式:doc
- 大小:80.50 KB
- 文档页数:9
高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。
8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。
10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。
以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。
cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。
第一章1.名词解释基因工程:是指按照人们的科研或生产需要,在分子水平上,用人工方法提取或合成不同生物的遗传物质(DNA片段),在体外切割、拼接形成重组 DNA,然后将重组 DNA与载体的遗传物质重新组合,再将其引入到没有该 DNA的受体细胞,进行复制和表达,生产出符合人类需要的产品或创造出新性状,并能稳定地遗传给下一代。
克隆(名词,Clones):从同一个亲代细胞形成的一组细胞。
克隆(动词,Cloning):形成大量子细胞的无性繁殖过程,这些子细胞和亲代细胞完全相同,这个过程称为克隆。
基因:是一个具有遗传功能的特定核苷酸序列的DNA片段。
2.填空题基因工程的三大要素为供体、受体和载体。
基因工程是年代发展起来的遗传学的一个分支学科。
其主体战略思想是。
根据受体细胞不同,外源基因表达系统可分为表达系统和表达系统。
基因表达过程包括基因的和两个阶段。
3.问答题什么是基因工程?其诞生的理论基础是什么?基因工程研究的主要内容及战略思想是什么?基因工程的基本内容和过程:基因工程的主要研究内容或步骤, 也称基本过程(简称为六字方针):分、切、接、转、筛、表。
(1)从复杂的生物有机体基因组中,分离出带有目的基因的DNA片段。
(简称“分”)(2)在体外,用限制性内切核酸酶切割目的基因和基因载体,以利于将两者连接形成重组体。
(简称“切”)(3)在体外,将带有目的基因的外源DNA片段连接到能够自我复制并具有选择记号的载体分子上,形成重组 DNA分子。
(简称“接”)(4)将重组 DNA分子转移到适当的受体细胞(亦称寄主细胞),并与之一起增殖。
(简称“转”)(5)从大量的细胞繁殖群体中,筛选出获得了重组 DNA分子的受体细胞克隆。
(简称“筛”)第二章1.名词解释电泳:是指带电粒子在电场中向与自身带相反电荷的电极移动的现象。
转染:转导:DNA变性:DNA复性:EtBr:分子量marker:磷酸二酯法:磷酸三酯法:转化:电激转化:Southern 印渍杂交:分子探针:聚合酶链式反应(PCR):引物;primer ;感受态细菌(competent cell);琼脂糖凝胶电泳;DNA自动测序;固相亚磷酸三酯法;Northern 印渍杂交;盖帽反应(capping reaction);菌落PCR;简并引物;聚丙烯酰胺凝胶电泳;Western 印渍杂交。
基因工程复习资料克隆:是指从一个合营祖先无性滋长下来的一群遗传上雷同的DNA 分子、细胞或个别所构成的专门的生命群体载体:携带外源DNA进入宿主细胞的对象。
化学本质:DNA 1.输送外源基因高效转入受体细胞2.为外源基因供给复制才能或整合才能3.为外源基因的扩增或表达供给前提。
基因工程的含义:按照预先设计好的蓝图,应用现代分子生物学技巧,专门是酶学技巧,对一种生物(供体)的遗传物质(DNA )直截了当进行体外重组操作与改革,并转移到别的一种生物(受体)中去,从而实现受体生物的定向改革与改进。
黏性末尾是指DNA分子在限制酶的感化之下形成的具有互补碱基的单链延长末尾构造,它们能够或许经由过程互补碱基间的配对而从新环化起来DNA连杆,是指用化学方法合成的一段由10~12个核苷酸构成的、具有一个或数个限制酶辨认位点的寡核苷酸片段。
DNA接头它是一类由人工合成的一头具有某种限制性内切酶粘末尾,另一头为平末尾的专门的双链寡核苷酸片段。
当它的平末尾与平末尾的外源DNA片段连接之后,便会使后者成为具黏性末尾的新的DNA分子,而易于连接重组。
载体:携带外源DNA进入宿主细胞,并为其供给复制和功能基因表达调控体系的对象。
目标基因:基因工程中克隆的目标DNA分子SD序列:mRNA中肇端暗码子上游8-13个核苷酸处有一段富含嘌呤核苷酸的次序,它能够与30S亚基中的16S rRNA 3’端富含嘧啶的尾部互补,形成氢键结合,有助于mRNA的翻译从肇端暗码子处开端启动子:DNA分子与RNA聚合酶特异结合的部位,也是转录开端的部位基因组文库:某种生物的基因组的全部遗传信息经由过程克隆载体贮存在一个受体菌的群体之中,那个群体即为该生物的基因组文库。
cDNA:以mRNA为模板合成的互补脱氧核糖核苷酸序列。
cDNA文库:某种生物基因组转录的的全部mRNA经反转录产生的各类cDNA分别与克隆载体重组,贮存在一个受体菌的群体中,那个群体就称为cDNA文库。
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主)内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的发展:遗传工程→DNA重组技术→分子/基因克隆(Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。
宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。
4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。
(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。
(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。
(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。
(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
第3章基因工程1、什么是基因工程:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
2、基因工程的诞生(三个理论和三个技术):基因工程是在生物化学、分子生物学和微生物学等学科基础上发展起来的,正是这些学科的基础理论和相关技术的发展催生了基因工程,具体有三大理论发现和三个技术突破。
1)理论基础:DNA是遗传物质;DNA分子的双螺旋结构和半保留复制;遗传密码的通用性和遗传信息传递的方式;2)技术基础:限制性核酸内切酶的发现与DNA的切割;DNA连接酶的发现与DNA片段的连接;基因工程载体的构建与应用●理论上的三大发现⑴、发现了遗传物质——DNA1944年,艾弗里(O.T.Avery)的肺炎双球菌转化实验⑵、揭示了遗传物质的分子机制:DNA分子的双螺旋结构和半保留复制1953年,沃森(J.D.Watson)和克里克(F.Crick)的DNA双螺旋结构模型、半保留复制图,获1958年诺贝尔奖。
⑶、确立了遗传信息的传递方式:以密码形式传递1963年,美国尼伦伯格(M.W.Nirenberg)和马太(H.Matthaei)确立了遗传信息以密码形式传递,破译了编码氨基酸的遗传密码(3个核苷酸=1个密码子=1个aa)。
●技术上的三大突破⑴、世界上第一个重组DNA实验:实现不同来源DNA的体外重组1972年斯坦福大学化学家伯格(P.Berg)借助内切酶和连接酶将猴病毒SV40的DNA 和大肠杆菌λ噬菌体的DNA在试管中连接在了一起,第一次成功地实现了DNA的体外重组。
⑵、第一个基因克隆实验:重组DNA表达实验,是世界上第一个基因工程实验1973年美国斯坦福大学医学院遗传学家科恩(S.Cohen)将体外构建的含有四环素和卡那霉素抗性基因的重组质粒导入大肠杆菌,获得了具有双抗性的大肠杆菌转化子,成功完成了第一个基因克隆实验。
基因工程:称基因操作、重组DNA。
基因工程是以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA 分子),按预先设计的蓝图,在体外构建杂种DNA 分子,然后导人活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品,或是研究基因的结构和功能。
穿梭载体:含有细菌质粒和克隆的真核生物DNA片段的杂种质粒,有两个复制起点和既能在细菌又能在真核细胞中进行选择的选择标记,所以,很容易从一宿主转到另一个宿主乙。
穿梭质粒:指一类由人工构建的具有两种不同复制起点以及相应的选择标记基因,因而可在两种不同种属的受体细胞中复制和检测的质粒载体。
同裂酶:不同来源的限制性内切核酸酶具有相同的识别序列,产生完全相同的黏性末端。
重组率:在连接反应结束后,含有外源DNA片段的重组分子数与所投入的载体分子数之比。
cDNA文库:由cDNA法构建的基因文库,只含有某一生物体的所有蛋白质编码序列,一般不含有DNA调控序列。
基因组文库:由鸟枪法构建的基因文库,含有某一生物染色体的所有DNA片段,包括基因编码区和间隔区DNA。
感受态:受体细胞最易接收外源DNA片段而实现转化的一种特殊生理状态。
同尾酶:一些来源不同的限制性核酸内切酶识别的靶序列各不相同,但都产生相同的粘性末端,这类酶称为同尾酶。
接头:是一段含有某种限制性核酸内切酶识别序列的人工合成的寡聚核苷酸,通常是八聚体和十聚体。
转化:将质粒DNA 或以它为载体构建的重组质粒导入细菌中的过程称为转化。
星号活性:Ⅱ类限制性核酸内切酶虽然具有特异性的识别序列和切割的位点,但是当酶解条件发生变化时,酶切反应的专一性可能会降低,导致同种酶识别多种序列,这种现象称为限制性核酸内切酶的星号活性。
动物乳腺生物反应器:能够分泌乳汁的转基因动物生产其他来源的基因产品,并通过乳腺分泌出来。
细菌的限制—修饰系统:细菌中有作用于同一DNA 的两种酶,即分解DNA 的限制酶和改变DNA 碱基结构使其免遭限制酶分解的修饰酶。
第一章绪论1 •基因工程的定义:在体外对不同生物的遗传物质(基因)进行剪切、重组、连接,然后插入到载体分子中(细菌质粒、病毒或噬菌体DNA),转入微生物、植物或动物细胞内进行无性繁殖,并表达出基因产物。
2•基因工程理论上的三大发现和技术上的三大发现3 •基因工程的基本步骤(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。
(2)重组体的制备:将冃的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。
(3)重组体的转化:将重组体(载体)转入适当的受体细胞川。
(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。
(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
4 •基因工程的意义(1)基因工程在农业生产中的应用:提高植物的光合作用率;提高豆科植物的固氮效率;转基因植物;转基因动物。
(2)基因工程在工业中的应用:1)纤维素的开发利用:克隆各种参与纤维素降解的酶的基因,导入酿酒酵母,就可能利用廉价的纤维素來生产葡萄糖,发酵成酒。
2)酿酒工业:用外源基因改造酿酒酵母,产生优质的啤酒。
或用酿酒酵母生产蛋白质等。
(3)基因工程在医药上的应用:用微生物生产药物;用转基因植物或动物生产药物;设计高效高特异性的生物制剂-疫苗;制造新型疫苗;基因诊断;法医鉴定;基因治疗。
(4)基因工程在环境保护中的作用:1)检测水污染:用重组细菌或转基因鱼等检测水污染2)生物降解:用带有重组质粒的“超级菌〃分解油(烷怪类)、有机农药污染。
(5)基因工程商业化的发展第二章基因工程主要技术原理1. 质粒和基因组DNA的提取方法与纯化步骤,主要试剂是什么质粒的提取和纯化方法最常用的为碱抽提法:原理:闭合环状的质粒DNA,在变性后不会分离,复性快。
染色体线性DNA和或有缺口的质粒DNA变性后双链分离,难以复性而形成缠绕的结构,与蛋白质-SDS复合物结合在一起, 在离心的时候沉淀下去。
1. 基因工程概念:基因工程是一门以分子遗传学为理论基础、以分子生物学和微生物学的现代技术方法为手段的新兴交叉学科,它诞生于1973年,其发展十分迅速,新知识、新概念、新技术不断涌现,并广泛渗透到生命科学的各个领域,带动了整个生命科学的发展,是现代生物技术中的核心技术。
它为人类创造新生物开辟了新天地。
2. 基因工程的定义:基因工程是将不同来源的基因(DNA分子),按照工程学的方法进行设计,在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录、表达的操作。
基因工程又称DNA重组技术。
3. 基因工程的特点及实施条件:基因工程的最大特点是分子水平上的操作,细胞水平上的表达。
其实施包括四个必要条件:工具酶、基因、载体和受体细胞。
4. 基因工程的基本步骤:(1)分离制取带有目的基因的DNA片段;(2)DNA片段和载体DNA 在体外连接;(3)将重组DNA分子导入合适的受体细胞,并扩增繁殖;(4)从大量的细胞繁殖群体中,筛选出获得了重组DNA分子的重组体克隆;(5)外源基因的表达和产物的分离纯化。
5. DNA复制的特点:(1)DNA的复制是从特定的复制起始点开始并按5’-3’的方向进行;(2)DNA 分子的半保留复制;(3)DNA分子的半不连续复制;(4)DNA分子复制是通过DNA聚合酶及各种相关酶蛋白、蛋白因子的协同有序的工作完成的;(5)DNA分子复制具有高度的精确性和准确性。
6. DNA的变性、复性与杂交:在高温、强碱及某些试剂存在的条件下,双链DNA分子氢键断裂,两条链完全分离,形成单链DNA分子,这种情况称为DNA变性。
DNA的复性是指变性DNA在适当的条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的逆转过程。
热变性DNA一般经缓慢冷却后即可复性,此过程称之为“退火”。
杂交的基本原理是应用核酸分子的变性和复性的性质,使来源不同的DNA(或RNA)片段按碱基互补关系形成杂交双链分子。
基因工程复习资料第一章核酸的制备1.主要步骤:分、切、接、转、筛、表2.基因工程的概念:基因工程又称基因堆叠技术和dna重组技术,就是以分子遗传学为理论基为础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种dna分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
第二章基因工程工具酶1.生物催化剂:核酶、抗体酶、模拟酶。
2.限制性内切核酸酶:定义:限制性内乌核酸酶就是一类能够辨识双链dna中特定核苷酸序列(辨识序列),并在识别序列上使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。
命名:限制性内乌核酸酶通常就是以第一次抽取至这类酶的生物的种名的第一个字母和种名的第一、第二个字母命名的,有的在后面还加菌株(型)代号中的一个字母。
如果从同一种生物中先后提取到多种限制性内切核酸酶,则依次用罗马数字ⅰ、ⅱ、ⅲ表示。
并且名称的前三个字母须用斜体,第一个字母用大写。
3.dna连接酶:定义:dna连接酶也称dna黏合酶,在分子生物学中扮演一个既特殊又关键的角色,那就是连接dna链3‘-oh末端和,另一dna链的5’-p末端,使二者生成磷酸二酯键,从而把两段相邻的dna链连成完整的链的一种酶。
种类:大肠杆菌dna连接酶、t4dna连接酶、tscdna连接酶、真核生物细胞辨认出的连接酶,例如酶ⅰ、酶ⅱ、酶ⅲ等多种类型。
4.dna片段的相连接方法:①具互补黏性末端dna片段之间的连接:可用e?colidna连接酶,也可用t4dna连接酶。
②尼奥罗末端dna片段之间的相连接:就可以用t4dna连接酶,并且必须减少酶的用量。
③dna片段末端修饰后进行连接:dna片段末端同聚物加尾后进行连接,可按互补粘性末端片段之间的连接方法进行连接;粘性末端修饰成平末端后进行连接;dna片段5′端脱磷酸化后进行连接;dna片段加连杆或衔接头后连接。
5.dna聚合酶:①定义:dna聚合酶就是指用dna单链为模板,以4种脱氧核苷酸为底物,催化剂制备一条与模板链序列优势互补的dna新链的酶。
基因工程复习资料(含答案)基因工程复习题一、名词解释:(10~20%)基因工程基因工程工具酶限制性内切酶限制性内切酶的Star活性PCR引物PCR扩增平台期DNA芯片基因组文库cDNA文库转化限制与修饰系统原位杂交:将细胞或组织的核酸固定保持在原来的位置上,然后用探针与之杂交的一种核酸分子杂交技术,该方法可较好地反映目的基因在细胞或组织中的分布和表达变化。
粘性末端:双链DNA被限制性内切酶切割后,形成的两条链错开几个碱基,而不是平齐的末端。
Northern印迹杂交:将RNA进行变性电泳后,再转移到固相支持物上与探针杂交的一种核酸分子杂交技术,可用于检测目的基因的转录水平。
转位:一个或一组基因片段从基因组的一个位置转移到另一个位置的现象。
基因工程:在体外,用酶学方法将各种来源的DNA与载体DNA 连接成为重组DNA,继而通过转化和筛选得到含有目的基因的宿主细胞,最后进行扩增得到大量相同重组DNA分子的过程称为基因工程,又称基因克隆、DNA克隆和重组DNA等。
目的基因:基因工程中,那些被感兴趣的、被选作研究对象的基因就叫作目的基因。
连接器:人工合成的一段含有某些酶切位点寡核苷酸片段,连接到目的基因的两端,便于基因重组中的切割和连接。
转化:受体细胞被导入外源DNA并使其生物性状发生改变的过程。
停滞效应:PCR中后期,随着目的DNA扩展产物逐渐积累,酶的催化反应趋于饱和,DNA 扩增产物的增加减慢,进入相对稳定状态,即为停滞效应,又称平台期。
逆转录PCR:以mRNA为原始模板进行的PCR反应。
PCR: 即聚合酶链式反应。
在模板,引物,4种dNTP和耐热DNA 聚合酶存在的条件下,特异性地扩增位于两段已知序列之间的DNA区段地酶促合成反应。
α-互补(α-complementation):指在M13噬菌体DNA或PUC 质粒序列中,插入了lac启动子-操纵子基因序列以及编码β-半乳糖苷酶N-端145个氨基酸的核苷酸序列(又称α-肽),该序列不能产生有活性的β-半乳糖苷酶。
名词解释α-互补:是指β-半乳糖苷酶基因(LacZ)上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的LacZ基因的突变体之间实现互补,从而产生具有β-半乳糖苷酶学活性蛋白的现象。
基因芯片技术:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。
限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。
电穿孔法:是指在一个较大的电脉冲短暂破坏细胞膜的脂质双层,允许DNA等分子通过细胞膜进入细胞,而后细胞膜快速复原,保持细胞的完整。
这种方法称为电穿孔法。
穿梭载体:能够在两类不同宿主细胞中复制、增殖和选择的质载体,装有针对两种不同受体的复制子和遗传标记基因,便于基因克隆。
反向PCR:是用反向的互补引物来扩增两引物以外的DNA片段,即对某个已知DNA片段两侧的未知序列进行扩增。
人工染色体载体:利用染色体的复制元件来驱动外源DNA片段复制的载体。
芯片实验室:是将纳米技术引入生物芯片,在微小的硅材料表面,制造出能够对微量样品进行变性、分离、纯化、电泳、PCR扩增、加样及检测等微小结构,使过去一个实验的各个实验步骤微缩于一个芯片上,这种技术称为芯片实验室。
核酸分子杂交:核酸分子杂交是指核酸分子(DNA或RNA)在变性以后,在复性的过程中两个不同来源的且同源的核酸分子形成杂合双链的过程。
同尾酶:有一些来源不同的限制性核酸内切酶识别的靶序列也各不相同,但都产生相同的粘性末端,这类酶称为同尾酶。
融合蛋白:是指通过将两个或多个基因的开放阅读框按一定顺序连接在一起并通过表达而形成的杂合蛋白。
基因芯片:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。
同裂酶:不同来源的限制性核酸内切酶识别与切割相同的核苷酸靶序列,这类酶称为同裂酶。
基因表达: 从DNA分子有序地将其所承载的遗传信息,通过密码子和反密码子系统,转变由特定氨基酸顺序构成的多肽或蛋白质分子过程,从而决定生物有机体遗传表型。
实时荧光定量PCR:实时定量PCR在检测过程中通过检测标记的荧光信号的累积来实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析,故称为实时荧光定量PCR。
开放阅读框架(ORF):起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。
质粒的不亲和性:在没有压力下,两种亲缘关系密切的不同质粒,不能够在同一个寄主细胞系中稳定地共存的现象。
转化:指将质粒DNA或以它为载体构建的重组质粒导入细菌中的过程。
融合基因:是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。
目的基因:指那些已被或者准备要被分离、改造、扩增或表达的特定基因或DNA片段。
限制性核酸内切酶的星活性:限制性核酸内切酶在非标准反应条件下,能切割一些与其特异识别顺序类似的序列,降低酶切反应特异性的现象。
基因组是指某种特定生物全部染色体的遗传物质的总和,其大小通常以其全部的DNA碱基对总数来表示。
基因载体:是指运载目的基因进入宿主细胞,使之能得到复制和进行表达的工具, 化学本质是DNA分子。
人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。
受体细胞:是指能摄取外源DNA并使其稳定维持的细胞。
共转化:基因工程中将两个以上的基因同时导入感受态真核细胞的方法,又称共转染。
复合PCR:在一个反应体系加入多对不同的PCR引物同时扩增,获得多个PCR产物,这种PCR称为复合PCR。
c DNA文库:是指将某种生物体某一发育时期所转录的全部mRNA经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。
基因打靶技术:基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术。
基因枪法:用高压气体加速把粘有DNA的细微金粉(或钨粉颗粒)打向细胞,穿过细胞壁、细胞膜、细胞质等层层构造到达细胞核,完成基因转移的方法。
DNA的物理图谱:是指某些限制酶的特异识别序列在DNA链上的出现频率和它们之间的相对位臵,表现出一些部位的线性序列,它是DNA分子结构特性的反映。
基因亚克隆:是指将较大的克隆片段经酶切后,再将所有的小DNA片段与另一个载体连接转化的过程。
报告基因:基因载体上引入的一些可证明载体已经进入宿主细胞并可将含有目的基因的宿主细胞从其他细胞中识别区分甚至挑选出来的具有特殊标志意义的基因。
RT-PCR:是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。
表达载体:在克隆载体基础上,为使插入的外源DNA片段有效转录翻译成多肽,装有强化外源基因表达的强启动子以及利于表达产物分泌、分离和纯化的元件,这种载体称为表达载体。
基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。
反义技术:是指根据碱基互补原理,用人工合成(或生物体合成)的特定互补RNA或DNA片段(或其化学修饰产物)抑制或封闭基因表达的技术。
转基因动物:是指在其基因组内稳定地整合有外源基因,并能遗传给后代的动物。
简答题1、简述PCR引物的设计一般原则。
答:①引物长度一般以18~30bp为宜,过短则降低特异性,过长则会引起引物间的退火而影响有效扩增,同时也增加引物合成的成本。
②避免引物内部出现二级结构,避免序列内有较长的回文结构,使引物自身不能形成发夹结构。
③G/C和A/T碱基均匀分布,G+C含量在40~60%之间,引物碱基序列尽可能选择碱基随机分布,避免出现嘌呤或嘧啶连续排列。
④要避免两个引物间特别是3`末端碱基序列互补以及同一引物自身3`末端碱基序列互补的,使它们不能形成引物二聚体或发卡结构。
⑤引物3`末端碱基一般应与模板DNA严格配对,并且3`末端为G、C或T时引发效率较高。
⑥引物5`末端碱基可不与模板DNA匹配,可添加与模板无关的序列(如限制性核酸内切酶的识别序列、ATG起始密码子或启动子序列等),便于克隆和表达,但其保护碱基有一定的要求。
⑦引物的碱基顺序不能与非扩增区有同源性。
2、试述原核生物细胞表达的特点以及外源基因在原核细胞中表达具备条件。
答:原核生物细胞表达的特点:(1)只有一种RNA聚合酶识别原核细胞的启动子,催化所有RNA的合成。
(2)原核生物的表达是以操纵子为单位的。
操纵子是数个相关的结构基因及其调控区的结合,是一个基因表达的协同单位。
(3)原核生物的转录与翻译是偶联和连续进行的。
(4)原核细胞中缺乏真核细胞的转录后加工系统。
(5)其基因的控制主要在转录水平,这种控制要比对基因产物直接控制要慢。
(6)在大肠杆菌mRNA的核糖体结合位点上,含有一个翻译起始密码子及同16S RNA 3’末端碱基互补的序列,即SD序列。
条件:(1)通过表达载体将外源基因导入宿主菌,并指导宿主菌的酶系统合成外源蛋白。
(2)外源基因不能带有间隔顺序(内含子),因而必须用cDNA或全化学合成基因,而不能用基因组DNA。
(3)必须利用原核细胞的强启动子和SD序列等调控元件控制外源基因表达。
(4)外源基因与表达载体连接后,必须形成正确的开放阅读框架(ORF)。
(5)利用宿主菌的调控系统,调节外源基因的表达,防止外源基因的表达产物对宿主菌的毒害。
3、简述琼脂糖凝胶电泳的基本原理。
答:DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。
DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。
由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。
在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。
在琼脂糖凝胶电泳中,DNA分子的迁移速度与相对分子质量的对数值成反比关系。
质粒DNA样品用单一切点的酶切后与已知相对分子质量大小的标准DNA片段进行电泳对照,观察其迁移距离,就可获知该样品的相对分子质量大小。
凝胶电泳不仅可以分离不同相对分子质量的DNA,也可以鉴别相对分子质量相同但构型不同的DNA分子。
另外在制备琼脂糖凝胶时加入溴化乙锭指示剂,溴化乙锭在紫外光照射下能发射荧光。
当DNA样品在琼脂糖凝胶中电泳时,琼脂糖凝胶中的EB就插入DNA分子中形成荧光络合物,使DNA发射的荧光增强几十倍。
荧光的强度正比于DNA的含量,如将已知浓度的标准样品作琼脂糖凝胶电泳对照,就可比较出待测样品的浓度。
若用薄层分析扫描仪检测,只需要5~lOng DNA,就可以从照片上比较鉴别。
如用肉眼观察,可检测到0.01~0.1μg的DNA。
4、简述基因文库的概念及构建基因文库的基本程序。
答:基因文库是指某个生物的基因组DNA或cDNA片段与适当的载体在体外重组后,转化宿主细胞,并通过一定的选择机制筛选后得到大量的阳性菌落(或噬菌体),所有菌落或噬菌体的集合即为该生物的基因文库。
基本程序:1)提取研究对象基因组DNA,制备合适大小的DNA片段,或提取组织或器官的mRNA并反转录成cDNA;2) DNA片段或cDNA片段与经特殊处理的载体连接形成重组DNA;3)重组DNA转化宿主细胞或体外包装后侵染受体菌;4)阳性重组菌落或噬菌斑的选择。
另cDNA:cDNA文库是指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA 片段分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA文库。
操作步骤:细胞总RNA的提取和mRNA的分离;第一条cDNA合成;第二条cDNA 合成;双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖。
另与基因组文库相比,cDNA文库(cDNA克隆)的主要优点与缺点有哪些?答:优点: ①cDNA克隆以mRNA为材料,特别适用于某些RNA病毒等的基因组结构研究及有关基因的克隆分离。
②cDNA基因文库的筛选比较简单易行。
③每一个cDNA克隆都含有一种mRNA序列,这样在目的基因的选择中出现假阳性的概率就会比较低,由此选择出来的阳性克隆将会含有目的基因。
④cDNA克隆可用于在细菌中能进行表达的基因克隆,直接应用于基因工程操作。
⑤cDNA克隆还可用于真核细胞mRNA的结构和功能研究。
缺点:①cDNA文库所包含的遗传信息要远远少于基因组DNA文库,并且受细胞来源或发育时期的影响。
②cDNA基因文库不能直接获得基因的内含子序列和基因编码区外大量的调控序列的结构与功能方面的信息。
③在cDNA基因文库中,对于低丰度mRNA 的cDNA克隆所占的比例则比较低,且分离也就比较困难。