Eviews面板数据之固定效应模型
- 格式:doc
- 大小:541.00 KB
- 文档页数:14
《固定效应变截距模型eviews》在统计学中,固定效应变截距模型是一种多元回归分析方法,通常用于研究面板数据中的固定效应和变截距。
而EViews作为一款强大的计量经济学软件,可以帮助研究者进行各种计量分析,包括固定效应变截距模型的估计和推断。
在本文中,我们将深入探讨固定效应变截距模型在EViews中的应用,以及个人对这一主题的理解和观点。
一、固定效应变截距模型的基本概念1.1 什么是固定效应变截距模型固定效应变截距模型是一种用于分析面板数据的统计模型,它包括了固定效应和变截距。
固定效应指的是个体特定的不变因素,而变截距则是个体特定的斜率。
这种模型能够更准确地捕捉面板数据中个体间的差异,因此在实证研究中得到了广泛的应用。
1.2 模型的基本假设在使用固定效应变截距模型进行分析时,需要满足一些基本假设,比如个体效应与解释变量之间不能存在内生性,个体效应是固定的等等。
只有在这些基本假设成立的情况下,才能够对模型进行有效的估计和推断。
二、EViews中固定效应变截距模型的应用2.1 数据准备在EViews中进行固定效应变截距模型分析之前,首先需要对面板数据进行准备。
这包括导入数据、设定面板数据格式、检查面板数据的平稳性和异方差性等步骤。
2.2 模型估计通过EViews的面板数据估计功能,可以轻松地对固定效应变截距模型进行估计。
在进行模型估计时,需要设定固定效应和变截距,并进行相应的推断。
2.3 结果解读EViews将模型估计的结果以表格和图形的形式呈现出来,研究者可以通过这些结果来判断模型的拟合程度和各个变量的显著性。
EViews还提供了对估计结果进行进一步分析的功能,比如残差分析、模型诊断等。
三、个人观点和理解作为一名计量经济学研究者,我深刻理解固定效应变截距模型在面板数据分析中的重要性。
这种模型能够更好地控制面板数据中的个体特异性,提高了分析的准确性和可信度。
而EViews作为一款优秀的计量经济学软件,为研究者提供了便捷、高效的分析工具,使得固定效应变截距模型的应用变得更加简单和灵活。
Eviews 面板数据之固定效应模型在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。
固定效应模型分为三类:1.个体固定效应模型个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型:2Kit i k kit it k y x u λβ==++∑ (1)从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:01231:0N H λλλλ-===⋅⋅⋅==()1(1,(1)1)(1)RRSS URSS N F F N N T K URSSNT N K --=---+--+RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。
实践:一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表1,2和3。
表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据表2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99 PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2 PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.5 98.4 98.1 99.7 100.5 99 PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3 PJL 107.2 103.7 99.2 98 98.6 101.3 99.5 PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2 PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9 PNMG 107.6 104.5 99.3 99.8 101.3 100.6 100.2 PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4 PTJ 109 103.1 99.5 98.9 99.6 101.2 99.6 PZJ 107.9 102.8 99.7 98.8 101 99.8 99.1二、1.输入操作:步骤:(1)File——New——Workfile步骤:(2)Start date——End date——OK步骤:(3)Object——New Object步骤:(4)Type of object——Pool步骤:(5)输入所有序列名称步骤:(6)定义各变量点击sheet—输入consume?income?p?步骤:(7)将表1、2、3中的数据复制到Eviews中2.估计操作:步骤:(1)点击poolmodel——Estimate对话框说明Dependent variable:被解释变量;Common:系数相同部分Cross-section specific:截面系数不同部分步骤:(2)将截距项选择区选Fixed effects(固定效应)Cross-section:Fixed得到如下输出结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
Eviews 面板数据之固定效应模型在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是一样的,则称此模型为固定效应模型。
固定效应模型分为三类:1.个体固定效应模型个体固定效应模型是对于不同的纵剖面时间序列〔个体〕只有截距项不同的模型:2Kit i k kit it k y x u λβ==++∑(1)从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是一样的,而且除模型的解释变量之外,影响被解释变量的其他所有〔未包括在回归模型或不可观测的〕确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:RRSS 是有约束模型〔即混合数据回归模型〕的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。
实践:一、数据:1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费〔cp ,不变价格〕和人均收入〔ip ,不变价格〕居民,利用数据〔1〕建立面板数据〔panel data 〕工作文件;〔2〕定义序列名并输入数据;〔3〕估计选择面板模型;〔4〕面板单位根检验。
年人均消费〔consume 〕和人均收入〔ine 〕数据以及消费者价格指数〔p 〕分别见表1,2和3。
表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数步骤:〔1〕File——New——Workfile步骤:〔2〕Start date——End date——OK步骤:〔3〕Object——New Object步骤:〔4〕Type of object——Pool步骤:〔5〕输入所有序列名称步骤:〔6〕定义各变量点击sheet—输入consume?ine?p"步骤:〔7〕将表1、2、3中的数据复制到Eviews 中 2.估计操作:步骤:〔1〕点击poolmodel ——Estimate对话框说明Dependent variable:被解释变量;mon :系数一样局部 Cross-section specific:截面系数不同局部步骤:〔2〕将截距项选择区选Fi*ed effects 〔固定效应〕 Cross-section :Fi*ed 得到如下输出结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
EViews 6.0在面板数据模型估计中的实验操作1、进入工作目录cd d:\nklx3,在指定的路径下工作是一个良好的习惯2、建立面板数据工作文件workfile(1)最好不要选择EViews默认的blanaced panel 类型Moren_panel(2)按照要求建立简单的满足时期周期和长度要求的时期型工作文件3、建立pool对象(1)新建对象(2)选择新建对象类型并命名(3)为新建pool对象设置截面单元的表示名称,在此提示下(Cross Section Identifiers: (Enter identifiers below this line )输入截面单元名称。
建议采用汉语拼音,例如29个省市区的汉语拼音,建议在拼音名前加一个下划线“_”,如图关闭建立的pool对象,它就出现在当前工作文件中。
4、在pool对象中建立面板数据序列双击pool对象,打开pool对象窗口,在菜单view的下拉项中选择spreedsheet (展开表)在打开的序列列表窗口中输入你要建立的序列名称,如果是面板数据序列必须在序列名后添加“?”。
例如,输入GDP?,在GDP后的?的作用是各个截面单元的占位符,生成了29个省市区的GDP的序列名,即GDP后接截面单元名,再在接时期,就表示出面板数据的3维数据结构(1变量2截面单元3时期)了。
请看工作文件窗口中的序列名。
展开表(类似excel)中等待你输入、贴入数据。
(1)打开编辑(edit)窗口(2)贴入数据(3)关闭pool窗口,赶快存盘见好就收6、在pool窗口对各个序列进行单位根检验选择单位根检验设置单位根检验单位根检验结果注意检验方法和两种检验的零假设:Null: Unit root (assumes common unit root process)各截面有相同的单位根Null: Unit root (assumes individual unit root process)允许各截面有不同单位根其中,Levin, Lin & Chu t*检验拒绝含有单位根的零假设,即拒绝非平稳7、在pool窗口对面板数据组合进行协整检验选择进行协整检验协整检验设置对话框,注意有3种检验方法(test type)协整检验结果,同样要注意两种假定(含有AR,即含有单位根,非协整),两种零假设都是非协整,小概率事件发生拒绝非协整。
Eviews 面板数据之固定效应模型在面板数据线性回归模型中,如果对于不同的截面或不同的时间序列,只是模型的截距项是不同的,而模型的斜率系数是相同的,则称此模型为固定效应模型。
固定效应模型分为三类:1.个体固定效应模型个体固定效应模型是对于不同的纵剖面时间序列(个体)只有截距项不同的模型:2Kit i k kit it k y x u λβ==++∑ (1)从时间和个体上看,面板数据回归模型的解释变量对被解释变量的边际影响均是相同的,而且除模型的解释变量之外,影响被解释变量的其他所有(未包括在回归模型或不可观测的)确定性变量的效应只是随个体变化而不随时间变化时。
检验:采用无约束模型和有约束模型的回归残差平方和之比构造F 统计量,以检验设定个体固定效应模型的合理性。
F 模型的零假设:01231:0N H λλλλ-===⋅⋅⋅==()1(1,(1)1)(1)RRSS URSS N F F N N T K URSSNT N K --=---+--+RRSS 是有约束模型(即混合数据回归模型)的残差平方和,URSS 是无约束模型ANCOVA 估计的残差平方和或者LSDV 估计的残差平方和。
实践:一、数据:已知1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(cp ,不变价格)和人均收入(ip ,不变价格)居民,利用数据(1)建立面板数据(panel data)工作文件;(2)定义序列名并输入数据;(3)估计选择面板模型;(4)面板单位根检验。
年人均消费(consume)和人均收入(income)数据以及消费者价格指数(p)分别见表1,2和3。
表1 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均消费(元)数据表2 1996—2002年中国东北、华北、华东15个省级地区的居民家庭人均收入(元)数据表3 1996—2002年中国东北、华北、华东15个省级地区的消费者物价指数物价指数1996 1997 1998 1999 2000 2001 2002 PAH 109.9 101.3 100 97.8 100.7 100.5 99 PBJ 111.6 105.3 102.4 100.6 103.5 103.1 98.2 PFJ 105.9 101.7 99.7 99.1 102.1 98.7 99.5 PHB 107.1 103.5 98.4 98.1 99.7 100.5 99 PHLJ 107.1 104.4 100.4 96.8 98.3 100.8 99.3 PJL 107.2 103.7 99.2 98 98.6 101.3 99.5 PJS 109.3 101.7 99.4 98.7 100.1 100.8 99.2 PJX 108.4 102 101 98.6 100.3 99.5 100.1 PLN 107.9 103.1 99.3 98.6 99.9 100 98.9 PNMG 107.6 104.5 99.3 99.8 101.3 100.6 100.2 PSD 109.6 102.8 99.4 99.3 100.2 101.8 99.3 PSH 109.2 102.8 100 101.5 102.5 100 100.5 PSX 107.9 103.1 98.6 99.6 103.9 99.8 98.4 PTJ 109 103.1 99.5 98.9 99.6 101.2 99.6 PZJ 107.9 102.8 99.7 98.8 101 99.8 99.1二、1.输入操作:步骤:(1)File——New——Workfile步骤:(2)Start date——End date——OK步骤:(3)Object——New Object步骤:(4)Type of object——Pool步骤:(5)输入所有序列名称步骤:(6)定义各变量点击sheet—输入consume?income?p?步骤:(7)将表1、2、3中的数据复制到Eviews中2.估计操作:步骤:(1)点击poolmodel——Estimate对话框说明Dependent variable:被解释变量;Common:系数相同部分Cross-section specific:截面系数不同部分步骤:(2)将截距项选择区选Fixed effects(固定效应)Cross-section:Fixed得到如下输出结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
0H :i αα=。
模型中不同个体的截距相同(真实模型为混合回归模型)。
1H :模型中不同个体的截距项i α不同(真实模型为个体固定效应回归模型)。
对模型进行检验:0.05()115-1==7.69=.90(1)RRSS URSS N F F URSS NT N K --=>--+(4965275-2259743)(14,90)180232259743所以推翻原假设,建立个体固定效应回归模型更合理。
RRSS 求法请参见Eview 面板数据之混合回归模型 相应的表达式为:1215596.500.6953.23592.44...230.16it it Consume Income D D D =+-+++(6.64) (49.55) 20.99,2259743r R SSE ==其中虚拟变量1215,,...,D D D 的定义是:1,1,2,...,150,i i i D =⎧=⎨⎩如果属于第个个体,其他15个省级地区的城镇人均指出平均占收入68.62%。
从上面的结果可以看出市居民的自发性消费明显高于其他地区。
2.时点固定效应模型时点固定效应模型就是对于不同的截面(时点)有不同截距的模型。
如果确知对于不同的截面,模型的截距显著不同,但是对于不同的时间序列(个体)截距是相同的,那么应该建立时点固定效应模型:2Kit t k kit it k y x u γβ==++∑ (2)时点固定效应模型与个体固定效应模型的操作区别在于步骤(2),将时间项选择区选 Period :Fixed (时间固定效应)得到如下结果:接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
0H :i αα=。
模型中不同个体的截距相同(真实模型为混合回归模型)。
1H :模型中不同个体的截距项t α不同(真实模型为时间固定效应回归模型)。
对模型进行检验:0.05()7-11==3.54=.98(1)RRSS URSS T F F URSS NT T K --=>--+(4965275-4080749)(6,98)2194080749所以推翻原假设,可以建立时点固定效应回归模型 RRSS 求法请参见Eview 面板数据之混合回归模型 相应的表达式为:1272.60.78114137.5...97.7it it Consume IP D D D =-++++-(76.0) 20.986,4080749R SSE ==其中虚拟变量127,,...,D D D 的定义是:1,0,t D ⎧=⎨⎩如果属于第t 个截面,t=1996,...,2002其他3.时点个体固定效应模型时点个体固定效应模型就是对于不同的截面(时点)、不同的时间序列(个体)都有不同截距模型。
如果确知对于不同的截面、不同的时间序列(个体)模型的截距都显著地不相同,那么应该建立时点个体固定效应模型:2Kit t t k kit it k y x u λγβ==+++∑ (3)时点固定效应模型与个体固定效应模型的操作区别在于步骤(2),将截距项选择区域:Cross-section :fixed (个体固定效应),时间项选择区选 Period :Fixed (时间固定效应)得到结果如下:Dependent Variable: CONSUME? Method: Pooled Least SquaresDate: 07/21/14 Time: 15:44Sample: 1996 2002Included observations: 7Cross-sections included: 15Total pool (balanced) observations: 105Variable Coefficient Std. Error t-Statistic Prob.C 806.6751 221.2143 3.646578 0.0005INCOME? 0.653338 0.034541 18.91504 0.0000 Fixed Effects (Cross)AH--C -94.50854BJ--C 698.0132FJ--C -18.86465HB--C -200.3997HLJ--C -246.3712JL--C -54.16421JS--C -31.26919JX--C -392.9844LN--C 47.39508NMG--C -284.2660SD--C -150.8912SH--C 465.4906SX--C -152.6560TJ--C 103.9569ZJ--C 311.5193Fixed Effects (Period)1996--C -59.123731997--C 17.954691998--C -31.455641999--C -57.240422000--C 36.243822001--C -29.264152002--C 122.8854Effects SpecificationCross-section fixed (dummy variables)Period fixed (dummy variables)R-squared 0.993278 Mean dependent var 4981.017 Adjusted R-squared 0.991577 S.D. dependent var 1700.985 S.E. of regression 156.1067 Akaike info criterion 13.12288 Sum squared resid 2022652. Schwarz criterion 13.67895 Log likelihood -666.9514 Hannan-Quinn criter. 13.34821 F-statistic 584.0406 Durbin-Watson stat 1.455623Prob(F-statistic)0.000000接下来用F 统计量检验是应该建立混合回归模型,还是个体固定效应回归模型。
0121121=====0N T H λλλγγγ--⋅⋅⋅=⋅⋅⋅=:和:对模型进行检验:0.05()2022652222-2==5.83=.2022652(1)83RRSS URSS T N F F URSS NT T N K -+-=>---+(4965275-)()(20,83)17 所以推翻原假设,可以建立个体时点固定效应回归模型。