线性系统理论中状态反馈综述
- 格式:wps
- 大小:27.00 KB
- 文档页数:4
第六章 线性反馈系统的状态空间综合6.1 引言1)什么是综合问题?系统综合问题由被控系统、性能指标和控制输入3个要素组成。
¾ 被控系统:兼顾应用广泛性和理论分析的简单性,限于考虑严格真线性时不变系统 Cxy t x x Bu Ax x=≥=+=000,)(, ¾ 性能指标:控制系统具备的性能。
¾ 控制输入:通常取反馈形式,包含状态反馈和输出反馈,即系统综合问题就是,对给定的被控系统,确定反馈控制,使得导出的闭环系统运动行为 达到期望的性能指标。
性能指标分类可区分为“非优化型性能指标”和“优化型性能指标”。
非优化型性能指标:属于不等式型指标,目标是使综合的系统达到期望指标。
优化型性能指标:极值型指标,目标为使系统性能指标函数极大或极小。
典型的非优化型性能指标 1) 渐近稳定:镇定问题2) 一组期望闭环极点:极点配置问题 3) MIMO 系统化为多个SISO 系统:解耦问题4) 使输出在外部干扰环境下无静差的跟踪参考信号:跟踪问题优化型性能指标通常取为000>>+=∫∞R Q dx Ru u Qx x u J T T ,,)()(2)研究综合问题的思路建立“可综合条件”,建立确定相应控制规律的“算法”。
3)综合与工程实现中的一些理论问题及外部扰动的影响等。
¾ 状态反馈的物理构成:状态一般不能直接测量,需要引入状态重构或估计;¾ 系统结构参数摄动的影响:系统模型总是存在不确定性因素,鲁棒性问题;¾ 外部扰动的影响:扰动抑制。
6.2 反馈6.2.1 状态反馈1)状态反馈结构图2)系统描述⎩⎨⎧=≥=+=CxytxxBuAxx0,)(,:Σ)()()(tvtKxtu+−=⎩⎨⎧=≥=+−=⇒CxytxxBvxBKAxxf,)(,)(:Σ闭环系统传递函数:定理:状态反馈的引入,不改变系统的能控型,但可能改变系统的能观测性。
证明:1)能控性BBKAsICsGK1−+−=)()(设0∑和k ∑的能控型判别矩阵分别为c Q 和ck Q ,有()()n 1n 1ck c −−⎡⎤=−−⎣⎦−−⎡⎤⎢⎥−⎢⎥⎡⎤⎢⎥=⋅⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦−−⎡⎤⎢⎥−⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦Q BA BK BA BKB I KBKBK KA *0I K *BAB A B 00I *000I I KBKBK KA *0I K *Q 00I *000I """""###%#""""###%#"可以看出,ck Q 与c Q 的秩相同,从而k ∑能控,而且仅当0∑能控。
现代控制理论实验(一)线性系统的状态反馈及极点配置——09级自动化本科一.实验目的1.了解和掌握状态反馈及极点配置的原理。
2.了解和掌握利用矩阵法及传递函数法计算状态反馈及极点配置的原理与方法。
3.掌握在被控系统中如何进行状态反馈及极点配置,构建一个性能满足指标要求的新系统的方法。
二.实验原理及说明一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说,当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。
因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。
若有被控系统如图3-3-61所示,它是一个Ⅰ型二阶闭环系统。
图3-3-61 被控系统如图3-3-61所示的被控系统的传递函数为:12021S 11)1(1)(a S a S b T TS T TS S T S i i i ++=++=++=φ (3-3-51) 采用零极点表达式为:))(()(210λλφ--=S S b S (3-3-52)进行状态反馈后,如图3-3-62所示,图中“输入增益阵”L 是用来满足静态要求。
图3-3-62 状态反馈后被控系统设状态反馈后零极点表达式为:))(()(21**--=λλφS S b S (3-3-53)1.矩阵法计算状态反馈及极点配置1)被控系统被控系统状态系统变量图见图3-3-63。
图3-3-63 被控系统状态系统变量状态反馈后的被控系统状态系统变量图见图3-3-64。
图3-3-64 状态反馈后的被控系统状态系统变量图图3-3-61的被控系统的状态方程和输出方程为:状态方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=+-=••1i 1i 2211X Y u T 1X T 1X X T 1X T 1X (3-3-54)⎪⎩⎪⎨⎧=+==•∑CxY u Ax X B C B A 0),,(式中[]01,T 10B 0T 1T 1T 1A ,i i 21=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=C x x x , 被控系统的特征多项式和传递函数分别为:12010a a b S b )(+++=S S S φB A)C(SI 1--=)(A -SI det a a )(f 0120=++=S S S 可通过如下变换(设P 为能控标准型变换矩阵): —x P X =将∑0C B A ),,(化为能控标准型 ),,(————C B A ∑,即: ⎪⎩⎪⎨⎧=+=•——————x C Y u x A B X 式中 ⎥⎦⎤⎢⎣⎡-==-101a -a 10AP P A — , ⎥⎦⎤⎢⎣⎡==-10B P B 1— , []10b b CP C ==— 2)被控系统针对能控标准型),,(————C B A ∑引入状态反馈:⎥⎦⎤⎢⎣⎡=-=—————式中10k k k xk u ν (3-3-55)可求得对—x 的闭环系统),,—————C B k B A (-∑的状态空间表达式: 仍为能控标准型,即: ⎪⎩⎪⎨⎧=+-=•————————)(x C Y u x B k B A X 式中 ⎥⎦⎤⎢⎣⎡+-+-=-)()(—————1100k a k a 10k B A则闭环系统),,(——————C B k B A -∑的特征多项式和传递函数分别为: )()(—————00112k k a k a k)B (A SI det )(f ++++=⎥⎦⎤⎢⎣⎡--=S S S )k a (k a b S b B )k B A (SI C )(00112011k ———————)(+++++=⎥⎦⎤⎢⎣⎡--=-S S S φ3)被控系统如图3-3-61所示:其中:05.01==T T i则其被控系统的状态方程和输出方程为:[]XY uX X 0110012020=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=期望性能指标为:超调量M P ≤20%;峰值时间t P ≤0.5秒。
1.3 线性系统的校正与状态反馈控制系统的校正与状态反馈就是在被控制对象已确定,在给定性能指标的前提下,要求设计者选择控制器(校正网络)的结构和参数,使控制器和被控制对象组成一个性能满足指标要求的系统。
1.3.1频域法串联超前校正超期网络的特性是相角超前,幅值增加。
串联超前校正的实质是将超前网络的最大超前角设计在校正后系统的剪切频率w c处,提高校正后系统的相位裕度和剪切频率,从而改善系统的动态性能。
频域法校正主要是通过对被控对象的开环对数幅频特性和相频特性(伯德图)观察和分析实现的。
1. 观测被控系统的开环对数幅频特性L(w)和相频特性φ(w),幅值穿越频率w c,相位裕度γ,按“校正后系统的相位裕度γ'”要求,设计校正参数,构建校正后系统。
2. 观测校正前、后的时域特性曲线,并测量校正后系统的相位裕度γ'、超调量Mp、峰值时间tp。
3. 改变“校正后系统的相位裕度γ'”要求,设计校正参数,构建校正后系统,画出其系统模拟电路图和阶跃响应曲线,观测校正后相位裕度γ'、超调量Mp、峰值时间tp填入实验报告。
1.未校正系统的时域特性的测试未校正系统的时域特性的测试模拟电路图见图1-3-1图1-3-1 未校正系统的时域特性的测试模拟电路图图1-3-1 未校正系统的开环传递函数为:6 (S)0.2(10.3) GS S=+实验内容及步骤:(1)构造模拟电路(2)运行、观察、记录实验结果如下图:实验结果分析:(1)理论上在未校正系统的时域特性特性曲线上可测得时域特性:超调量Mp=59%,峰值时间tp=0.336S,调节时间ts=1.8S(Δ=5时)(2)实测结果为:超调量Mp=3.931 2.52.5=57.24%,峰值时间tp=0.322S,调节时间ts=1.825S(Δ=5时)所以实测结果与理论上基本相等。
2.未校正系统的频域特性的测试未校正系统的频域特性的测试模拟电路图见图1-3-2图1-3-2 未校正系统的频域特性的测试模拟电路图实验内容及步骤:(1)构造模拟电路(2)运行、观察、记录实验结果如下图:实验结果的分析:(1)理论上测得未校正系统频域特性:穿越频率W c=9.44rad/s,相位裕度γ=19°。
线性系统的状态反馈及极点配置1.前言随着现代控制理论的不断发展和成熟,线性系统的状态反馈控制在控制理论中得到了广泛的应用,并成为了控制领域中重要的一种控制方法。
状态反馈控制能够将系统的状态进行反馈,并利用反馈得到的信息对系统进行控制,从而达到使系统达到预期控制目标的目的。
本文将从状态反馈控制的原理和实现方法两方面介绍线性系统的状态反馈及极点配置。
2.状态反馈控制的原理状态反馈控制是建立在现代控制理论的基础上的一种高级控制方法。
状态反馈控制的基本思想是在系统中引入反馈环节,设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,以期望控制系统按照预期的运动轨迹运行。
因此,状态反馈控制要实现以下两个步骤:- 系统状态量的测量:首先要在系统中安装测量传感器,实时地测量系统状态量,使得状态量可以被反馈到控制器中。
- 反馈控制器的设计:设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,实现对系统的精确控制。
因此,状态反馈控制的基本原理就是将系统状态量反馈到控制器中,以期望控制系统按照预期的运动轨迹运行。
2.2 状态空间模型与状态反馈控制状态空间模型是状态反馈控制的基础。
状态空间模型是一种方便描述线性系统动态行为和控制器的模型。
对于线性时不变系统,我们可以用如下的状态变量描述:x(t) = [x1(t),x2(t),...,xn(t)]T其中,x(t) 是系统在时刻 t 的状态量,n 是状态量的数量,x1(t),x2(t),...,xn(t) 分别是系统的每个状态量。
状态空间模型可以用一组线性常微分方程描述:dx/dt = Ax + Bu其中,A 是系统的状态方程矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接耦合矩阵。
系统的状态反馈控制可以表示为:u(t) = -Kx(t)其中,K 是状态反馈矩阵。
将状态反馈控制引入到状态空间模型中,可以得到控制器的状态空间模型为:y = Cx上述控制器的状态空间模型就是一个闭环系统,通过反馈控制器将系统状态返回到系统,形成了一个反馈环。
综述报告前言:将动态逆理论、神经网络和自适应控制相结合应用于非线性飞行控制系统设计中, 通过动态逆控制律将非线性耦合系统转换为线性解耦系统, 采用具有在线学习能力的神经网络来补偿反馈线性化中存在的逆误差, 最后利用李亚普诺夫稳定性理论推导了在线网络权值的自适应调整规则。
结果表明, 这种控制结构具有良好的跟踪能力和极强的鲁棒性。
一、历史发展在基于非线性飞机对象的飞行控制中, 利用动态逆的控制算法已发展得较为完善。
动态逆控制律成功应用的前提是系统可以被精确描述, 所受的干扰能在扰动前建模, 这些因素使动态逆方法的应用受到很大限制。
近十几年来神经网络的研究取得了飞速发展, 由于神经网络对模型未知或具有强不确定性系统控制时所表现出的优越性, 国外一些学者试探性的将神经网络应用到飞控系统中。
Cal ise 提出了一种利用神经网络的非线性飞行控制方案。
Sanner 和Slot ine 用高斯径向基网络设计了直接自适应跟踪控制器。
二、现状评述当今飞行器发展主要表现在以下几个方面:1、虚拟座舱是虚拟现实技术在航空领域的重要应用。
它由计算机虚拟环境发生器、头盔显示器、交互式大屏幕显示器、声音告警系统、话音识别器、头/眼/手跟踪系统以及触觉/动觉系统构成。
根据复杂程度的不同,虚拟座舱可以分为桌面虚拟座舱(仅采用交互式大屏幕显示器)、临境虚拟座舱(增加头盔显示器)和分布式虚拟座舱(进一步上网实现联机操作)。
虚拟座舱能使人进入一种封闭的虚拟环境,通过人机接口输出3维视觉、听觉和触觉信息,多通道刺激人的感官,从而使人在头脑中形成身临现实环境的感觉;同时,又能接受人的手指动作、话音、头眼指向等多通道控制信息,实现人机交互。
虚拟座舱具有临境性(immersion)、交互性(interactivity)和想象力(imagination)的特点。
利用虚拟座舱技术,能增强驾驶员对情况的了解,摆脱常规任务,减轻工作负担,提高工作效率,并实现座舱显示/控制的综合化和智能化,满足21世纪信息时代有人和无人飞行器座舱的需要。
线性系统理论中状态反馈综述
学号:1402028 姓名:王家林
现代控制理论源于20世纪60年代,以极大值等原理为形成标志,经典理论中以单一输入变量为研究对象,主要通过频率进行控制,现在控制理论以线性空间理论为基础,在时域中研究系统,能够定量的进行系统的分析和设计,随着计算机运算能力的发展,现代控制也在更多领域得到应用。
控制系统是有受控对象和反馈控制器两部分组成的闭环系统,经典控制理论通常采用输出反馈,而现代控制理论多采用状态反馈。
闭环系统极点的分布情况决定于系统的稳定性和动态品质,因此,可以根据对系统动态品质的要求,规定闭环系统的极点所具备的分布情况,把极点的配置作为系统的动态品质指标。
这种把极点配置在某位置的过程称为极点配置。
在空间状态法中,一般采用反馈系统状态变量或输出变量的方法,来实现系统的极点配置。
20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。
美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观性两个基本概念。
其研究问题的方法主要有时域状态空间分析法,线性二次型最优状态调节器法,状态观测器控制法,李雅普诺夫稳定性分析法以及极点配置法等。
近年来,计算机技术的迅速发展给需要大计算量的现代控制提供了更好的发展空间,同事工业生产的告诉发
展,是的工程界对控制的要求也日益提高,由此也极大地推动了现代控制理论的发展和完善。
在控制理论与实践中的一个基本要求是设计反馈控制率,将闭环系统的极点配置在制定的位置上,从而保证闭环系统具有所要求的动态和稳态特性。
由于模型的不确定因素和各种扰动的存在,使得精确极点配置的控制方式不可能得到真正的实现。
世纪设计中只能将闭环系统的极点配置在指定的区域内,就可以使系统获得满意的性能。
近年来,对D稳定理论的研究十分活跃,利用这一理论研究区域极点配置问题已取得一些成果,包括最优控制、鲁棒性等方面。
在对系统的分析和设计中,首先要考虑的是系统的稳定性问题,而线性系统的稳定性与其极点的位置紧密相关,因此极点配置问题在系统设计中是很重要的。
为此,需要根据分析和设计的目的,将系统极点配置在指定区域内或指定某个位置。
所谓极点配置问题,就是通过反馈矩阵的选择,使闭环系统的极点,即闭环特征方程的特征值恰好处于所希望的一组极点位置上或者是某个区内。
由于希望的极点具有一定的任意性,因此极点的配置也具有一定的任意性。
对于线性系统而言,其稳定性取决于状态的零输入响应,因而取决于系统极点的分布,当极点的实部小于零时,系统是稳定的;当极点分布在虚轴上时,系统是临界稳定的;当极点的实部大于零时,系统是不稳定的。
同事,系统动态响应的基本特性也依赖于极点的分布,若系统极点是负实数,则系统动态响应时非周期的,按指数规律
衰减,衰减的快慢取决于极点的分布;若系统极点是具有负实部的共轭复数,则其动态响应时衰减振荡的,振荡的频率缺件于极点的虚部,而振幅衰减的快慢有极点的实部决定。
因此将系统极点配置在制定位置,可以试听满足性能指标的要求,从而改善系统的基本特性,具有实际的理论意义。
在现代控制理论中,以状态空间描述和状态空间法为基础,引入反馈和补偿器将闭环系统的极点配置在制定位置。
显然,解决极点配置问题必须给出可配置条件和相应的配置方法。
由于在控制理论中,主要的反馈形式由于状态反馈和输出反馈两种。
传统的输出反馈方法虽然也能改变系统极点的位置,但有很大的局限性,而采用状态反馈方法可以实现极点的任意配置。
状态反馈是控制理论中最基本的反馈形式之一。
状态反馈就是采用线性系统的状态变量构成反馈率,进而改变系统矩阵,因此状态反馈具有改变系统结构属性和实现性能指标的功能。
首先,状态反馈的引入不改变系统的能控性,但可能改变系统的能观测性。
其次,由于状态反馈是系统结构信息的一种完全的反馈,因此状态反馈系统可以获得良好的动态性能。
最后,当系统状态完全可观测时,状态反馈控制器更易于实现。
参考文献:
[1]Siljak.D.D,Stipanovic,D.M.Robust stabilization of linear systems:the LMI approach. Mathemtical Problems in Engineering, vol.6 2000;461-493
[2]Biran,A.andBreiner,M.G.MATLABforEngineers[M].Addison-Wes
ley,2003.
[3]Backstrom,G.Practical Mathematics Using MATLAB[J].Sthdentlitteratur(ISBN91-44-49231-6) and chartwell bratt Ltd(ISBN 0-86238-397-8),2005
[4] Huang S J,Shy C Y.Intelligent control for handlingmotion nonlinearity in a retrofitted machining table,IEE Proc. Control Theory and Applications . 2008
[5] Nata Kumara Dinata.Control Relevant Identification for Robust Optimal Control. . 2010。