管道及储罐强度设计
- 格式:pdf
- 大小:654.23 KB
- 文档页数:9
《管道及储罐强度设计》课程设计题目25m3埋地卧式油罐图所在院(系)石油工程学院专业班级储运1007班学号201004020712学生姓名杨睿指导教师邓志安完成时间2013.07.12《油罐及管道强度设计》课程设计任务书题目25m3埋地卧式油罐图学生姓名刘丹学号200804020624 专业班级储运0806设计内容与要求一、原始数据1.适用范围及设计条件油罐用于储存工业或民用设施中常用的燃料油。
(1)设计压力常压(2)设计温度-19℃≤t≤200℃(3)设计寿命 15年(4)焊接接头系数 0.85(5)水压试验压力盛水试漏(6)腐蚀裕量 1.5mm(7)装量系数 0.9(8)介质燃料油2.设计基本参数和尺寸25m3埋地卧式油罐的基本参数尺寸见表一。
表一:25m3埋地卧式油罐基本参数和尺寸公称容积(m3)筒体主要尺寸封头壁厚(mm)壳体材料设备金属总质量(kg)直径×长度×壁厚25 2200×6400×8 8 20R 4300二、设计要求1.了解埋地卧式油罐的基本结构和局部构件;2.根据给定油罐大小,查阅相关标准确定相应构件的规格尺寸;3.学会使用AUTOCAD制图;4.相关技术要求参考有关规范。
三、完成内容1.25m3埋地卧式油罐图纸一张(2#);2.课程设计说明书一份。
起止时间2013 年7月01 日至2013年7月12 日指导教师签名年月日系(教研室)主任签名年月日学生签名年月日目录1绪论 (1)1.1金属油罐设计的基本知识 (1)1.1.1 金属油罐的发展趋势 (1)1.1.2 对金属油罐的基本要求 (1)1.2金属油罐的分类 (2)1.2.1 地上钢油罐 (3)1.2.2 地下油罐 (3)1.3卧式油罐简介 (4)1.4课题意义 (4)2埋地卧式油罐课程设计说明书 (5)2.1设计说明书 (5)2.1.1 适用范围 (5)2.1.2 设计、制造遵循的主要标准规范 (5)2.2主要设计内容 (5)2.2.1 油罐供油系统流程图 (5)2.2.2 25m3埋地卧式油罐加工制造图,基本参数和尺寸 (5)2.3安全 (6)2.4设计遵循参照的主要规范 (6)2.5设计范围 (6)2.5.1防雷电与防静电措施 (6)2.5.2防火措施 (7)2.6防腐 (7)2.7油罐接管 (7)2.8油罐容积的确定 (7)2.9其它 (8)3课程设计计算书 (9)3.1设计的基本参数 (9)3.2壳体壁厚计算 (9)3.2.1 筒体壁厚计算 (9)3.2.2 封头壁厚计算 (9)3.2.3许用外压力[P] (10)3.30.1362MP A外压校核 (11)3.3.1 筒体0.1362MPa外压校核 (11)3.3.2 封头0.136193MPa外压校核 (12)3.4罐体最小容积计算 (12)3.5水压试验时的应力校核 (12)3.6筒体加强圈的设计计算 (12)3.6.1 加强圈数的确定计算 (12)3.6.2 加强圈尺寸的设计 (13)3.6.2.1 加强圈的选择 (13)3.6.2.2 计算加强全横截面积As即组合截面的惯性矩 (13)3.6.2.3由下式计算参数B: (14)3.7鞍座的选择计算 (14)3.7.1 罐体重Q1 (14)3.7.2 封头重Q2 (14)3.7.3 汽油重Q3 (14)3.7.4 附件重Q4 (15)3.8鞍座作用下筒体应力计算 (15)3.8.1 筒体轴向弯矩计算 (15)3.8.2 筒体轴向应力计算 (15)3.8.2.1 在横截面的最高点处: (16)3.8.2.2 在横截面的最低点处: (16)3.8.2.3 在支座处的轴向应力: (16)3.8.3 筒体轴向应力校核 (16)3.8.4 筒体切向应力的计算 (17)3.8.5 筒体周向应力计算 (17)3.8.5.1 周向弯矩计算 (17)3.8.5.2 周向压缩应力计算 (18)3.8.5.3 周向总应力的计算和校核 (18)3.8.6 鞍座地震载荷 (19)3.9圆筒应力的强度校核 (19)3.9.1 受力分析 (19)3.9.1.1 圆筒轴向应力的校核 (20)3.9.1.2 圆筒轴向应力的校核 (21)3.10抗浮验算 (21)参考文献 (23)1绪论1.1 金属油罐设计的基本知识1.1.1 金属油罐的发展趋势近一、二十年来,油罐的设计与施工技术都较过去有了更快的发展。
西南石油大学学生毕业设计(论文)任务书二00八年二月一日1、题目:成品油顺序输送管道设计4.安排任务日期:2008年2月1日;预计完成任务日期 2008年4月 30日;学生实际完成全部设计(论文)日期:2008年4月30日。
指导教师:学生签名:西南石油大学学生毕业设计(论文)开题报告设计题目:成品油顺序输送管道设计学生姓名:**学生学号: **院(系):成人教育学院专业年级: 油气储运工程**指导教师: ***2008年2 月1日西南石油大学毕业设计(论文)成品油顺序输送管道设计学生姓名:**学号:**专业班级:油气储运工程**(专升本)指导教师:***2008年4月30日摘要在一条成品油顺序输送管线中,顺序输送的循环次数越少,每一种油品的一次输送量越大,在管道内形成的混油段和混油损失也随之减少,但另一方面,油品的生产和消费通常是均衡进行的,各种油品每天都在生产和消费,顺序输送管道对每一种油品来讲是间歇输送。
循环次数越少,就需要在管道的起、终点以及沿线的分油点和进油点建造较大容量的储罐区来平衡生产、消费和输送之间的不平衡,油罐区的建造和经营费用就要增加。
因而,最优循环次数的确定应从建造、经营油罐区的费用和混油的贬值损失两方面综合考虑。
成品油顺序输送管道设计应首先根据输量确定管道的管径以及首末站、分输站、中间泵站等基本工艺条件,同时考虑管道应能适应不同季节成品需求量的变化。
在确定了这些基本工艺条件后,顺序输送和罐容的优化只与管道输送次序、混油处理方式和油罐设置等有关.优化批次、罐容时应根据不同批次分别计算首站罐容、分输油库和末站罐容,并根据输送顺序计算混油量以及混油处理的各项费用,最终确定管道的最优批次和罐容配置。
本文以所给的设计任务书为依据,在进行了相关设计计算的基础上利用计算机编程对该管道进行了水力计算、经济计算,确定了最经济的管道工艺参数(如管径、壁厚、工作压力、泵站数),并且对该管道进行了工艺计算,计算出了一年中油品的输送天数、最优循环次数、首末站所需的最优油罐容积,并确定了油品的切割方案,绘制了水力坡降与布站图和首站工艺流程图.关键词:管道输送批次混油量混油处理罐容设计AbstractWithin a product oil botched transportation pipeline, the less the transportation circles are and the more the transportation sum of each kind of oil, the less the mixed oil segment and oil mixture loss will form. However, oil’s producing and consumption are usually balanced. Each day, every kinds of oil are produced and consumed, so botched transportation is intermittent for each oil kind. The less the transportation circles are, the bigger the storage oilcan areas are needed at the pipeline's start and final point and the oil output and input point along the pipeline so as to balance the imbalance of oil’s producing, consumption and transportation, thus increases the oilcan areas' construction and run fee。
《油罐及管道强度设计》课程综合复习资料一、单选题1.“管道和储罐的失效判据具有通用性,也就是说任一判据都可以适用于任意场合。
”这种说法()。
A.正确B.错误答案:B2.“管道和储罐设计应遵循“先爆后漏”原则而不是“未爆先漏”原则。
”这种说法()。
A.正确B.错误答案:B3.“基于应变的设计方法是一种先进的设计方法,适用于一切管道任意工况的设计。
”这种说法()。
A.正确B.错误答案:A4.“高风险地区的管道设计时应具有更高的可靠度,实际设计时采用更大的安全系数。
”这种说法()。
A.正确B.错误答案:B5.“无力矩理论微元平衡方程中的曲率半径一定是正值。
”这种说法()。
A.正确B.错误答案:B6.下列说法中()是正确的。
A.浮船的稳定性校核仅包括浮船的侧向稳定性校核和截面稳定性校核两部分B.根据“浮顶处于漂浮状态时,下表面应与储液全面接触”设计单盘板安装高度时,只要单盘板安装位置不超过其上限位置C max即可C.在计算浮顶积水时的抗沉性时,只要满足浮船的下沉深度不超过外边缘板高度,且留有一定裕量即可答案:C7.进行下节点强度校核时,下节点处的计算应力不宜超过()。
A.2σsB.σsC.0.9σsD.[σ]答案:C8.圆柱形储罐罐壁下节点处的环向应力为()。
A.接近于零B.C.约等于该处的弯曲应力D.约等于该处的剪切应力答案:A9.Π型补偿器可采用()的办法来提高其补偿能力。
A.预先拉伸或预先压缩B.预先弯曲答案:A10.下列()补偿器补偿能力最大。
A.L形补偿器B.Π型补偿器C.波纹管式补偿器D.球形补偿器答案:B11.下列()补偿器可用于大压力的油气管道。
A.L形补偿器B.Π型补偿器C.波纹管式补偿器D.球形补偿器答案:B12.储罐和管道的连接一般使用()补偿器。
A .L 形补偿器 B .Π型补偿器 C .波纹管式补偿器 D .球形补偿器 答案:C13.当[]cr P P >时,将式cr[]PP 按()方法取整之后得到的的数值即为需要设置的中间抗风圈的数量。
《管道及储罐强度设计》课程设计题目10m3埋地卧式油罐图所在院系石油工程学院专业班级学号学生姓名指导教师完成时间2011年7月9日课程设计任务书1.目录1 绪论 (3)1.1 金属油罐设计的基本知识 (3)1.1.1金属油罐的发展趋势 ................................................................. . (3)1.1.2对金属油罐的基本要求 (3)1.2 金属油罐的分类 (4)1.2.1地上钢油罐 (5)1.2.2地下油罐 (5)1.3 课题意义............................................................... .. (6)2 设计说明书 (7)2.1适用范围 (7)2.2设计、制造遵循的主要标准规范 (7)2.3主要设计内容 (7)2.3.1 油罐供油系统流程图 (7)2.3.2 100m3埋地卧式油罐加工制造图,基本参数和尺寸 (7)2.4安全 (8)2.5设计遵循参照的主要规范 .............................................. 错误!未定义书签。
2.6设计范围 .......................................................................... 错误!未定义书签。
2.7防腐 .................................................................................. 错误!未定义书签。
2.8油罐接管 .......................................................................... 错误!未定义书签。
2.9油罐容积的确定 .............................................................. 错误!未定义书签。
1 总则1.0.1 为在输气管道工程设计中贯彻国家的有关法规和方针政策,统一技术要求,做到技术先进、经济合理、安全适用、确保质量,制订本规范。
1.0. 2 本规范适用于陆上输气管道工程设计。
1.0.3 输气管道工程设计应遵照下列原则:1 保护环境、节约能源、节约土地,处理好与铁路、公路、河流等的相互关系;2 采用先进技术,努力吸收国内外新的科技成果;3 优化设计方案,确定经济合理的输气工艺及最佳的工艺参数。
1.0.4 输气管道工程设计除应符合本规范外,尚应符合国家现行有关强制性标准的规定。
2 术语2.O.1 管输气体 pipeline gas通过管道输送的天然气和煤气。
2.O.2 输气管道工程 gas transmission pipeline project用管道输送天然气和煤气的工程。
一般包括输气管道、输气站、管道穿(跨)越及辅助生产设施等工程内容。
2.O.3 输气站 gas transmission station输气管道工程中各类工艺站场的总称.一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。
2.O.4 输气首站 gas transmission initial station输气管道的起点站。
一般具有分离,调压、计量、清管等功能。
2.O.5 输气末站 gas transmission terminal station输气管道的终点站。
一般具有分离、调压、计量、清管、配气等功能。
2.O.6 气体接收站 gas receiving station在输气管道沿线,为接收输气支线来气而设置的站,一般具有分离、调压、计量、清管等功能。
2.O.7 气体分输站 gas distributing station在输气管道沿线,为分输气体至用户而设置的站,一般具有分离、调压、计量、清管等功能。
2.O.8 压气站 compressor station在输气管道沿线,用压缩机对管输气体增压而设置的站。
《管道及储罐强度设计》课程设计题目 40m3埋地卧式油罐图所在院(系)石油工程学院专业班级储运1102 学号 201104060229 学生姓名韩珂指导教师姚培芬完成时间 2012年07月10日目录1绪论 (3)1.1 金属油罐设计的基本知识 (3)1.1.1金属油罐的发展趋势 (3)1.1.2对金属油罐的基本要求 (3)1.2 金属油罐的分类 (4)1.2.1地上钢油罐 (4)1.2.2地下油罐 (4)1.3 课题意义 (4)2埋地卧式油罐课程设指导书计 (5)2.1 设计说明书 (5)2.1.1适用范围 (5)2.1.2设计、制造遵循的主要标准规范 (5)2.1.3主要设计内容 (5)2.1.3.1 油罐供油系统流程图 (5)2.1.3.2 40 m3埋地卧式油罐加工制造图,基本参数和尺寸 (6)2.1.4安全 (6)2.1.5设计遵循参照的主要规范 (6)2.1.6设计范围 (6)2.1.7防腐 (7)2.1.8油罐接管 (7)2.1.9油罐容积的确定 (7)2.1.10其它 (7)3课程设计计算书 (9)3.1设计的基本参数 (9)3.2壳体壁厚计算 (9)3.2.1 筒体壁厚计算 (9)3.2.2 封头壁厚计算 (9)3.3鞍座的选择计算 (9)3.3.1 罐体重Q1 (9)3.3.2 燃料油重Q2 (10)3.3.3 储罐的总重Q=Q1+Q2 (10)3.4鞍座作用下筒体应力计算 (10)3.4.1 筒体轴向弯矩计算 (10)3.4.2 筒体轴向应力计算 (11)3.4.3 筒体周向应力计算 (11)3.5抗浮验算 (13)参考文献 (14)1绪论1.1 金属油罐设计的基本知识1.1.1金属油罐的发展趋势近一、二十年来,油罐的设计与施工技术都较过去有了更快的发展。
从世界范围来讲,这一状况与前一时期国际上的能源危机有关。
由于能源危机,近若干年来许多工业化的、靠进口原油的国家都增加了原油的储备量,这就迫使这些国家不得不建造更多更大的油罐。
1、载荷的分类。
1).永久荷载2)。
可变荷载3)。
偶然荷载2、厚壁管道和薄壁管道的选择。
(如果D/〈20则按厚壁管考虑,油气管道多用薄壁管道考虑。
)3、管道许用应力的计算。
=K(K、强度设计系数。
、焊缝系数钢管的最低屈服强度。
)4、地下管道产生轴向应力的原因:1)温度变化2)环向应力的泊松效应。
5、支墩受力平衡的校核条件:T K P(K安全系数P管道作用在支墩上的推力T支墩受到的土壤阻力)6、当时弯管在内压作用下环向应力最小,当时弯管在内压作用下环向应力的最大。
在弯曲的外缘为轴向拉应力,而在弯曲的内缘为轴向压应力。
7、什么是简单管道弯曲,弹性管道弯曲的最小半径:指埋在土壤中的管道相对于土壤既不能做轴向移动也不能做横向移动.=8、弯管和直管的应力有什么区别壁厚有什么区别:1)弯管应力分布式不均匀的,最大应力一般高于直管的最大应力。
2)弯管和直管一样,内环向应力的决定壁厚再用轴向应力校核.9、管道的跨度计算,何种情况用刚度计算,何种情况用强度计算:对于输油和输气管道用强度条件决定跨度即可,对于蒸汽管道和其他对挠度有特殊限制要求的管道,应同时按强度条件和刚度条件计算跨度选数值较小者。
10、应力增强系数:指弯管在弯矩作用下的最大弯曲应力和直管受同样弯矩是的最大弯曲应力的比之。
11、埋地管道在地下所处的位置:一般情况下管顶覆土厚度1~1。
2m,热油管道深取1.2m穿越铁路和公路时管顶距铁轨底不小于1。
3m,距公路不小于1m。
12、固定支墩的的作用:可视为把过渡段缩减至零的措施,作用是限制管道的热伸长量。
13:管道补强的规定1:在主管上直接开孔焊接支管:当支管外径小于0。
5倍主管外径时,可采用补强圈进行局部补强,也可增加主管和支管壁厚进行整体补强。
2:当相邻两支管中心线的间距小于两支管开孔直径之和,但大于或等于两支管直径之和的三分之二时,应进行联合补强或增大主管管壁厚度.当进行联合补强时,支管中心线之间的补强面积不得小于两开孔所需总补强面积的二分之一.当相邻两支管中心线的间距小于两支管直径之和的三分之二时,不得开孔。
2008~2009第二学期《管道与储罐强度》习题答案(1~8周)第一次作业:1、已知管道外径φ1016,管材X70,设计压力10MPa ,试计算1-4类地区管道壁厚。
解:输气管道直管段管壁厚度计算公式为:2s PDFtδσ=Φ式中:δ——钢管设计壁厚,mm ;P ——设计压力,MPa ; D ——钢管外径,mm ;s σ——钢管的最低屈服强度,MPa ;F ——强度设计系数;φ——焊缝系数,取φ=1.0;t ——温度折减系数,取t=1.0。
X70管材的规定最低屈服极限s σ=485MPa ,各类地区管道的设计系数和壁厚计算如下:一级地区:F =0.72,10101614.5524850.72 1.0 1.0mm δ⨯==⨯⨯⨯⨯二级地区:F =0.6, 10101617.4624850.6 1.0 1.0mm δ⨯==⨯⨯⨯⨯三级地区:F =0.5, 10101620.9524850.5 1.0 1.0mm δ⨯==⨯⨯⨯⨯四级地区:F =0.4, 10101626.1924850.4 1.0 1.0mm δ⨯==⨯⨯⨯⨯2、管道外径φ1016mm ,壁厚20mm ,内压15MPa ,温度变化65℃,管材的弹性模量E =210GPa ,泊松系数ν0.3,线膨胀系数α=1.2⨯10-5,计算管道中的轴向应力。
解:管道的轴向应力由泊松效应和温度变化产生,泊松效应的应力分量为2ap PDσνδ=式中:δ——钢管设计壁厚,mm ;P ——内压,MPa ;ν——泊松系数,取0.3; D ——管道外径,mm 。
代入已知数据,得1510160.3114.3()220ap MPa σ⨯=⨯=⨯热应力分量为:at E t σα=-∆式中,E ——管材的弹性模量, 取210GPa ;α——线膨胀系数,取1.2⨯10-5。
Δt ——温度变化,℃。
代入已知数据,得3521010 1.21065163.8()at MPa σ-=-⨯⨯⨯⨯=-总的轴向应力为:114.3163.849.5()a ap at MPa σσσ=+=-=-第二次作业:1、Ф1016ⅹ20mm 管道,材质X70,设计内压10MPa ,温差ΔT=65℃。
钢质管道及储罐防腐蚀工程设计规范SYJ7-84第一章总则第1.0.1条为在钢质管道(以下简称管道)和钢质储罐(以下简称储罐)的防腐蚀工程设计中,统一技术标准,延长使用寿命,确保安全生产,以我部管道和储罐的腐蚀现状及采用的防腐蚀措施为基础,同时参考了国外有关资料,编制本规范。
第1.0.2条防腐蚀工程设计,应做到技术可靠,经济合理,因地制宜,合理选材。
并应积极稳妥地采用和推广经过鉴定的防腐蚀新技术,新材料,新结构,新工艺,以提高工程的经济效益。
第1.0.3条在进行防腐蚀工程设计时,应具体分析腐蚀的性质和状况,可采用不限于本规范规定的其它行之有效的防腐蚀措施。
第1.0.4条本规范适用于输送或储存油,气,水管道和储罐的内,外防腐蚀工程设计。
不包括含硫化氢等的酸性介质内防腐设计。
本规范不适用于海洋环境中管道和储罐的防腐蚀工程设计。
第1.0.5条防腐蚀工程的设计,除执行本规范外,尚应符合国家有关标准规范的要求。
当执行本规范有困难时,应由设计单位会同有关单位提出处理意见,报请设计审批部门批准后,方可执行。
第二章土壤和水的腐蚀性等级划分第2.0.1条一般地区的土壤腐蚀性,按土壤电阻率大小分级(见表2.0.1);对腐蚀因素较复杂地区,可参考附录一进行分级。
在土壤类型或性质不同的过渡区域,对金属腐蚀的严重程度高于土壤实测的腐蚀等级,设计时必须有所考虑。
一般地区土壤腐蚀性分级标准表2.0.1注:表中土壤电阻率采用年最小值。
第2.0.2条水对管道和储罐内璧的腐蚀性,按年腐蚀率大小分级。
分级标准见表2.0.2。
水的腐蚀性分级标准2.0.2第三章一般规定第3.0.1条新建管道和储罐除经充分调查表明不需要防腐涂层者外,一般均应做外防腐涂层。
第3.0.2条埋地管道的外防腐涂层分为普通,加强和特加强三级。
应根据土壤的腐蚀性和环境因素确定。
在确定涂层种类和等级时,应考虑阴极保护的因素。
场、站、库内埋地管道,以及穿越铁路、公路、江河、湖泊的管道,均应采取特加强级防腐。
管道及储罐强度设计考试题年级: 专业: 姓名:一、填空题(20分)1.地下敷设管道的埋设深度的确定要综合考虑、、等因素。
2.输油管道的设计温度,当加热输送时应为;当不加热输送时,应。
3.弯头或弯管是整个管道系统的一个组成部分,其所能承受的温度和压力,应,以保证管道系统安全。
4.锚杆的锚固力,与、、、,以及等因素有关。
5.内管与外管的联结构造,其联结件包括、、、和等。
6.敷管船法敷设管线可细分为、、、、五种。
二、简答题(40分)1.管道或管道附件的开孔补强应符合哪些规定?2.地上敷设管道的支承形式按管道跨越形式分类有哪些?3.简介迄今国内外用于管道维修补强的方法。
4.简介光壳球在外载荷作用下的临界荷载计算和设计厚度的方法。
三、计算题(40分)1.管道外径237mm,管壁厚9mm,内压10MPa,分别按精确值和薄壁近似公式计算管道的轴向应力和管道横截面的截面稀疏,并比较两种计算方法的差别。
(6分)2.一条直径0.219m、壁厚8.2mm的支管接在一条直径0.400m、壁厚10mm的主管上,支管材料的屈服极限σs= 241MPa,主管材料的屈服极限σs=317MPa。
该管道的工作压力为10MPa,工作温度52℃,管道运行地区为一级地区。
试设计补强圈的厚度。
(12分)3.设油罐进出油管线为φ159×4.5 钢管,钢管材料的弹性模量为197.5GPa,热胀系数为1.22×10-51/℃,操作温度为100℃,若安装温度为0℃,当管线在1点处固定时,求管线的热应力和对油罐的推力。
(10分)4.已知有效波的高度H0=3.05m,有效波的周期T=10s,水深d=30.5m,波的方向和管子垂直。
其余参数为管子直径D=0.305m,海床坡度=0。
假定海堤围年地图,摩擦系数μ=0.5。
是根据以上条件确定管道受到的动水作用力。
(12分)。
1、立式圆柱型储罐:拱顶、内浮顶、外浮顶。
单盘式浮顶,适用于大容量油罐,省钢材。
双盘式浮顶,适用于小、特大型油罐,刚度大,隔热好,排水顺畅。
内浮顶优点:有效防止风沙雨雪,减少蒸发损耗;缺点:钢板耗量大,施工要求高,维修不便,不宜大型化。
球型储罐:适用于高压气体。
低压气柜:低压气体。
2、金属油罐大型化优势:节省材料、节约投资、占地面积小、节省配件和罐区管网、便于操作管理。
3、无力矩理论:N φR 1+N θR 2=−q z 2πrN φsinφ−2πr 0N φ0sinφ0+∫2πR 1R 2φφ0sinφ(q x sinφ+q z cosφ)dφ=04、立式圆柱形储罐壁厚设计:设计温度不高于90,大于最低月平均温度加13;设计压力:负压不大于0.25kpa ,正压不超过罐顶及附件总量一般为2kpa ;设计荷载;厚度附加量:C A =C 1+C 2 C1为腐蚀余量,C2钢材允许的负偏差。
5、罐壁排版与连接:纵向焊缝和环向焊缝定点法 设计厚度试水厚度设计温度下许用应力,常温许用应力焊接头系数=0.9变点法:须满足 (t 为底圈板有效厚度不包括附加量)6、储罐高度和直径设计:当等壁厚储罐用钢量最小时,罐顶底用钢量之和是管壁用钢量一半。
最省材料的壁厚计算式:7、开孔补强:等面积补强方法:相同材质的钢板做补强板,补强板的有效补强面积不小于孔口的截面积。
有效补强面积范围:沿罐壁竖向,开孔中心线上下各一倍开孔直径;沿管轴向方向,壁表面内外两侧各四倍管壁厚度。
包括:管壁富于壁厚提供的面积;补强板面积;接管富于提供面积;焊接金属面积。
接管直径小于50mm 可不进行补强 8、抗风圈设计:包边角钢下1m 为顶部抗风圈。
浮顶罐设计外压中间抗风圈数量 抗风圈与管壁环焊缝不小于150mm.阶梯型变截面罐H---等壁厚罐HE 9、立式圆柱形储罐罐底设计。
排版:直径<12.5m 不设环形边缘板,>相反。
罐底边缘板伸出罐底长度C(50-100mm)。