数据挖掘综述
- 格式:pdf
- 大小:290.27 KB
- 文档页数:3
数据挖掘中的本体应用研究综述摘要:数据挖掘是个交叉领域,与人工智能、信息科学、统计分析等领域有着紧密的联系。
而本体作为一个新兴的研究领域,与数据挖掘在应用的学科领域范围上有着较大的重合,比如在生物科学和化学领域,这两者的结合研究也非常活跃。
在数据挖掘中引入本体能够极大地解决数据挖掘面临的问题。
系统研究了在数据挖掘中本体的应用情况。
关键词:数据管理;数据挖掘;本体0引言摩尔定律见证了过去40多年来计算机技术的发展:芯片的处理速度越来越快,集成电路的体积越来越小、性价比越来越高。
以硬盘为例,机械硬盘存储单位兆的成本不断下降,而性能更好的固态硬盘正在进入民用市场。
计算机的硬件成本越来越低,而硬件的性能越来越好。
存储每兆信息所需要的成本越来越低。
这为大规模的数据存储打下了物质基础。
计算机技术的普及大大提升了数据采集、存储和操作能力。
数据库与DBMS顺应了大规模的数据管理而产生。
从20世纪60年代早期简单的数据收集到建立数据库,到20世纪70年代数据库管理系统的发展,到后来各种新型数据库,到数据仓库与数据挖掘的发展,数据库发展的内在驱动因素正是出于人们对快速增长的数据利用的需求。
身处于大量数据之中,却依然感到缺乏信息,数据挖掘的产生正是为了满足从数据中挖掘信息的需求。
数据挖掘这些年来被广泛应用和研究,比如在生物科学、化学、天文和商业领域等等,这些领域的共同特点都是面临大量数据处理。
数据挖掘也面临者许多问题:处于复杂的数据环境中,需要支持多种数据源类型;挖掘算法的选择容易受使用者个人知识背景影响;产生规则过多;规则难以理解,需要领域知识背景等等。
而本体的引入,从各个方面改进了数据挖掘面临的问题。
1理论背景1.1数据挖掘的定义和KDD过程数据挖掘是“从资料中提取出隐含的过去未知的有价值的潜在信息”(1992年提出),也被认为是“从大量的、不完全的、有噪声的、模糊的、随机的数据中, 提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程”(2001年提出),后者是被广泛引用的数据挖掘定义。
数据挖掘算法综述数据挖掘算法综述随着信息技术的不断发展,数据量呈现爆炸式增长,如何从海量数据中提取有用的信息成为了一个重要的问题。
数据挖掘技术应运而生,它是一种从大量数据中自动提取模式、关系、规律等信息的技术。
数据挖掘算法是数据挖掘技术的核心,本文将对常用的数据挖掘算法进行综述。
1.分类算法分类算法是数据挖掘中最常用的一种算法,它通过对已知数据进行学习,建立分类模型,然后将未知数据分类到相应的类别中。
常用的分类算法包括决策树、朴素贝叶斯、支持向量机等。
决策树是一种基于树形结构的分类算法,它通过对数据进行分裂,构建一棵树形结构,从而实现对数据的分类。
朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,它假设各个特征之间相互独立,通过计算先验概率和条件概率来进行分类。
支持向量机是一种基于间隔最大化的分类算法,它通过找到一个最优的超平面来实现分类。
2.聚类算法聚类算法是一种将数据分成不同组的算法,它通过对数据进行相似性度量,将相似的数据归为一类。
常用的聚类算法包括K均值、层次聚类、DBSCAN等。
K均值算法是一种基于距离的聚类算法,它通过将数据分成K个簇,使得簇内的数据相似度最大,簇间的数据相似度最小。
层次聚类算法是一种基于树形结构的聚类算法,它通过不断合并相似的簇,最终形成一棵树形结构。
DBSCAN算法是一种基于密度的聚类算法,它通过定义密度可达和密度相连的点来进行聚类。
3.关联规则算法关联规则算法是一种用于挖掘数据中项集之间关系的算法,它通过发现数据中的频繁项集,进而发现项集之间的关联规则。
常用的关联规则算法包括Apriori算法、FP-Growth算法等。
Apriori算法是一种基于频繁项集的关联规则算法,它通过不断扫描数据集,找到频繁项集,然后根据频繁项集生成关联规则。
FP-Growth 算法是一种基于FP树的关联规则算法,它通过构建FP树,发现频繁项集,然后根据频繁项集生成关联规则。
4.异常检测算法异常检测算法是一种用于发现数据中异常值的算法,它通过对数据进行分析,发现与其他数据不同的数据点。
数据挖掘综述数据挖掘是一种通过从大量数据中发现模式、关联和趋势来提取有用信息的过程。
它是一门综合性的学科,结合了统计学、机器学习、数据库技术和人工智能等领域的知识和方法。
数据挖掘在各个行业和领域都有广泛的应用,包括市场营销、金融、医疗保健、社交网络分析等。
数据挖掘的过程通常包括以下几个步骤:1. 问题定义:明确需要解决的问题或目标,例如预测销售额、发现异常行为或推荐系统等。
2. 数据收集:收集与问题相关的数据,可以是结构化数据(如数据库中的表格)或非结构化数据(如文本、图像或音频)。
3. 数据清洗:对数据进行清洗和预处理,包括处理缺失值、异常值和重复值,以及转换数据格式和统一数据标准等。
4. 特征选择:选择对问题有预测能力的特征,以减少计算复杂性和提高模型性能。
5. 模型选择:选择适合问题的数据挖掘模型,例如分类、聚类、关联规则挖掘、时序分析等。
6. 模型训练:使用标记好的训练数据对选定的模型进行训练,以学习模式和关联规则。
7. 模型评估:使用测试数据对训练好的模型进行评估,以确定模型的性能和准确性。
8. 模型优化:根据评估结果对模型进行优化和调整,以提高模型的预测能力和泛化能力。
9. 结果解释:对模型的结果进行解释和可视化,以便理解和应用。
数据挖掘的技术和算法有很多,常见的包括决策树、神经网络、支持向量机、朴素贝叶斯、聚类算法、关联规则挖掘等。
选择合适的算法取决于问题的性质和数据的特点。
数据挖掘的应用非常广泛。
在市场营销中,可以通过分析客户购买历史和行为模式来预测客户的购买意愿和需求,从而制定个性化的营销策略。
在金融领域,可以通过分析交易数据和市场趋势来预测股票价格的波动和风险,以辅助投资决策。
在医疗保健领域,可以通过分析病人的病历和基因数据来预测疾病的风险和治疗效果,从而实现个性化的医疗服务。
在社交网络分析中,可以通过分析用户的社交关系和行为模式来发现社交网络中的影响力节点和社群结构,以及预测用户的兴趣和行为。
数据挖掘中的软计算方法及应用综述1在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。
许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。
数据存储量的增长速度是惊人的。
大量的、未加工的数据很难直接产生效益。
这些数据的真正价值在于从中找出有用的信息以供决策支持。
在许多领域,数据分析都采用传统的手工处理方法。
一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。
随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。
没有强有力的工具,理解它们已经远远超出了人的能力。
所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。
数据挖掘技术应运而生。
数据挖掘就是指从数据库中发现知识的过程。
包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。
整个过程中支持人机交互的模式[3]。
数据挖掘从许多交叉学科中得到发展,并有很好的前景。
这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。
数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业[5]和电信,并有很好的表现。
软计算是能够处理现实环境中一种或多种复杂信息的方法集合。
软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。
通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。
它是创建计算智能系统的有效工具。
软计算包括模糊集、神经网络、遗传算法和粗集理论。
2数据挖掘中的软计算方法目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。
软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。
高维数据挖掘中的特征选择与降维算法综述随着互联网和大数据技术的快速发展,我们面临着大规模高维数据的挖掘问题。
在这种情况下,特征选择与降维算法成为了解析和利用这些数据的关键步骤。
本文将综述高维数据挖掘中的特征选择与降维算法,分析其原理、优缺点以及适用场景,并对未来的研究方向进行展望。
一、特征选择算法特征选择是从原始数据中选择最相关或最有用的特征子集的过程,以降低数据维度和提高模型性能。
常见的特征选择算法包括过滤式方法、包裹式方法和嵌入式方法。
1. 过滤式方法过滤式方法独立于后续的学习器,通过计算每个特征与目标变量之间的相关度来进行特征选择。
常用的过滤式方法有相关系数法、信息增益法和卡方检验法等。
优点是计算简单,不受学习器的影响;缺点是无法考虑特征之间的相互关系。
2. 包裹式方法包裹式方法通过将特征选择视为一个搜索问题,从所有特征子集中选出最佳子集,以优化某个评估准则来选择最佳特征。
常用的包裹式方法有递归特征消除法、遗传算法和蚁群优化算法等。
优点是能够考虑特征之间的相互关系;缺点是计算复杂度高和搜索空间大。
3. 嵌入式方法嵌入式方法将特征选择融入到学习器的训练过程中,通过学习算法选择最佳特征子集。
常用的嵌入式方法有LASSO回归、决策树和支持向量机等。
优点是能够同时进行特征选择和建模;缺点是可能在不同学习器中表现不佳。
二、降维算法降维是减少特征数量的过程,通过将高维数据映射到低维空间来实现。
常见的降维算法包括主成分分析(PCA)、线性判别分析(LDA)和流形学习等。
1. 主成分分析(PCA)PCA是一种最常用的降维方法,通过线性变换将原始数据映射到新的正交坐标系,使得新的坐标系上数据的方差最大化。
优点是简单易懂、计算高效;缺点是无法保留原始特征的类别判别能力。
2. 线性判别分析(LDA)LDA是一种有监督的降维方法,它通过最大化类间距离和最小化类内距离的方式,将原始数据映射到低维空间。
LDA在模式识别和人脸识别等任务中应用广泛。
文本数据挖掘综述陈光磊(专业:模式识别与智能系统)摘要:作为从浩瀚的信息资源中发现潜在的、有价值知识的一种有效技术,文本挖掘已悄然兴起,倍受关注。
目前,文本挖掘的研究正处于发展阶段,尚无统一的结论,需要国内外学者在理论上开展更多的讨论。
本文首先引出文本挖掘出现的缘由,再对文本挖掘的的概念、组成及其具体实现过程。
着重分析了文本挖掘的预处理、工作流程与关键技术。
关键词: web挖掘,文本挖掘1引言面对今天浩如烟海的文本信息,如何帮助人们有效地收集和选择所感兴趣的信息,如何帮助用户在日益增多的信息中自动发现新的概念,并自动分析它们之间的关系,使之能够真正做到信息处理的自动化,这已经成为信息技术领域的热点问题。
有数据表明,一个组织80%的信息是以文本的形式存放的,包括WEB页面、技术文档、电子邮件等。
由于整个文本集合不能被方便地阅读和分析,而且由于文本经常改变,要跟上变化的节奏,就要不停地回顾文本的内容,处理数量巨大的文本变得越来越来困难。
人们迫切需要能够从大量文本集合中快速、有效地发现资源和知识的工具。
在这样的需求驱动下,文本挖掘的概念产生了。
2文本挖掘的概述2.1文本挖掘的定义文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程。
1998年底,国家重点研究发展规划首批实施项目中明确指出,文本挖掘是“图像、语言、自然语言理解与知识挖掘”中的重要内容。
文本挖掘是数据挖掘的一个研究分支,用于基于文本信息的知识发现。
文本挖掘利用智能算法,如神经网络、基于案例的推理、可能性推理等,并结合文字处理技术,分析大量的非结构化文本源(如文档、电子表格、客户电子邮件、问题查询、网页等),抽取或标记关键字概念、文字间的关系,并按照内容对文档进行分类,获取有用的知识和信息。
文本挖掘是一个多学科混杂的领域,涵盖了多种技术,包括数据挖掘技术、信息抽取、信息检索,机器学习、自然语言处理、计算语言学、统计数据分析、线性几何、概率理论甚至还有图论。