微分几何习题解答(曲面论一)
- 格式:doc
- 大小:1.13 MB
- 文档页数:15
第二章曲面论§ 1曲面的概念1.求正螺面7 ={ u cosv ,u sinv, bv }的坐标曲线.解 u-曲线为 r={u cosv o ,u sin v o ,bv o }= {0,0 , bv °} + u { cosv o , sin v °,0},为曲线的直母线;v- 曲线为?={u o cosv , U o sinv,bv }为圆柱螺线.2 .证明双曲抛物面r ={ a (u+v ) , b (u-v ) ,2uv }的坐标曲线就是它的直母线。
证 u-曲线为 r={ a (u+v o ) , b (u- v o ) ,2u v o }={ a v °, b v °,0}+ u{a,b,2 v o }表示过点{ a v °, b v °,0} 以{a,b,2 v o }为方向向量的直线;v-曲线为 r = {a ( u o +v ) , b ( u o -v ) ,2 u o v } = {a u °, bu o ,0 } +v{a,-b,2 u o }表示过点(a u o , bu o ,0)以{a,-b,2 u o }为方向向量的直线3. 求球面r={acos ;:sin , a cos' sin :, asi n ;:}上任意点的切平面和法线方程。
解 r 、={—asin 、:cos ;—asin ;sin 「,acos :} , r .:={—acos ; sin :, acos L cos ,0}即 xcos : cos + ycos : sin + zsin 二-a = 0 x - a cos 、: cos : _ y - a cos :: sin : _ z - a sin 二 cos 、: cos : cos 、: sin ' sin 二2 24 .求椭圆柱面 务•岭=1在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面a bx 「a cos 、: cos ‘ 任意点的切平面方程为 -a sincos :-a cos 二 sin :y -a cos ;: sin ‘ -asin 二 sin : z - a s in 9 a cos^ = 0法线方程为§2曲面的第一基本形式1. 求双曲抛物面r ={ a (u+v ) , b (u-v ) ,2uv }的第一基本形式 解 r u ={a,b,2v}, g 二{a,-b,2u}, E =打=a 2 b 2 4v 2,F = r u r v = a 2- b 24uv, G = r v 2二 a 2b 24u 2,1 = (a 2b 24v 2)du 22(a 2-b 24uv)dudv (a 2b 24u 2)dv 2。
、第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。
分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e求微商得'r ='λe +λ'e ,于是r ×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。
所以,)(t r具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。
第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。
分析:一个向量函数)(t r一般可以写成)(t r=)(t λ)(t e的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。
第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。
分析:一个向量函数)(t r一般可以写成)(t r=)(t )(t e的形式,其中)(t e为单位向量函数,)(t 为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t )(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t e ,所以 r ×'r = ' (e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t )(t e求微商得'r =' e + 'e ,于是r ×'r =2 (e ×'e )=0 ,则有 = 0 或e ×'e =0 。
当)(t = 0时,)(t r=0 可与任意方向平行;当0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e= 0) ,所以'e =0 ,即e为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。
证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向量,且)(t r·n = 0 。
第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。
分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e为常向量,(因为)(t e的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r ×'r=2λ(e×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r=0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e= 0) ,所以'e =0 ,即e为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。
第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。
分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r ×'r=2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。
微分几何第四版答案第一部分曲线与曲面的局部微分几何第一章欧氏空间1.1 向量空间1.2 欧氏空间第二章曲线的局部理论2.1 曲线的概念2.2 平面曲线2.3 E的曲线2.4 曲线论基本定理第三章曲面的局部理论3.1 曲面的概念3.2 曲面的第一基本形式3.3 曲面的第二基本形式3.4 法曲率与weingarten变换3.5 主曲率与Gauss曲率3.6 曲面的一些例子第四章标架与曲面论基本定理4.1 活动标架4.2 自然标架的运动方程4.3 曲面的结构方程4.4 曲面的存在惟一性定理4.5 正交活动标架4.6 曲面的结构方程(外微分法)第五章曲面的内蕴几何学5.1 曲面的等距变换5.2 曲面的协变微分5.3 测地曲率与测地线5.4 测地坐标系5.5 Gauss-Bonnet公式5.6 曲面的Laplace算子5.7 Riemann度量第二部分整体微分几何选讲第六章平面曲线的整体性质6.1 平面的闭曲线6.2 平面的凸曲线第七章曲面的若干整体性质7.1 曲面的整体描述7.2 整体的Gauss-Bonnet公式7.3 紧致曲面的Gauss映射7.4 凸曲面7.5 曲面的完备性第八章常Gauss曲率曲面8.1 常正Gauss曲率曲面8.2 常负Gauss曲率曲面与sine-Gordon方程8.3 Hilbert定理8.4 Backlund变换第九章常平均曲率曲面9.1 Hopf微分与Hopf定理9.2 Alexsandrov惟一性定理9.3 附录:常平均曲率环面第十章极小曲面10.1 极小图10.2 极小曲面的weierstrass表示10.3 极小曲面的Gauss映射10.4 面积的变分与稳定极小曲面索引。
§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。
微分几何试题及答案1. 曲线的微分几何描述- 给定曲线 \( r(t) = (x(t), y(t), z(t)) \),求其速度向量\( \mathbf{v}(t) \) 和加速度向量 \( \mathbf{a}(t) \)。
2. 曲面的第一基本形式- 已知曲面 \( S \) 由参数方程 \( x(u,v), y(u,v), z(u,v) \) 给出,求曲面 \( S \) 的第一基本形式。
3. 高斯曲率和平均曲率- 对于曲面 \( S \),给出其高斯曲率 \( K \) 和平均曲率 \( H \) 的定义,并说明它们之间的关系。
4. 测地线的性质- 解释什么是测地线,并给出测地线在曲面上的性质。
5. 曲面的第二基本形式- 已知曲面 \( S \) 的法向量场 \( \mathbf{n}(u,v) \),求曲面 \( S \) 的第二基本形式。
6. 曲面的高斯映射- 给出曲面 \( S \) 的高斯映射的定义,并解释其几何意义。
7. 曲面的内蕴几何与外蕴几何- 描述曲面的内蕴几何与外蕴几何的区别,并给出一个例子。
8. 微分几何在物理学中的应用- 简述微分几何在广义相对论中的应用。
答案1. 曲线的微分几何描述- 速度向量 \( \mathbf{v}(t) = \frac{dr(t)}{dt} = (x'(t),y'(t), z'(t)) \),其中 \( x'(t), y'(t), z'(t) \) 分别是\( x(t), y(t), z(t) \) 的导数。
- 加速度向量 \( \mathbf{a}(t) = \frac{d\mathbf{v}(t)}{dt} = (x''(t), y''(t), z''(t)) \)。
2. 曲面的第一基本形式- 第一基本形式由曲面的度量张量给出,即 \( g_{ij} =\frac{\partial \mathbf{r}}{\partial u_i} \cdot \frac{\partial \mathbf{r}}{\partial u_j} \)。
第二章 曲面论§1曲面的概念1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线.解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线.2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。
证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线;v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。
3.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 上任意点的切平面和法线方程。
解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------ϕϑϕϑϑϕϑϕϑϑϕϑϕϑa a a a a a z a y a x即 xcos ϑcos ϕ + ycos ϑsin ϕ + zsin ϑ - a = 0 ; 法线方程为ϑϑϕϑϕϑϕϑϕϑsin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。
4.求椭圆柱面22221x y a b+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。
解 椭圆柱面22221x y a b +=的参数方程为x = cos ϑ, y = asin ϑ, z = t ,}0,cos ,sin {ϑϑθb a r -= , }1,0,0{=t r。
所以切平面方程为:010cos sin sin cos =----ϑϑϑϑb a tz b y a x ,即x bcos ϑ + y asin ϑ - a b = 0 此方程与t 无关,对于ϑ的每一确定的值,确定唯一一个切平面,而ϑ的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。
5.证明曲面},,{3uva v u r = 的切平面和三个坐标平面所构成的四面体的体积是常数。
证 },0,1{23v u a r u -= ,},1,0{23uva r v -= 。
切平面方程为:33=++z a uvv y u x 。
与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,uv a 23)。
于是,四面体的体积为:3329||3||3||361a uv a v u V ==是常数。
§2 曲面的第一基本形式1. 求双曲抛物面r ={a (u+v ), b (u-v ),2uv }的第一基本形式.解 ,4},2,,{},2,,{2222v b a r E u b a r v b a r u v u ++==-==2222224,4u b a r G uv b a r r F v v u ++==+-=⋅=,∴ I = +++2222)4(du v b a 2222222)4()4(dv u b a dudv uv b a ++++-。
2.求正螺面r ={ u v cos ,u v sin , bv }的第一基本形式,并证明坐标曲线互相垂直。
解 },cos ,sin {},0,sin ,{cos b v u v u r v v r v u -== ,12==u r E ,0=⋅=v u r r F,222b u r G v +==,∴ I =2222)(dv b u du ++,∵F=0,∴坐标曲线互相垂直3、在第一基本形式为I =222sinh udv du +的曲面上,求方程为u = v 的曲线的弧长。
解 由条件=2ds 222sinh udv du +,沿曲线u = v 有du=dv ,将其代入2ds 得=2ds 222sinh udv du +=22cosh vdv ,ds = coshvdv , 在曲线u = v 上,从1v 到2v 的弧长为|sinh sinh ||cosh |1221v v vdv v v -=⎰。
4.设曲面的第一基本形式为I = 2222)(dv a u du ++,求它上面两条曲线u + v = 0 ,u –v = 0的交角。
分析 由于曲面上曲线的交角是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。
解 由曲面的第一基本形式知曲面的第一类基本量1=E ,0=v F ,22a u G +=,曲线u + v = 0与u – v = 0的交点为u = 0, v = 0,交点处的第一类基本量为1=E ,0=v F ,2a G =。
曲线u + v = 0的方向为du = -dv , u – v = 0的方向为δu=δv , 设两曲线的夹角为ϕ,则有 cos ϕ=22222211a a vG u E Gdv Edu u Gdv u Edu +-=+++δδδδ 。
5.求曲面z = axy 上坐标曲线x = x 0 ,y =0y 的交角.解 曲面的向量表示为r ={x,y,axy}, 坐标曲线x = x 0的向量表示为r ={x 0,y,ax 0y } ,其切向量y r={0,1,ax 0};坐标曲线y =0y 的向量表示为r ={x , 0y ,ax 0y },其切向量x r={1,0,a 0y },设两曲线x = x 0与y =0y 的夹角为ϕ,则有cos ϕ = 20220200211||||y a x a y x a r r r r y x y x ++=⋅6. 求u-曲线和v-曲线的正交轨线的方程.解 对于u-曲线dv = 0,设其正交轨线的方向为δu:δv ,则有Edu δu + F(du δv + dv δu)+ G d v δv = 0,将dv =0代入并消去du 得u-曲线的正交轨线的微分方程为E δu + F δv = 0 .同理可得v-曲线的正交轨线的微分方程为F δu + G δv = 0 .7. 在曲面上一点,含du ,dv 的二次方程P 2du + 2Q dudv + R 2dv =0,确定两个切方向(du :dv )和(δu :δv ),证明这两个方向垂直的充要条件是ER-2FQ + GP=0.证明 因为du,dv 不同时为零,假定dv ≠0,则所给二次方程可写成为P 2)(dvdu + 2Qdv du + R=0 ,设其二根dv du ,v u δδ, 则dv du v u δδ=P R ,dv du +v uδδ=PQ 2-……①又根据二方向垂直的条件知E dv du v u δδ + F(dv du +v uδδ)+ G = 0 ……②将①代入②则得 ER - 2FQ + GP = 0 .8. 证明曲面的坐标曲线的二等分角线的微分方程为E 2du =G 2dv .证 用分别用δ、*δ、d 表示沿u -曲线,v -曲线及其二等分角线的微分符号,即沿u -曲线δu ≠0,δv =0,沿v -曲线*δu =0,*δv ≠0.沿二等分角轨线方向为du:dv ,根据题设条件,又交角公式得222222)()(ds v G v Gdv v Fdu ds u E u Fdv v Edu ***+=+δδδδδδ,即G Gdv Fdu E Fdv Edu 22)()(+=+。
展开并化简得E(EG-2F )2du =G(EG-2F )2dv ,而EG-2F >0,消去EG-2F 得坐标曲线的二等分角线的微分方程为E 2du =G 2dv .9.设曲面的第一基本形式为I =2222)(dv a u du ++,求曲面上三条曲线u = a ±v,v =1相交所成的三角形的面积。
解 三曲线在平面上的图形(如图)所示。
曲线围城的三角形的面积是S=⎰⎰⎰⎰+++--122122au aaau dv du a u dv du a u=2⎰⎰+1022au a dv du a u =2du a u a ua⎰+-022)1(=aa u u a a u u a u a0222222322|)]ln()(32[++++++-=)]21ln(322[2++-a 。
10.求球面r =}sin ,sin cos ,sin cos {ϑϕϑϕϑa a a 的面积。
解 ϑr=}cos ,sin sin ,cos sin {ϑϕϑϕϑa a a -- ,ϕr =}0,cos cos ,sin cos {ϕϑϕϑa a -E =2ϑr=2a ,F=ϑr ϕr = 0 , G = 2ϕr =ϑ22cos a .球面的面积为:S = 22222222024224|sin 2cos 2cos a a d ad a d πϑπϑϑπϕϑϑπππππππ===---⎰⎰⎰.11.证明螺面r ={ucosv,usinv,u+v}和旋转曲面r ={tcos ϑ,tsin ϑ,12-t } (t>1, 0<ϑ<2π)之间可建立等距映射 ϑ=arctgu + v , t=12+u .分析 根据等距对应的充分条件,要证以上两曲面可建立等距映射ϑ = arctgu + v , t=12+u ,可在一个曲面譬如在旋转曲面上作一参数变换使两曲面在对应点有相同的参数,然后证明在新的参数下,两曲面具有相同的第一基本形式.证明 螺面的第一基本形式为I=22du +2 dudv+(2u +1)2dv , 旋转曲面的第一基本形式为I=ϑd t dt t t 2222)11(+-+ ,在旋转曲面上作一参数变换ϑ =arctgu + v , t =12+u , 则其第一基本形式为:2222222)11)(1(1)11(2dv du uu du u u u u +++++++ =2222222)1(211)11(dv u dudv du udu u u +++++++=22du +2 dudv+(2u +1)2dv = I . 所以螺面和旋转曲面之间可建立等距映射 ϑ =arctgu + v , t =12+u .§3曲面的第二基本形式1. 计算悬链面r ={coshucosv,coshusinv,u}的第一基本形式,第二基本形式.解 u r ={sinhucosv,sinhusinv,1},v r={-coshusinv,coshucosv,0} uu r ={coshucosv,coshusinv,0},uv r={-sinhusinv,sinhucosv,0},vv r ={-coshucosv,-coshusinv,0},2u r E == cosh 2u,v u r r F⋅==0,2v r G ==cosh 2u.所以I = cosh 2u 2du + cosh 2u 2dv .n =2F EG r r v u -⨯ =}sin sinh ,sin cosh ,cos cosh {cosh 12v u v u v u u--,L=11sinh cosh 2-=+-u , M=0, N=1sinh cosh 2+u =1 .所以II = -2du +2dv 。