采气工程 第九章排水采气
- 格式:ppt
- 大小:379.00 KB
- 文档页数:37
附件 4采气工程管理规定中国石油勘探与生产分公司二00七年十二月目录第一章总则 (1)第二章开发前期工艺研究与试验 (2)第三章采气工程方案 (5)第四章完井与投产 (7)第五章采气生产管理 (10)第六章气井作业管理 (15)第七章技术创新与应用 (22)第八章管理职责 (24)第九章质量控制 (27)第十章附则 (28)第一章总则第一条为规范采气工程各项工作,提高管理和技术水平,适应天然气开发的需要,根据《天然气开发管理纲要》,制定本规定。
第二条采气工程是天然气开发的重要组成部分,应与气藏工程、钻井工程、地面工程有机结合,依靠科学管理和技术进步,实现气田安全、高效开采。
第三条采气工程管理主要包括:开发前期工艺研究与试验、采气工程方案设计、完井与投产、采气生产管理、气井作业管理、技术创新与应用、质量控制、健康安全环境管理。
第四条建立、健全各级采气工程的管理机构(岗位)以及生产和研究队伍,明确职责,完善制度,不断提高采气工程系统的综合能力。
第五条采气工程各项工作应遵守国家法律、法规,执行行业、企业的相关标准和规定,贯彻以人为本、预防为主、全员参与、持续改进的方针,坚持安全第一、环保优先的理念。
第六条本规定适用于中国石油天然气股份有限公司(以下简称“股份公司”)及所属油气田分公司、全资子公司(以下简称“油田公司”)在国内的陆上天然气采气活动。
控股、参股公司和国内合作的陆上天然气采气活动参照执行。
第二章开发前期工艺研究与试验第七条按照勘探开发一体化的要求,采气工程要早期介入气田的开发前期评价,为气田投入开发做好准备。
第八条开发前期工艺研究与试验的主要任务是研究适用的完井方式和井身结构,实施试气试采施工作业和资料录取,进行主体工艺和配套技术适应性分析评价,开展必要的室内分析试验以及重点技术现场先导试验,提出采气工程主体工艺技术,为编制采气工程方案提供依据。
第九条新区块、新气藏都要进行储层敏感性实验,在此基础上初步提出入井工作液技术指标,对裂缝型气藏和异常高压气藏应加强应力敏感实验研究。
排水采气工艺技术研究摘要:气井生产过程中,地层水经常流入井底。
当气井产量高,气体流速快时,水可以被带到地面。
但随着地层能量的降低,天然气产量减少,气体流速降低,不足以将水携带到地表。
此时井底逐渐出现积液,在井筒内形成液柱,导致气井减产甚至不产。
排水采气技术可以恢复气井产能,保证天然气高效生产。
经过多年的发展,目前排水采气工艺体系已经比较完善,各种技术比较丰富,但不同的技术有各自的技术特点和适用性,不同气井的生产特点也不同。
为了获得最佳的经济效益和采收率,有积液气井必须选择合适的排水采气工艺。
关键词:排水采气;天然气;工艺技术随着我国天然气资源的深度开发,天然气的开采难度越来越大。
其内部气藏中的压力逐渐降低,当压力达到临界值时,天然气的流动速度会变慢,使天然气无法正常排出井筒。
当积累到一定程度时,液体会逐渐演变成液柱。
在液柱作用下,气井自喷能量会降低,产能达不到预期标准,导致气井停产或关井。
为解决这一问题,可以应用排水采气技术。
一、排水采气技术应用的重要性在我国气田开发的过程中使用排水采气技术非常有必要,是提高气井产量、延长气井寿命的最佳选择。
同时,我国气田的地质条件在不同区域间差别很大,比较复杂,排水采气技术也是应对我国气田复杂的地质特征的必然选择。
气田地质特征存在差别的原因,主要是气井内部的储层空间连通性和均质程度不同。
一般而言,气田的地质特征包括气田形态、边界性质、井内气水关系及压力特征等,还与气田储渗类型存在关系,因为它会在一定程度上影响着气田的开采。
气田内部储层的储渗关系一般有孔隙性和裂缝性,孔隙型的气田储层连通性都比较好,不同区间和储层之间联系广泛,在采气过程中可以实现高程度的气水分离,有利于天然气的开采,孔隙型储层的气田主要是以河流、湖泊沉积为主,气田内多以层状砂体分布,不仅能够较容易地确定气田范围、位置和储量等气田参数,而且还有利于气田的开采。
而裂缝型的气田储层裂缝程度存在差别,受到气田内部地应力的大小和储层间岩石的抗压强度的影响,因为裂缝程度不一,部分气田是有限的封闭体,气田内部的气水分布、含气范围不容易被确定,在勘探过程中受到气田内部裂缝网络的形态、大小影响。
排水采气方法的优选摘要:排水采气是封闭型水驱气藏生产中常见的采气工艺,由于地层水和天然气中的凝析水的影响常会造成气井井筒的积液,会对气井的生产效能产生比较大的影响。
在国内外多年的开发实践基础上,逐渐形成了包括“优选管柱、气举、泡沫排水、机抽、电潜泵、射流泵”等六套比较常用的排水采气工艺。
在加强有水气藏勘探开发的同时,为提高和维持有水气藏的产量和提高有水气藏的最终采收率。
目前,国内外主要还是采用上述六套较为成熟的人工举升工艺。
随着对有水气藏勘探开发的技术创新,人们开始对不同地质构造的气藏的排水采气工艺进一步细化。
与此同时,人们对天然气的需求量空前上涨,对天然气开发技术人员提出更高的要求。
技术人员一直致力于寻求最经济、最节省时间、最能提高开采效率的排水采气方法,达到低投入高产出的目的。
将不同的排水采气工艺实施于同一口气井,它所产生的效果是不同的,要是把同一种工艺实施于不同的气井,其效果也不一定相同。
不同的排水工艺有它自身的优点和缺陷,不同的有水气藏的地质构造特征也不尽相同。
所以只有在兼顾各工艺特点和各气藏本身情况的前提下才能做到真正的优化做到用最少的劳动消耗与投入来获得最多的油气产量。
关键字:排水采气;工艺技术;选择Methods of Drainage Gas for SelectionAbstract:Drainage gas is water flooding closed the common gas reservoir gas production process, the formation water and gas condensate in the water often caused by the impact of the wellbore fluid, gas well production performance will have a relatively large impact. Practice at home and abroad on the basis of years of development, gradually formed, including the "preferred column, gas lift, foam drainage, machine pumping, electric submersible pumps, jet pumps" and other six sets of commonly used drainage gas technology.In strengthening the water, while gas exploration and development, to improve and maintain water production and increase gas reservoir water ultimate recovery of gas reservoirs. At present, mainly at home and abroad using the above six sets of artificial lift technology is more mature. With the water gas exploration and development of technological innovation, people began to different geological structure of the drainage gas gas technology to further refinement. At the same time, it is the unprecedented rise in demand for natural gas, natural gas development and technical personnel for higher demands. Technicians have been committed to seeking the most economical and save time and most can improve the efficiency of the drainage gas extraction method, to achieve the purpose of low-input high output.Different implementation of the drainage process gas wells in the same breath, the effect it produces is different, and if implemented the same process in different wells, the effect is not necessarily the same. Different drainage techniques has its own advantages and disadvantages, and different water characteristics of gas reservoirs are not the same geological structure. Therefore, only the process which takes into account the characteristics and circumstances of the gas itself can be done under the premise of optimizing the real work to do with the least consumption and investment to get the most oil and gas production.Key words: drainage gas;technology;selection目录1 前言 (1)1.1概述 (1)1.2排水采气工艺研究目的与意义 (1)1.3国内外排水采气研究的发展及现状 (2)1.4研究的内容及技术路线 (4)2 气井主要排水采气方法的适应性研究 (5)2.1优选管柱排水采气工艺技术 (5)2.2气举排水采气工艺 (7)2.3泡沫排水采气工艺 (10)2.4电潜泵排水采气工艺 (13)2.5射流泵排水采气工艺技术 (15)2.6机抽排水采气工艺技术 (17)3 排水采气工艺技术经济评价 (20)3.1技术条件研究 (20)3.2各排水采气工艺生产总成本计算 (23)3.2.1 优选管柱排水采气 (23)3.2.2 气举排水采气工艺成本 (24)3.2.3 泡沫排水采气工艺成本: (25)3.2.4 机抽排水采气工艺成本 (26)3.3投资回收期 (27)4 排水采气工艺措施优选 (28)4.1方案入选 (28)4.2建立模糊评价模型 (28)5 排水采气工艺优选实例分析 (32)5.1井的基本数据 (32)5.2各指标的计算 (33)5.3根据模糊决策对该井进行排水采气工艺优选 (33)结论 (36)参考文献 (37)致谢 (39)1前言1.1概述改革开放以来,我国经济进入高速发展轨道,特别是在十一五期间,国务院提出加快清洁能源的发展,降低单位GDP能耗的经济发展方针。
天然气井排水采气工艺方法优化分析摘要:随着国家经济水平的提高,人们的生活水平与以前相比发生了巨大的变化,能源的利用率也提高了。
在这种情况下,人们开始关注天然气能源的发展,重点是优化开采技术和使用的设备,以更好地增加当地天然气能源的开采,满足人们的生活需求。
关键词:排水采气;天然气井;工艺优化排水采气方法可以提高天然气井的工作效率。
本文首先进行天然气井采气工艺的概述,其次说明排水采气工艺的技巧,最后提出超声波、泡沫、组合使用、深抽、同心毛细管、机油排水、不间断循环这七种排水采气工艺的优化方法,使天然气井开发更加方便有效。
一、选择技巧的排水采气技术工作人员必须充分了解开采地点的地形、地貌、地质结构、开采历史、资源储备情况等,通过对资料的了解,能够帮助工作人员更好地规划开采方案。
工作人员要学会归纳分析天然气井不同排水工艺的使用特点,对不同工艺方法的可行性,适应的范围都需要进行划分,从而整理出一套系统化的、针对性较强的参考资料。
当天然气井内部气压明显升高时,工作人员应当优先考虑气具(工业设备,是名词,不是错误)排水工艺。
通过这种正确的工作方法可以有效降低气压。
在天然气井作业过程中,要懂得根据井内实际情况,结合井内气压与水分含量,明确井内当前环境状态,从而及时选择最合理的排水工艺。
企业的最终有效收益是由成本与利润决定,所以在选择排水采气工艺的时候,如果两种采气工艺的可行性相同,且都可以成功完成工作,工作人员就应当从设备、人力、维护等方面考虑,选择成本最低的排水工艺进行使用。
二、天然气井排水采气工艺方法优化1.优化超声波排水采气工艺。
超声波排水采气工艺具有操作简单、绿色环保、排水方便等特点,这种工艺的使用不会对生态环境造成破坏,是非常受欢迎的一种排水采气工艺。
因此,应当优化超声波排水工艺技术,保证工作进行的同时也可以保护当地环境。
工作人员需要在超声空化的基础上开始进行方案创新,该方法通过超声波的振动在井下建立波场,利用超声波的能力提高积水温度,使积水雾化从而通过油管排到井外。
排水采气工艺技术排水采气工艺技术由于在气井中常有烃类凝析液或地层水流入井底。
当气井产量高、井底气液速度大而井中流体的数量相对较少时,水将完全被气流携带至地面,否则,井筒中将出现积液。
积液的存在将增大对气层的回压,并限制其生产能力,有时甚至会将气层完全压死以致关井。
排除气井井筒及井底附近地层积液过多或产水,并使气井恢复正常生产的措施,称为排水采气。
排水采气工艺可分为:机械法和物理化学法。
机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺,物理化学法即泡沫排水采气法及化学堵水等方法。
这些工艺的选择取决于气藏的地质特征、产水气井的生产状态和经济投入的考虑。
1 优选管柱排水采气技术在气水井生产中后期,随着气井产气量和排水量的显著下降,气液两相间的滑脱损失就取代摩阻损失,上升为影响提高气井最终采收率的主要矛盾。
这时气井往往因举液速度太低,不能将地层水即使排出地面而水淹。
优选管柱排水采气工艺就是在有水气井开采到中后期,重新调整自喷管柱,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式排水采气方法。
优选管柱排水采气工艺,其理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,除优选与地层流动条件相匹配的油管柱外,无须另外特殊设备和动力装置,是充分利用气井自身能量实现连续排水生产,以延长气井带水自喷期的一项开采工艺技术。
该技术适用于开采中后期具有一定能量的间喷井、弱喷井,能延长气水井的自喷期,适用于井深<3000m,产水量<100 m3/d。
对采用油管公称直径≤60mm 进行小油管排水采气的工艺井,最大排水量50m3/d,油管强度制约油管下深。
工艺实施后需要配合诱喷工艺使施工井恢复生产。
2 泡沫排水采气技术泡沫排水采气技术是通过地面设备向井内注入泡沫助采剂,降低井内积液的表、界面张力,使其呈低表面张力和高表面粘度的状态,利用井内自生气体或注入外部气源(天然气或液氮)产生泡沫。
天然气排水采气技术解析摘要:由于天然气所处地区的储层地质各不相同,加之在开采输送的过程中特别容易受到多方面因素的影响,比如拦路的河流,高耸的大山等等,所以开采天然气的工程是一项工序较为复杂、工程较为浩大、牵扯技术较多的项目。
近年来,随着人们生活水平的提高,对天然气的使用呈现出逐年上升的状态,因此,如何能够高效开采利用天然气受到了越来越多人的关注与重视。
排水采气技术作为当前开采天然气的过程中最为有效的途径已经取得了可喜的成绩,本文解析了最为常见的天然气排水采气技术,以求能给同行一些思考和借鉴。
关键词:天然气;排水采气技术;解析与建议。
引言:在对天然气实际开采的过程中,随着天然气储藏地区的压力逐渐降低,储层中所含有的水分会慢慢流入天然气井的底部,长此以往,就会聚集成堆。
这些积液聚集到一定的程度,就会对储藏天然气的区域产生一定程度的净水回压,若是没有及时排出,就会影响到对天然气的正常开采。
排水采气技术主要是解决上述问题的,随着科学技术的不断发展,当前排水采气技术已经越来越成熟,目前已经发展出多种技术,以应对情况各不相同的天然气开采地区。
1、常见的排水采气技术。
1.1气举排水采气技术。
所谓气举排水采气工艺是指首先运用科学的途径往天然气井中注入一定程度的高压气体,这样一旦打开气举开关,这些高压气就会和天然气井底层所产出的流液混合在一起,此时,由于注气点以上的流动压力逐渐减少,处于在井底的积液就会被慢慢的排出。
当前最为常见的是连续气举工艺。
这种工艺适合喷力较弱或者间歇式的自喷井,其优势在于每次所排出的积液量较大,不受天然气井斜、井深的影响,所需设备机械相对简单、容易高效管理、所产经济效益较高。
劣势是注入高压气体会在井里形成一定程度的回压,以至于井底的积液未能完全排出。
1.2泡沫排水采气技术。
泡沫排水采气技术是指向天然气井中注入起泡剂,这些起泡剂一旦与储层中水分接触,就会产生稳定的泡沫,从而缩短水的表面张力。
第九章排水采气提示排水采气是封闭型水驱气藏生产中常见的采气工艺。
有许多方法可以排出气井中的积液,包括优选管柱、泡沫排水、柱塞气举、连续气举、有杆泵、潜油电泵、水力活塞泵、射流泵等。
本章重点介绍气井携液临界流量、泡沫排水采气、柱塞气举,它们在气藏排水采气工艺中占有十分重要的地位。
第一节气井携液临界流量一、气井积液图9-1气井积液过程气井一般都会产出一些液体,井中液体来源有两种,一是地层中的游离水或烃类凝析液与气体一起渗流进入井筒,液体的存在会影响气井的流动特性;二是地层中含有水汽的天然气流入井筒,由于热损失使温度沿井筒逐渐下降,出现凝析水。
图9-1描述了气井的积液过程。
由图可见,多数气井在正常生产时的流态为环雾流,液体以液滴的形式由气体携带到地面,气体呈连续相而液体呈非连续相。
当气相流速太低,不能提供足够的能量使井筒中的液体连续流出井口时,液体将与气流呈反方向流动并积存于井底,气井中将存在积液。
对于积液来源于凝析水的气井,在积液过程中,由于天然气通常在井筒上部达到露点,液体开始滞留在井筒上部。
当气井流量降低到不能再将液体滞留在井筒上部,液体泡沫随之崩溃,落入井底,井筒下部压力梯度急剧增高。
一般来说,只需少量积液就会使低压气井停喷。
井筒积液将增加对气层的回压、限制井的生产能力,井筒积液量太大可使气井完全停喷,这种情况经常发生在大量产出地层水的低压井内,高压井中液体会以段塞形式出现。
另外,井筒内的液柱会使井筒附近地层受到伤害(反向渗吸),含液饱和度增大,气相渗透率降低,井的产能受到损害。
二、气井携液临界流量气井开始积液时,井筒内气体的最低流速称为气井携液临界流速,对应的流量称为气井携液临界流量。
当井筒内气体实际流速小于临界流速时,气流就不能将井内液体全部排除井口。
杜奈尔等(Turner、Hubbard和Dukler)提出了确定气井携液临界流速和临界流量的两种物理模型,即液膜模型和液滴模型。
液膜模型描述了液膜沿管壁的上升,计算比较复杂。