实验4样本平均数的假设检验
- 格式:ppt
- 大小:576.00 KB
- 文档页数:21
第四章 总体均数的估计和假设检验一、教学大纲要求(一) 掌握内容1. 抽样误差、可信区间的概念及计算; 2. 总体均数估计的方法;3. 两组资料均数比较的方法,理解并记忆应用这些方法的前提条件; 4. 假设检验的基本原理、有关概念(如I 、II 类错误)及注意事项。
(二) 熟悉内容 两样本方差齐性检验。
(三) 了解内容1. t 分布的图形与特征;2. 总体方差不等时的两样本均数的比较; 3. 等效检验。
二、教学内容精要(一) 基本概念 1. 抽样误差抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error )。
统计上用标准误(standard error ,SE )来衡量抽样误差的大小。
不同的统计量,标准误的表示方法不同,如均数的标准误用X S 表示,率的标准误用S P 表示,回归系数的标准误用S b 表示等等。
均数的标准误与标准差的区别见表4-1。
表4-1 均数的标准误与标准差的区别均数的标准误标准差意义 反映的抽样误差大小 反映一组数据的离散情况 记法X σ(样本估计值X S )σ(样本估计值S )计算X σ=nσ X S =nSσ =nX 2)(∑-μS=1)(2--∑n X X控制方法增大样本含量可减小标准误。
个体差异或自然变异,不能通过统计方法来控制。
2.可信区间(1)定义、涵义:即按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间(confidence interval ,CI )。
它的确切含义是:CI 是随机的,总体参数是固定的,所以,CI 包含总体参数的可能性是1-α。
不能理解为CI 是固定随机的,总体参数是随机固定的,总体参数落在CI 范围内可能性为1-α。
当0.05α=时,称为95%可信区间,记作95%CI 。
当0.01α=时,称为99%可信区间,记作99%CI 。
(2)可信区间估计的优劣:一定要同时从可信度(即1-α的大小)与区间的宽度两方面来衡量。
假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。
当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。
假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。
在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。
假设检验的思想是,先假设两者相等,即:μ=μ0,然后用统计的方法来计算验证你的假设是否正确。
假设检验的基本思想1.小概率原理如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。
2.假设的形式H0——原假设,H1——备择假设双尾检验:H0:μ = μ0,单尾检验:,H1:μ < μ0,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。
假设检验亦称“显著性检验(Test of statistical significance)”,是假设检验用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。
当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。
假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。
在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。
假设检验的思想是,先假设两者相等,即:µ=µ0,然后用统计的方法来计算验证你的假设是否正确。
用的假设检验有Z检验、T检验、配对检验、比例检验、秩和检验、卡方检验等。
编辑本段意义假设检验是抽样推断中的一项重要内容。
它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。
实验统计方法参考答案实验统计方法参考答案实验统计方法是科学研究中非常重要的一部分,它通过对实验数据的分析和处理,帮助研究者得出准确的结论。
在实验统计方法中,有一些常见的参考答案,可以帮助研究者更好地理解和应用这些方法。
一、描述统计分析描述统计分析是实验统计方法中最常用的一种方法,它通过对实验数据的整理、总结和描述,帮助研究者对实验结果有一个直观的了解。
在描述统计分析中,常见的参考答案有以下几种。
1. 平均数:平均数是描述数据集中趋势的一种方法,它可以帮助研究者了解数据的中心位置。
计算平均数的公式为:平均数 = 总和 / 数据个数。
2. 中位数:中位数是描述数据集中趋势的另一种方法,它可以帮助研究者了解数据的中间位置。
计算中位数的方法是将数据按照大小排序,然后找出中间位置的数值。
3. 众数:众数是描述数据集中出现频率最高的数值,它可以帮助研究者了解数据的分布情况。
如果数据集中有多个数值出现频率相同,则可以有多个众数。
4. 方差:方差是描述数据集中离散程度的一种方法,它可以帮助研究者了解数据的波动情况。
计算方差的公式为:方差= ∑(数据值 - 平均数)² / 数据个数。
5. 标准差:标准差是描述数据集中离散程度的另一种方法,它可以帮助研究者了解数据的稳定性。
标准差是方差的平方根。
二、推断统计分析推断统计分析是实验统计方法中另一个重要的部分,它通过对样本数据的分析和推断,帮助研究者对总体进行估计和推断。
在推断统计分析中,常见的参考答案有以下几种。
1. 抽样方法:抽样方法是推断统计分析中非常重要的一部分,它可以帮助研究者从总体中选择出代表性的样本。
常见的抽样方法有随机抽样、分层抽样等。
2. 假设检验:假设检验是推断统计分析中常用的一种方法,它可以帮助研究者对两个或多个样本之间的差异进行检验。
在假设检验中,常见的参考答案有零假设和备择假设。
3. 置信区间:置信区间是推断统计分析中常用的一种方法,它可以帮助研究者对总体参数进行估计。
第四章1、什么是假设检验?假设检验的步骤是什么?假设检验有什么注意事项?答:假设检验是根据样本的统计数对样本所属的总体参数提出的假设是否被否定所进行的检验。
假设检验的步骤是1、提出假设;2、计算概率;3、统计推断;4、得出结论假设检验的注意事项有:注意两类错误:(1)要有合理的实验设计和准确的实验操作,避免系统误差,降低误差,提高实验的准确性和精确性。
(2)选用的假设检验方法要符合其应用条件。
(3)选用合理的统计假设。
(4)正确理解假设检验结论的统计意义。
(5)统计分析结论的而应用,还要与经济效益相结合起来综合考虑。
2、什么是一尾检验和两尾检验?各自在什么条件下应用?他们的无效假设与备选假设是怎样确定的?答:一尾假设:利用一尾概率进行假设检验称为一尾检验两尾检验:利用一尾概率进行假设检验称为一尾检验一般在不能通过已知条件或专业知识排除一种情况的话,是要做双尾检验的;但如果可以排除一种情况(例如已知统计量不会偏大),则可以做上单尾或下单尾检验,这样做可以提高检验的精度,因为知道了更多的信息。
值得提一句,方差分析都是做上单尾检验.3、什么是显著性水平?它与假设检验结果有什么关系?怎样选择显著性水平?答:显著水平用来推断无效假设否定与否的概率标准称为显著水平。
是指当原假设为正确时人们却把它拒绝了的概率或风险。
它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。
这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
选你用哪种显著水平,应根据实验要求或者实验结论的重要性而定。
如果实验过程中难以控制的因素较多,实验误差较大,则显著水平可选取低一点,反之则选择高一点。
4、假设检验的两类错误是什么?如何降低犯这两类错误的概率?答:Ⅰ型错误(α错误)--把非真实差异当做真实差异;Ⅱ型错误(β错误)--把真实差异当做非真实差异;为了降低反两类错误的概率,一般选取适当的显著水平和增加实验的重复次数5、什么是参数的点估计和区间估计?答:点估计是利用样本数据对未知参数进行估计得到的是一个具体的数据;区间估计是通过样本数据估计未知参数在置信度下的最可能的存在区间得到的结果是一个区间6、已知普通的水稻单株产量服从正态分布,平均单株产量μ0=250gg ,标准差σ0=2.78gg 。
食品试验设计与统计分析课后答案【篇一:食品试验设计与统计分析复习题】xt>一、名词解释1.总体:具有共同性质的个体所组成的集团。
2.样本:从总体中随机抽取一定数量,并且能代表总体的单元组成的这类资料称为样本。
4.统计数:有样本里全部观察值算得说明样本特征的数据。
包括样本平局数,标准差s,样本方差s2.5.准确性:试验结果真是结果相接近的程序。
6.精确性:在相对相同的条件下,重复进行同一试验,其结果相接近的程度。
7.系统误差:认为因素造成的差异。
8.随机误差:各种偶然的或人为无法控制的因素造成的差异。
9.数量性状的资料:能够称量、测量和计数的方法所表示出来的资料。
可分连续性.数量性状的资料和间断.数量性状的资料。
10.连续性资料:用计量的方法得到的数据性资料。
11.间断性资料:用计数的方法得到的数据性资料。
12.质量性状的资料:只能观察、分类或用文字表述而不能测量的一类资料。
13.两尾检验:具有两个否定域的假设试验。
14.一尾检验:具有单个否定域的月统计假设试验。
15.参数估计:又叫抽样估计,是样本统计数估计总体参数的一种方法。
16.点估计:用样本统计数直接估计相应总体参数的方法。
17.区间估计:在一定的概率保证下,用样本统计参数去估计相应总体参数所在范围。
18.置信区间:估计出参数可能出现的一个区间,使绝大多数该参数的点估计值都包含在这个区间内,所给出的这个区间称为置信区间。
降低显著水平)。
科学的试验设计,提高样本容量)。
21.置信度:保证参数出现在置信区间内的概率称为置信度。
22.直线回归:研究x、y变量间因果依存的方法。
23.直线相关:研究两个变量间直线关系的相关分析。
24.试验指标:根据研究的目的而选定的用来衡量或考核试验效果的质量特性。
25.试验因素:试验中所研究的试验指标的因素。
26.因素水平:试验因素所处的某种特定状态或数量等级。
27.试验处理:事先设计好的实施在试验单位上的一种具体措施或项目称为试验处理。