能量流动
- 格式:doc
- 大小:1.57 MB
- 文档页数:5
生态系统能量流动的特点
生态系统中的能量流动具有以下特点:
生态系统中的能量是有限的,不断流动,且不可循环利用。
通常情况下,生态系统中的能量来源于太阳,并通过生物体的活动和食物链的传递而流动。
能量流动具有层次性,从生物体消耗能量,到食物链的传递,再到生态系统的整体水平。
能量流动是不可逆的,它在每一个层次中都会损失一部分能量,最终在生态系统的整体水平上被消耗掉。
能量流动是动态的,随着环境的变化和生态系统的发展,能量流动的方向和强度会发生变化。
因此,生态系统中的能量流动是一个复杂而动态的过程,其特点是有限、层次性、不可逆性和动态性。
生态系统能量流动知识点一、能量流动的概念。
生态系统中能量的输入、传递、转化和散失的过程,称为生态系统的能量流动。
二、能量流动的过程。
1. 能量的输入。
- 源头:太阳能。
- 输入生态系统的总能量:生产者固定的太阳能总量。
对于大多数生态系统来说,生产者通过光合作用将太阳能转化为化学能,固定在有机物中。
例如,绿色植物通过叶绿素吸收光能,把二氧化碳和水合成葡萄糖等有机物,同时将光能转化为化学能。
2. 能量的传递。
- 途径:食物链和食物网。
- 传递形式:有机物中的化学能。
例如,当草被兔子吃了,草中的化学能就传递到兔子体内;兔子被狐狸吃了,兔子体内的化学能又传递到狐狸体内。
3. 能量的转化。
- 在生物体内,能量不断进行转化。
例如,在细胞呼吸过程中,有机物中的化学能转化为热能和ATP中的化学能。
其中热能散失到环境中,ATP中的化学能可以用于生物的各项生命活动,如细胞分裂、物质合成等。
4. 能量的散失。
- 形式:热能。
- 过程:通过生物的呼吸作用,以热能的形式散失到周围环境中。
三、能量流动的特点。
1. 单向流动。
- 原因:- 食物链中各营养级的顺序是不可逆转的,这是长期自然选择的结果。
例如,狼吃羊,羊不能反过来吃狼。
- 各营养级的能量总是趋向于以细胞呼吸产生热能而散失掉,而热能是不能再被生物利用的。
2. 逐级递减。
- 原因:- 各营养级的生物都会因呼吸作用消耗相当大的一部分能量。
- 各营养级总有一部分生物未被下一级生物所利用,如枯枝败叶等。
- 能量传递效率:相邻两个营养级之间的能量传递效率大约是10% - 20%。
例如,在“草→兔→狐”这条食物链中,如果草固定了1000kJ的能量,兔最多能获得200kJ(按20%传递效率计算),狐最多能获得40kJ(兔获得的200kJ能量按20%传递给狐)。
四、研究能量流动的意义。
1. 帮助人们科学规划、设计人工生态系统,使能量得到最有效的利用。
- 例如,在农业生态系统中,采用套种、间种等方式,提高光能利用率;同时,合理调整能量流动关系,如除草、除虫,使能量更多地流向对人类有益的部分。
食物链与能量流动食物链是生物之间依赖与相互侵食的现象。
它揭示了生物界中的能量传递和物质循环的基本规律。
食物链是由生产者、消费者和分解者组成的,它们相互作用形成了一个复杂而庞大的生态系统。
能量流动是食物链中的一个重要环节,它指的是能量在生物体之间的传递和转化过程。
以下将详细介绍食物链与能量流动的相关内容。
一、食物链的组成和层次1. 生产者生产者是食物链的起点,它们通过光合作用将太阳能转化为有机物质。
植物是最主要的生产者,它们利用阳光、水和二氧化碳合成糖类等有机化合物。
同时,蓝藻、浮游植物等也是重要的水生生产者。
2. 消费者消费者是食物链中依赖他人获得能量和营养的生物。
根据其摄食习性,消费者可以分为三个层次:一级消费者、二级消费者和三级消费者。
一级消费者主要食用植物和其他生产者,二级消费者食用一级消费者,三级消费者食用二级消费者。
3. 分解者分解者也是食物链中重要的一环,它们将死亡生物体、排泄物和垃圾等有机物质分解为无机物质。
细菌、真菌和蚯蚓等是常见的分解者,它们将有机物质分解成水、二氧化碳和无机盐等。
二、能量流动的原理和路径能量在食物链中通过食物链中的生物体传递和转化。
光合作用是能量进入食物链的途径之一,它将太阳能转化为化学能,通过植物和其他生产者进入食物链。
消费者通过摄食植物或其他消费者,将有机物质中的能量转化为自身的能量,并继续向食物链的上层传递。
消费者之间的能量转化可以说是食物链中的关键环节,它决定了能量在食物链中的流动方向和传递效率。
能量在食物链中的流动路径一般是由低层次消费者向高层次消费者传递。
以草地为例,草作为生产者通过光合作用获得能量,被食草动物(一级消费者)摄食后,能量进一步传递给食草动物的捕食者(二级消费者)。
这样,能量通过一系列的摄食和被食的过程,逐渐向食物链的顶端传递。
然而,在能量流动中,能量的损失是不可避免的。
每一级消费者在摄取和代谢过程中都会消耗能量,并以热量的形式散失。
二、能量流动的过程1、能量流动的起点:除极少特殊的空间以外,地球上所有的生态系统所需要的能量都来自太阳。
生态系统的生产者主要是绿色植物,绿色植物通过光合作用,把太阳能固定在它们所制造的有机物中,这样,太阳能就转变成化学能,输入生态系统的第一营养级。
除绿色植物外,能够进行光合作用的细菌、能够进行化能合成作用的细菌等也是生产者。
能量流动的起点是从生产者固定太阳能开始的。
2、输入系统的总能量:生态系统的能量来自太阳能,即生态系统能量的源头是太阳能。
但并不是所有的太阳能都参与了生态系统中的能量流动。
在到达地面的总辐射能中,大约有55%是红外线和紫外线等不可见光,它们无法被植物利用。
剩下那45%的辐射能虽然能被植物的色素吸收,但由于植物表面的反射、非活性吸收和蒸腾作用都消耗能量,因此,真正用于构成光合作用产物的能量,在最适应的条件下,也只占太阳总辐射能的3.6%。
然而,植物自身的细胞呼吸还可消耗其中的1/3,因此最多只有2.4%的太阳能可转变成化学能而贮存在植物体内。
一般来说,植物只能利用1%左右的太阳辐射能。
参与生态系统能量流动的“能量”是通过植物的光合作用把光能转变为化学能贮存在植物体的有机物中的。
即:植物作为生产者所固定的太阳能就是流经这个生态系统的总能量。
3、能量流动的过程:输入第一营养级的能量,一部分在生产者的呼吸作用中以热能的形式散失了,一部分则用于生产者的生长、发育和繁殖,也就是储存在构成植物体的有机物中。
在后一部分能量中,一部分随着植物遗体和残枝败叶等被分解者分解而释放出来,还有一部分则被初级消费者——植食性动物摄入体内。
被植食性动物摄入体内的能量,有一小部分存在于动物排出的粪便中,其余大部分则被动物体所同化。
这样,能量就从第一营养级流入第二营养级(如上图)。
能量流入第二营养级后,将发生上图中所示的变化。
能量在第三、第四等营养级的变化,与第二营养级的情况大致相同。
生态系统中的能量流动过程,可以概括为下图。
一.生态系统的能量流动规律总结:1.能量流动的起点、途径和散失:起点:生产者;途径:食物链网;散失:通过生物的呼吸作用以热能形式散失2.流经生态系统的总能量:自然生态系统:生产者同化的能量=总初级生产量=流入第营养级的总能量人工生态系统:生产者同化的能量+人工输入有机物中的能量3.每个营养级的能量去向:非最高营养级:①自身呼吸消耗以热能形式散失②被下营养级同化③被分解者分解利用④未被利用转变成该营养级的生物量,不一定都有,最终会被利用※②+③+④=净同化生产量用于该营养级生长繁殖;最高营养级:①自身呼吸消耗以热能形式散失② 被分解者分解利用③未被利用4.图示法理解末利用能量流入某一营养级的能量来源和去路图:流入某一营养级最高营养级除外的能量去向可以从以下两个角度分析:1定量不定时能量的最终去路:自身呼吸消耗;流入下一营养级;被分解者分解利用;这一定量的能量不管如何传递,最终都以热能形式从生物群落中散失,生产者源源不断地固定太阳能,才能保证生态系统能量流动的正常进行;2定量定时:自身呼吸消耗;流入下一营养级;被分解者分解利用;末利用即末被自身呼吸消耗,也末被下一营养级和分解者利用;如果是以年为单位研究,未被利用的能量将保留到下一年;5.同化量与呼吸量与摄入量的关系:同化量=摄入量-粪便量=净同化量用于生长繁殖+呼吸量※初级消费者的粪便量不属于初级消费者该营养级的能量,属于上一个营养级生产者的能量,最终会被分解者分解;※用于生长繁殖的能量在同化量中的比值,恒温动物要小于变温动物6.能量传递效率与能量利用效率:1能量的传递效率=下一营养级同化量/上一营养级同化量×100%这个数值在10%-20%之间浙科版认为是10%,因为当某一营养级的生物同化能量后,有大部分被细胞呼吸所消耗,热能不能再利用,另外,总有一部分不能被下一营养级利用;传递效率的特点:仅指某一营养级从上一个营养级所含能量中获得的能量比例;是通过食物链完成,两种生物之间只是捕食关系,只发生在两营养级之间;2能量利用率能量的利用率通常是流入人类中的能量占生产者能量的比值,或最高营养级的能量占生产者能量的比值,或考虑分解者的参与以实现能量的多级利用;在一个生态系统中,食物链越短能量的利用率就越高,同时生态系统中的生物种类越多,营养结构越复杂,能量的利用率就越高;在实际生产中,可以通过调整能量流动的方向,使能量流向对人类有益的部分,如田间除杂草,使光能更多的被作物固定;桑基鱼塘中,桑叶由原来的脱落后被分解变为现在作为鱼食等等,都最大限度的减少了能量的浪费,提高了能量的利用率;3两者的关系从研究的对象上分析,能量的传递效率是以"营养级"为研究对象,而能量的利用率是以"最高营养级或人"为研究对象;另外,利用率可以是不通过食物链的能量“传递”; 例如,将人畜都不能食用的农作物废弃部分通过发酵产生沼气为人利用; 人们利用风能发电、水能发电等; 这些热能、电能最终都为人类利用成为了人类体能的补充部分;※7.能量流动的计算规律:“正推”和“逆推”规律1规律2 在能量分配比例已知时的能量计算 规律3 在能量分配比例未知时计算某一生物获得的最多或最少的能量①求“最多”则按“最高”值20%流动 ②求“最少”则按“最低”值10%流动 ①求“最多”则按“最高”值10%流动②求“最少”则按“最低”值20%流动未知较高营养级 已知 较低营养级8.研究意义 ①帮助人们科学规划、设计人工生态系统,使能量得到最有效的利用;②帮助人们合理地调整生态系统中的能量流动关系,使能量持续高效地流向对人类最有益的部分;具体措施:农田的除草灭虫---调整能流的方向尽量缩短食物链;充分利用生产者和分解者,实现能量的多级利用,提高能量利用效率9. 能量流动的几种模型图:二:物质循环1. 物质循环易错点生产者 最少消耗 最多消耗 选最短食物链选最大传递效率20% 选最长食物链选最小传递效率10% 消费者获得最多消费者获得最少2.海洋圈水圈对大气圈的调节作用:海洋的含碳量是大气的50倍;二氧化碳在水圈与大气圈的界面上通过扩散作用进行交换水圈的碳酸氢根离子在光合作用中被植物利用3.碳循环的季节变化和昼夜变化影响碳循环的环境因素即影响光合作用和呼吸作用的因素;碳循环的季节变化二.生态系统的稳态及调节1.生态系统的发展反向趋势:物种多样性,结构复杂化,功能完善化2.对稳态的理解:生态系统发展到一定阶段顶级群落,它的结构和功能保持相对稳定的能力;结构的相对稳定:生态系统中各生物成分的种类和数量保持相对稳定;功能的相对稳定:生物群落中物质和能量的输入与输出保持相对平衡;3.稳态的原因:自我调节能力但是有一定限度自我调节能力的大小与生态系统的组成成分和营养结构有关系,物种越多,形成的食物链网越复杂,自我调节能力越强;4.稳态的调节:反馈调节其中负反馈调节是自我调节能力的基础,也是生态系统调节的主要方式。
能量流动的三个意义和例子
能量流动具有以下三个意义:
1. 自然界中的能量流动:能量在自然界中以不同的形式流动,如光能
从太阳上发出并传播到地球上,热能通过传导、对流和辐射等方式从
热源传递到周围环境,电能从电源经过导线传输到各个电器设备等。
例如,在白天,太阳能会通过光的辐射转化为电能,供电给一座城市
中的建筑用于照明和电力设备的运行。
2. 生物体内的能量流动:在生物体内,能量以食物和氧气的形式流动。
通过食物链,能量从底层生物转移到上层生物,如植物通过光合作用
将光能转化为化学能,再被食草动物所摄取,然后被食肉动物所摄取,这样能量从一个生物体传递到另一个生物体。
例如,草原上的兔子通
过食用草木所获得的化学能,转化为它的生命活动所需的机械能和热能。
3. 社会经济中的能量流动:在社会经济活动中,能源作为能量的载体,通过供应链流动。
例如,石油作为一种重要的能源,从石油生产国通
过输油管道或船舶运输到各个地区的炼油厂,再经过配送网络输送到
加油站,最终由汽车或其他交通工具使用燃油的化学能进行生产、运
输和驱动。
这种能量流动对社会经济的发展起着重要作用,影响着人
们的生活和工作。
生态系统的能量流动一、生态系统能量流动的概念和过程1.能量流动的概念生态系统中能量的输入、传递、转化和散失的过程。
2.能量流动的过程地球上几乎所有的生态系统所需要的能量都来自太阳能。
(1)能量流经第一营养级的过程①能量输入:生产者通过光合作用把太阳能转化为化学能,固定在它们所制造的有机物中。
②能量去向(2)能量流经第二营养级的过程①初级消费者摄入量=初级消费者同化量+初级消费者粪便量。
②初级消费者同化能量=呼吸作用散失的能量+用于生长、发育和繁殖的能量。
③生长、发育和繁殖的能量=通过遗体残骸被分解者利用的能量+被下一营养级摄入的能量。
(3)能量流动图解易错提示:初级消费者粪便中的能量属于箭头①,而不属于箭头②,如兔子吃草,兔子的粪便相当于草的遗体残骸,应该属于草流向分解者的能量。
同理,次级消费者粪便中的能量属于箭头②,而不属于箭头③。
(4)能量流动过程总结3种能量流动过程图比较图1:每一环节能量去向有2个,图中出现粪便量,由于同化量=摄入量-粪便量,所以A为摄入量,B为同化量;由图可知B同化量总体有2个去向,即D为呼吸散失,C为用于生长、发育和繁殖;C用于生长、发育和繁殖量有2个去向,即E为流入分解者的能量,F为下一营养级摄入量。
图2:每一营养级能量去向有3个(除最高营养级)即:一个营养级同化的能量(A)=自身呼吸消耗(E)+流入下一营养级(被下一营养级同化B)+被分解者分解利用。
图3:每一营养级能量去向有4个(研究某一时间段)(除最高营养级)即:一个营养级同化的能量(A)=自身呼吸消耗(D)+流入下一营养级(被下一营养级同化B)+被分解者分解利用+未被利用。
“未利用”是指未被自身呼吸作用消耗,也未被后一个营养级和分解者利用的能量。
重点中的重点各营养级同化量来源和去向注意:最高营养级的能量去路缺少下一营养级同化。
二、能量流动的特点1.能量流动的特点及原因分析 特点 原因分析单向流动 ①能量流动是沿食物链进行的,食物链中各营养级之间的捕食关系是长期自然选择的结果,是不可逆转的。
《生态系统的能量流动》知识清单一、什么是生态系统的能量流动生态系统的能量流动,简单来说,就是能量在生态系统中的输入、传递、转化和散失的过程。
能量的最初来源是太阳,太阳的光能通过生产者(比如绿色植物)的光合作用转化为化学能,储存在有机物中。
这些有机物被各级消费者(比如食草动物、食肉动物)所摄取,能量也就随之在食物链和食物网中流动。
二、能量流动的特点1、单向流动能量在生态系统中的流动是单向的,只能从一个营养级流向下一个营养级,而不能反向流动。
这是因为能量在转化和传递的过程中,有很大一部分以热能的形式散失掉了,无法再被生物所利用。
比如说,草通过光合作用固定了太阳能,兔子吃草获取了能量,但兔子的能量无法再回到草中去。
2、逐级递减能量在流动过程中逐级递减,传递效率一般在 10% 20%之间。
这意味着,上一个营养级传递给下一个营养级的能量,只有 10% 20%能够被下一个营养级所同化利用,其余的大部分都在传递过程中散失了。
例如,一片草地上的青草所含的能量为 1000 焦耳,那么吃草的羊最多只能获得 200 焦耳的能量,而吃羊的狼最多只能获得 40 焦耳的能量。
三、能量流动的过程1、输入生态系统的能量输入主要依赖于生产者的光合作用。
生产者将太阳能转化为有机物中的化学能,从而为生态系统提供了最初的能量来源。
2、传递能量通过食物链和食物网在生态系统中传递。
在食物链中,每一营养级的生物都会通过摄食获取上一营养级生物所含的能量。
3、转化能量在生态系统中会不断发生转化。
例如,动物通过呼吸作用将有机物中的化学能转化为热能和 ATP 中的化学能,用于生命活动。
4、散失能量的散失主要通过生物的呼吸作用,以热能的形式散失到环境中。
四、研究能量流动的意义1、帮助人们合理地调整生态系统中的能量流动关系,使能量持续高效地流向对人类最有益的部分。
比如,在农业生产中,合理密植可以提高光能的利用率,增加农作物的产量。
2、帮助人们科学规划和设计人工生态系统,实现能量的多级利用,提高能量的利用率。
传递
残枝败叶等残骸残骸
1. 赛达伯格湖的生态系统中,第二营养级获得第一营养级所同化能量的百分比是多少?第三营养级获得第二营养级所同化能量的百分比是多少?
2. 能量在相邻营养级之间的传递效率在多大的范围内?为什么不能全部
.在有草、兔、狐组成的食物链中,兔经同化作用所获得的能量,其去向
草兔狐虎通过兔子呼吸作用释放的能量
表示生物同化作用固定能量的总量,Pn表示生物体贮存的能量(Pn
生物种群含有总能量5.8
,则从理论上讲,A生物种
D.4.5×
来自植物,另1/2来自牛
)请将流经该生态系统的总能量数填写在图中的方框内,这部分能量是
4。