镁合金腐蚀XRD
- 格式:pptx
- 大小:848.72 KB
- 文档页数:4
镁合金表面电化学阳极沉积氧化镁膜及其耐腐蚀性欧阳春;雷霆;唐炜;李年丰;周乐山【摘要】将镁合金置于浓度为10mol/L的KOH溶液中,在1.0V电压下电化学阳极氧化,然后在723K温度下热处理1h,在镁合金表面制备氧化镁(MgO)涂层,用扫描电镜(SEM)和X射线衍射(XRD)对涂层进行形貌表征和物相分析,研究有MgO涂层的镁合金在Hank模拟体液中的动态阳极极化曲线和浸泡3d溶液pH值的变化,通过SEM观察腐蚀后样品的形貌并进行成分分析,探讨腐蚀机理.结果表明:与裸合金相比,有MgO涂层的镁合金的腐蚀电位正移130mV,腐蚀电流减少2个数量级,腐蚀过程主要发生在氧化镁涂层并且没有明显的点蚀现象,表明有MgO涂层的镁合金具有优异的抗腐蚀性能.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2010(015)003【总页数】6页(P271-276)【关键词】镁合金;表面改性;电化学腐蚀;Hank模拟体液【作者】欧阳春;雷霆;唐炜;李年丰;周乐山【作者单位】中南大学,粉末冶金国家重点实验室,长沙,410083;中南大学,粉末冶金国家重点实验室,长沙,410083;中南大学,粉末冶金国家重点实验室,长沙,410083;中南大学,粉末冶金国家重点实验室,长沙,410083;中南大学,湘雅医院,长沙,410008;中南大学湘雅医学院,长沙,410013【正文语种】中文【中图分类】TG139生物降解镁合金材料是继无机生物陶瓷和生物活性高分子聚合物之后的又一类新兴生物材料。
该材料具备作为生物医用材料所要求的良好的医学安全性基础,有望发展成为生物医用可降解植入材料及器件,在可降解心血管支架以及替代骨组织的工程支架材料等方面展示出巨大的应用前景,正受到越来越多的关注[1-2]。
目前,镁及镁合金作为生物医用材料的主要瓶颈在于镁及镁合金的耐蚀性差[3],特别是在有氯离子存在的腐蚀环境中腐蚀速率很快。
因此,提高镁合金耐蚀性能,成为当前镁合金生物材料的研究热点。
11216__________________________________________^^^________#_________________________2017 年第 11 期(48)卷文章编号:1001—9731(2017)11-11216-05镁合金表面电化学沉积制备羟基磷灰石涂层及耐腐蚀性能的研究X华帅,陶庆爽,郭亚鑫,刘小萍,范爱兰,唐宾(太原理工大学材料科学与X程学院,太原030024)摘要:采用电化学沉积技术和水热合成技术在镁合金表面制备出均勾的羟基磷灰石(H A)涂层。
运用扫描电 镜(S E M)分析涂层的微观形貌、运用能谱(E D S)分析涂层的元素组成、和运用X射线衍射仪(X R D)分析涂层相 的组成,并且在人体模拟液(S B F)中考察了其电化学性能。
结果表明:与恒电流沉积制备出的H A相比,脉冲电 流沉积制备出的涂层更加均匀致密;与镁合金基体的自腐蚀电流密度8.407 X10一4 A/c m2比较,恒电流和脉冲电 流沉积的涂层自腐蚀电流密度分别为2.780X10_5和S.S82X10一7 A/e m2,其耐蚀性明显得到提高0在镁合金表 面用电化学沉积法制备的羟基磷灰石涂层可以有效的降低镁合金的降解率,从而使得镁合金进一步应用于生物 材料《关键词:羟基磷灰石;镁合金;耐蚀性中图分类号:T B332 文献标识码:A D O I:10.3969/j.issn.1001-9731.2017.11.039〇引言镁合金成本低、具有良好的生物相容性、优异的机 械性能和与人体骨骼相近的弹性模量,被广泛的运用 于生物医用金属材料。
但是镁合金的耐蚀性差,在生 物体内降解速率快[1_..'1儿作为植入体时,会在人体内 会产生大量的氢气和碱性物质,难以满足骨植入材料的要求。
已有研究表明,生物涂层可以有效提高镁合金表面生物相容性、耐腐蚀性、生物活性,使其满足骨 植人材料的要求。
hcp结构镁合金{0001}基面织构1. 引言1.1 概述镁合金作为一种轻质高强材料,具有广泛的应用前景和市场需求。
然而,由于其晶体结构的特殊性,降低其塑性和机械性能成为了一个亟待解决的问题。
因此,研究镁合金的晶体结构和织构对于改善其力学性能和应用范围具有重要意义。
本文着重探讨了在镁合金中常见的一种晶体结构-六方密堆垒结构(HCP)。
通过研究HCP 结构镁合金的{0001}基面织构对其力学性能的影响,可以在某种程度上提高其塑性和韧性,从而扩大其应用范围。
1.2 文章结构本文共分为五个部分。
首先是引言部分,包括文章的概述、目的以及整体框架。
第二部分介绍了HCP 结构以及镁合金材料的特点,并探讨了HCP 结构在镁合金中的应用现状。
接下来第三部分详细阐述了{0001}基面织构的定义、意义以及织构研究方法与应用前景。
第四部分展示了相关实验和计算分析结果,并进行了不同织构条件下的性能对比分析。
最后,第五部分总结了研究成果并对未来的改进方向和应用前景进行了展望。
1.3 目的本文旨在深入探讨HCP 结构镁合金中{0001}基面织构的特性和影响因素,以期为镁合金材料的开发和应用提供科学依据和理论支持。
通过分析实验和计算结果,我们可以更好地了解该结构对于镁合金力学性能的影响机制,并为进一步优化材料设计提供指导。
此外,本文还将探讨目前存在的问题,并提出改进方向,促进该领域研究的快速发展。
2. HCP结构和镁合金2.1 HCP结构介绍HCP(Hexagonal Close-Packed)即六方最密堆积结构,是一种常见的晶体结构。
它由紧密堆积的原子或离子排列而成,具有六角形的基本晶胞。
HCP结构具有高度对称性和特殊的晶胞参数,其晶格常数a和c之间存在关系,即c ≈(8/3)^0.5a。
HCP结构在自然界中广泛存在,如钙、镁等金属以及一些硅酸盐矿物均采用了HCP结构。
2.2 镁合金特点镁合金是一类以镁为主要成分的合金材料。
文章编号:1001-9731(2021)01-01022-04镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能*余灏勋,马廷霞(西南石油大学机电工程学院,成都610500)摘要:利用微弧氧化法,在微弧氧化反应电解质中加入氟钛酸钾和G R/T i O2粉末,在镁合金表面制备了MA O-G R/T i O2涂层㊂采用S E M和F T-I R分别对G R/T i O2粉末的表面形貌和结构进行了研究,用S E M㊁X R D 和元素线扫描对MA O-G R/T i O2涂层的表面形貌㊁相结构和元素分布进行了研究,用三电极技术对MA O-G R/T i O2涂层的耐腐蚀性能进行了研究㊂结果表明,通过溶胶-凝胶法可将纳米T i O2接枝到G O表面,生成G R/T i O2粉末;MA O-G R/T i O2涂层主要由M g2T i O4相㊁M g3(P O4)2相㊁M g和M g O相组成;以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧;MA O-G R/T i O2涂层的腐蚀电位为-0.723V,腐蚀电流密度为8.96ˑ10-8A/c m2,相比镁合金基体和MA O涂层,腐蚀电位提高了48.3%和36.7%,表明MA O-G R/T i O2涂层可以显著提高镁合金基体的耐蚀性能㊂关键词:镁合金;微弧氧化法;复合涂层;耐腐蚀性能中图分类号: T B332文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.01.0040引言镁合金耐蚀性差严重限制了其在许多领域的应用[1-2]㊂目前为止,研究者广泛研究的耐腐蚀方法是在合金表面形成防腐涂层㊂微弧氧化技术(MA O)是在常规阳极氧化技术基础上发展起来的一种新型的镁合金表面处理技术,该技术可以制造高质量的涂层,具有高硬度值,强附着力,并可以大幅提高镁合金基体的耐腐蚀性[3]㊂因此,MA O已经成为提高镁合金耐蚀性研究最热门的技术之一[4-6]㊂MA O涂层的耐蚀性主要取决于涂层的厚度㊁成分和组织结构[7]㊂根据已有的研究,电解液的组成会影响涂层的微观结构㊁成分和性能,因为这些元素可以在氧化过程中掺杂入涂层中[8-9]㊂几种类型的电解质,如硅酸盐[10]㊁铬酸盐[11]和磷酸盐[12],已被用于制备MA O涂层㊂一般来说,在这些电解质中形成的MA O涂层主要由M g O相和其它一些与电解质有关的化合物组成[如M g O㊁M g3-(P O4)2㊁M g A l2O4或M g F2][13]㊂由于M g O在中性或酸性环境中不稳定,这些涂层不能提供足够的长期腐蚀保护㊂解决该问题最有效的办法是通过改变电解质的组成,在MA O涂层中加入稳定氧化物或其它稳定化合物,如N b2O5㊁Z r O2㊁T i O2㊁M g2Z r5O12㊁C e O2㊁M g F2或Z r F4㊂这些氧化物和化合物可以在氧化处理过程中嵌入到涂层中,以提高涂层的耐蚀性[14]㊂然而,在这些电解液中,有许多化合物不能长期使用(相对不稳定),因为在微弧氧化过程中,试样表面预先形成了小的火花,不能得到均匀的MA O涂层[15]㊂石墨烯(G R)和氧化石墨烯(G O)具有优异的力学和耐腐蚀性能,不仅力学强度高,而且耐磨性优异[16-17]㊂T i O2颗粒具有优异的耐腐蚀性能[18-20]㊂本文以氟钛酸钾(K2T i F6)㊁六偏磷酸钠[(N a P O3)6]㊁氢氧化钠(N a O H)和三乙胺(T E A)组成的合适电解质,制备了含有M g2T i O4和G R/T i O2的MA O-G R/T i O2涂层㊂采用X R D㊁S E M和元素线扫描等手段研究了涂层的相结构㊁表面形貌和元素组成,并采用电化学阻抗法评价了涂层的耐蚀性㊂1实验1.1 G R/T i O2粉末的制备采用加压氧化法合成G O,采用溶胶-凝胶法制备G R/T i O2粉末㊂由于G O的亲水性和静电斥力,在水中形成了稳定的溶胶㊂具体制备方法:取5m L钛酸丁酯,与10m L冰乙酸均匀混合,然后加入30m L无水酒精进行稀释,分散搅拌均匀30m i n后得到溶液A;将G O超声分散在15m L蒸馏水中,超声浴2h,随后加入15m L无水酒精,并用稀硝酸调节p H值至2,得到溶液B㊂将溶液B缓慢加入到溶液A中,并在室温下搅拌3h,并陈化得到凝胶,随后将凝胶转入水热反应釜中,210ħ下恒温反应10h后自然冷却至室温,用去离子水将所得产物洗涤至中性,并烘干,即得到G R/T i O2粉末㊂220102021年第1期(52)卷*基金项目:四川省科技计划资助项目(18F Z J C00734)收到初稿日期:2020-06-03收到修改稿日期:2020-09-23通讯作者:马廷霞,E-m a i l:1499893831@q q.c o m 作者简介:余灏勋(1994 )男,成都人,硕士,主要从事新型复合材料制备研究㊂1.2复合涂层的制备将A Z31合金(M g-3%(质量分数)A l-0.8%(质量分数)Z n)试样切割成10mmˑ10mmˑ5mm,用100~1000#的S i C砂纸打磨㊂然后分别在乙醇和去离子水中超声清洗20m i n,最后在空气中干燥㊂采用功率为2k W的恒流电源,通过MA O法制备涂料㊂分别以镁合金基体和不锈钢板作为工作电极和对电极㊂为了制备含有G R/T i O2的MA O涂层,采用以下磷酸盐电解质进行一次处理:即由15g/L氟钛酸钾(K2T i F6),20g/L六偏磷酸钠[(N a P O3)6], 10g/L氢氧化钠(N a O H),3g/L G R/T i O2粉末和0.3g/L三乙胺(T E A)组成的电解质,使G R/T i O2粉末带负电荷,然后将电解质超声处理1h,随后连接电极,并将电极放入电解质中㊂两个电极之间的距离为2c m,在400V的固定外加电压下进行10m i n的一次微弧氧化反应㊂得到的复合涂层标记为MA O-G R/ T i O2涂层㊂采用相同的MA O工艺(磷酸盐电解质中没有G R/T i O2)制备的M g合金作为对照组,标记为MA O涂层㊂1.3样品的表征采用T T R I I IX射线衍射仪对制备的涂层相组成进行了X射线衍射分析,2θ值在10~85ʎ之间,步长增量为0.01ʎ,扫描速度为4ʎ/m i n;采用N I C O L E T F T-I R5700光谱仪对G O㊁G R/T i O2粉末及复合涂层进行F T-I R光谱测试;采用德国蔡司(型号:S U P R A-55)扫描电子显微镜对G R/T i O2粉末和复合涂层的表面形貌及元素组成进行研究㊂1.4电化学测量采用三电极技术在电化学工作站(C H I660E)上进行动电位极化实验㊂以复合涂层样品为工作电极,铂板为对电极,饱和甘汞电极(S E C)为参比㊂所有测试都在(37ʃ1)ħ的3.5%(质量分数)氯化钠溶液中进行㊂用1c m2的硅胶覆盖所有样品暴露的表面㊂在溶液中稳定1h后进行动电位极化试验,以确保开路电位是静态的㊂电位扫描速度为5m V/s,记录极化曲线㊂E I S的信号幅度为5m V,频率为0.01~ 10000H z㊂采用T a f e l外推和线性极化法,从动电位极化图中获取腐蚀电位(E c o r r)和腐蚀电流密度(i c o r r)㊂本文选择性地展示了极化曲线,所展示的极化曲线数据最接近每组样本的平均值㊂2结果与讨论2.1 G O和G R/T i O2粉末的表征2.1.1 F T-I R分析图1为G O和G R/T i O2粉末的F T-I R光谱图㊂由图1可知,G O曲线中3395c m-1处的宽吸收峰为-O H伸缩振动峰,2358c m-1处的伸缩振动对应C-O 键,1733c m-1处的伸缩振动对应C=O键, 1621c m-1位置的伸缩振动对应C=C键,1222c m-1位置的伸缩振动对应C-O-C键,1057c m-1位置的伸缩振动对应C-O H键;G R/T i O2曲线中,535c m-1处的吸收峰对应T i-O-T i键,而1733,1222和1057c m-1处峰强的减弱,说明G O在反应过程中被还原成了G R ㊂图1 G O和G R/T i O2粉末的F T-I R光谱图F i g1F T-I Rs p e c t r a o fG Oa n dG R/T i O2p o w d e r2.1.2S E M分析图2为G O和G R/T i O2粉末的S E M图㊂从图2 (a)可以看出,G O为片状多层结构,具有许多类似于波动丝绸的褶状㊂从图2(b)可以看出,T i O2颗粒分散在G R的片状表面,大部分G R表面可以被T i O2颗粒包裹住,颗粒大小为纳米级,表明T i O2纳米粒子可以成功地接枝到G R表面㊂图2 G O和G R/T i O2粉末的S E M图F i g2S E Mi m a g e s o fG Oa n dG R/T i O2p o w d e r s2.2 MA O-G R/T i O2涂层的表征2.2.1 X R D和元素线扫描分析图3为MA O-G R/T i O2涂层的X R D图谱㊂由图3可知,涂层X R D图谱中可以明显观察到18.6ʎ和29.5ʎ处的M g2T i O4对应峰;此外,还可以观察到明显的M g3(P O4)2㊁M g和M g O的对应峰,但是并未发现典型的T i O2峰,可能是因为T i O2峰和M g2T i O4峰有一定重叠而被掩盖,也有可能是T i O2含量太少㊂图4为MA O-G R/T i O2涂层截面元素的线扫描分析㊂从图4可以看出,以界面为分界线,涂层一侧T i㊁P和O元素高于基体一侧,基体一侧M g元素高于涂层一侧,而基体一侧A l元素只稍微高于涂层一侧,区别并不明显㊂这一元素分布和图3中MA O-G R/ T i O2涂层X R D图谱测试结果正好吻合㊂32010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能图3 MA O -G R /T i O 2涂层的XR D 图谱F i g 3X R D p a t t e r no fMA O -G R /T i O 2co a t i ng 图4 MA O -G R /T i O 2涂层截面元素的线扫描分析F i g 4L i n e s c a n n i n g a n a l ys i s o f s e c t i o n a l e l e m e n t s o f MA O -G R /T i O 2co a t i n g 2.2.2 S E M 分析图5展示了镁合金基体上MA O 和MA O -G R/T i O 2涂层的SE M 形貌㊂从图5可以看出,由于涂层生长不均匀,MA O 生长过程中会捕获熔融氧化物和气泡,MA O 涂层和MA O -G R /T i O 2涂层的表面均存在圆形孔隙通道,这是电解质与M g 合金基体接触的通道㊂由于在相对冷的电解质中,熔融氧化物是从数千度的温度下快速冷却的,所以在MA O 涂层和MA O -G R /T i O 2涂层上表面粗糙,并可以观察到微小裂纹㊂MA O -G R /T i O 2涂层表面并未观察到明显的G R /T i O 2材料,只是相比MA O ,表面更加粗糙㊂图5 MA O 和MA O -G R /T i O 2涂层的S E M 图F i g 5S E Mi m a g e s o fMA Oa n dMA O -G R /T i O 2co a t -i n gs 2.3 腐蚀行为评价图6为镁合金基体㊁M A O 涂层和M A O -G R /T i O 2涂层在N a C l 溶液中的典型动电位极化曲线㊂根据T a f e l 外推和线性极化法提取了电化学参数的平均值,结果如表1所示㊂由图6和表1可知,与镁合金基体相比,M A O 涂层和M A O -G R /T i O 2涂层都提高了腐蚀电位,说明涂层的稳定性和有效性优于镁合金基体㊂M A O -G R /T i O 2涂层的腐蚀电位相比镁合金基体和M A O 涂层,提高了48.3%和36.7%㊂这些结果表明,M A O -G R /T i O 2涂层可以显著提高M g 合金基体的耐蚀性能㊂图6 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层在Na C l 溶液中的动电位极化曲线F i g 6P o t e n t i o d yn a m i c p o l a r i z a t i o nc u r v e s o f m a g n e s i u m a l l o y ma t r i x ,MA O c o a t i n g a n d MA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n表1 镁合金基体㊁MA O 涂层和MA O -G R /T i O 2涂层材料的腐蚀特性分析结果T a b l e1A n a l ys i sr e s u l t so fc o r r o s i o nc h a r a c t e r i s t i c s o f m a g n e s i u m a l l o y m a t r i x ,MA O c o a t i n ga n dMA O -G R /T i O 2co a t i n g i nN a C l s o l u t i o n 试样腐蚀电位/V 腐蚀电流密度/A ㊃c m -2镁合金基体-1.3981.59ˑ10-5MA O 涂层-1.1423.12ˑ10-7MA O -G O /T i O 2涂层-0.7238.96ˑ10-83 结 论(1)通过溶胶-凝胶法可将纳米T i O 2接枝到GO 表面,但是接枝过程中,G O 被还原成了G R ,生成了G R /T i O 2粉末材料㊂(2)MA O -G R /T i O 2涂层主要由M g 2T i O 4相㊁M g 3(P O 4)2相㊁M g 和M g O 相组成㊂以界面为分界线,涂层一侧T i ㊁P 和O 元素高于基体一侧,基体一侧M g 元素高于涂层一侧,而基体一侧A l 元素只稍微高于涂层一侧㊂(3)MA O -G R /T i O 2涂层的腐蚀电位为-0.723V ,腐蚀电流密度为8.96ˑ10-8A /c m 2,相比镁合金基体和MA O 涂层,腐蚀电位提高了48.3%和36.7%,表明MA O -G R /T i O 2涂层可以显著提高镁合金基体的耐蚀性能㊂参考文献:[1] G u oK W.Ar e v i e wo fm a g n e s i u m /m a g n e s i u ma l l o ys c o r -420102021年第1期(52)卷r o s i o n [J ].R e c e n tP a t e n t so n C o r r o s i o nS c i e n c e ,2011,1(1):72-90.[2] Y a n g K H ,G e rM D ,H w uW H ,e t a l .S t u d y of v a n a d i u m -b a s e d c h e m i c a l c o n v e r s i o n c o a t i ng on t h e c o r r o s i o n r e s i s t -a n c e o fm a g n e s i u ma l l o y [J ].M a t e r i a l sC h e m i s t r y &P h ys -i c s ,2015,101(2-3):480-485.[3] H u a n g YS ,L i uH W.T E Ma n a l y s i s o nm i c r o -a r c o x i d e c o a t i n go n t h e s u r f a c e o fm a g n e s i u ma l l o y[J ].J o u r n a l o fM a t e r i a l sE n -g i n e e r i n g &Pe rf o r m a n c e ,2011,20(3):463-467.[4] J i a ng BL ,G eYF .M i c r o -a r c o x i d a t i o n (M A O )t o i m pr o v e t h e c o r r o s i o n r e s i s t a n c eo fm a g n e s i u m (M g )a l l o ys [J ].C o r r o s i o n P r e v e n t i o n o fM a g n e s i u m A l l o ys ,2013:163-196.[5] W a n g S ,L i uP .T h e t e c h n o l o g y o f p r e p a r i n gg r e e nc o a t i n gb yc o nd u c t i n g m i c r o -a r co x i d a t i o no n A Z 91D m a gn e s i u m a l l o y [J ].P o l i s hJ o u r n a l o fC h e m i c a lT e c h n o l o g y ,2016,18(4):36-40.[6] L iY ,L uF ,L iH L ,e t a l .C o r r o s i o n m e c h a n i s mo fm i c r o -a r co x i d a t i o nt r e a t e db i o c o m p a t i b l eA Z 31m a gn e s i u m a l -l o y i ns i m u l a t e db o d y f l u i d [J ].P r o gr e s s i n N a t u r a lS c i -e n c e :M a t e r i a l s I n t e r n a t i o n a l ,2014,24(5):516-522.[7] N i eR R ,Z h uF ,S h e nL R ,e t a l .E f f e c t so f f i l mt h i c k n e s so n t h e p h a s e c o m p o s i t i o n a n dm i c r o s t r u c t u r e p r o pe r t i e s of m i c r o -a r c o x i d a t i o n c o a t i ng [J ].J o u r n a l o fB i o m e d i c a lE n -g i n e e r i n g,2010,27(2):354-357.[8] Y a n g W ,X uD P ,G u oQ Q ,e t a l .I n f l u e n c eo f e l e c t r o l yt e c o m p o s i t i o no n m i c r o s t r u c t u r ea n d p r o p e r t i e so f c o a t i n gs f o r m e do n p u r eT i s u b s t r a t eb y mi c r oa r co x i d a t i o n [J ].S u r f a c e&C o a t i n g sT e c h n o l o g y,2018,349:522-528.[9] P a kSN ,Y a oZP ,J uKS ,e t a l .E f f e c t o f o r ga n i c a d d i t i v e s o n s t r u c t u r e a n d c o r r o s i o n r e s i s t a n c e o fMA Oc o a t i n g[J ].V a c u u m ,2018,151:8-14.[10] Z h a n g R F ,X i o n g G Y ,H uC Y.C o m p a r i s o no f c o a t i n gp r o p e r t i e so b t a i n e db y MA Oo nm a g n e s i u ma l l o y s i n s i l -i c a t ea n d p h y t i ca c i de l e c t r o l y t e s [J ].C u r r e n t A p pl i e d P h ys i c s ,2010,10(1):255-259.[11] M aY ,L i uN ,W a n g Y ,e t a l .Ef f e c t o f c h r o m a t ea d d i t i v e o nc o r r o s i o nr e s i s t a n c eo fMA Oc o a t i ng so n m a gn e s i u m a l l o ys [J ].J o u r n a l o f t h eC h i n e s eC e r a m i cS o c i e t y ,2011,39(9):1493-1497.[12] S o l d a t o v a E ,B o l b a s o vE ,K o z e l s k a y aA I ,e t a l .T h e e l a s t i c i t yo f c a l c i u m p h o s p h a t eM A Oc o a t i n g s c o n t a i n i n g di f f e r e n t c o n c e n -t r a t i o n s o f c h i t o s a n [J ].I O PC o n f e r e n c eS e r i e s M a t e r i a l sS c i -e n c e a n dE n g i n e e r i n g,2009,544:63-70.[13] G u oP Y ,W a n g N ,Q i nZS ,e ta l .E f f e c to fe l e c t r o l yt e c o m p o s i t i o no n g r o w t h m e c h a n i s m a n ds t r u c t u r eo fc e -r a m i cc o a t i n g so n p u r eT i b yp l a s m ae l e c t r o l yt i co x i d a -t i o n [J ].T r a n s a c t i o n sof M a t e r i a l s &H e a tT r e a t m e n t ,2013,34(7):181-186.[14] S a n k a r aN a r a y a n a nTSN ,P a r k I S ,L e eM H.S t r a t e gi e s t o i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm i c r o a r c o x i d a t i o n (MA O )c o a t e d m a g n e s i u m a l l o y sf o rd e gr a d a b l ei m -p l a n t s :P r o s p e c t s a n d c h a l l e n g e s [J ].P r o gr e s s i n M a t e r i -a l sS c i e n c e ,2014,60:1-71.[15] W a n g C ,C h e nJ ,H e JH ,e t a l .E f f e c t o f e l e c t r o l yt e c o n -c e n t r a t i o no n t h e t r i b o l o g i c a l pe rf o r m a n c e o fMA Oc o a t -i ng s o na l u m i n u ma l l o y s [J ].F r o n t i e r so fCh e mi c a lS c i -e n c e a n dE n g i n e e r i n g,2020,12:1-7.[16] L i uS ,G uL ,Z h a oHC ,e t a l .C o r r o s i o n r e s i s t a n c e o f g r a ph e n e -r e i n f o r c e dw a t e r b o r n e e p o x y c o a t i n gs [J ].J o u r n a l o fM a t e r i a l s S c i e n c e&T e c h n o l o g y ,2016,32(05):425-431.[17] Z h a n g XR ,MaR N ,D u A ,e t a l .C o r r o s i o n r e s i s t a n c e o f o r g a n i c c o a t i n g b a s e do n p o l y h e d r a l o l i g o m e r i c s i l s e s qu i -o x a n e -f u n c t i o n a l i z e d g r a p h e n eo x i d e [J ].A p pl i e dS u r f a c e S c i e n c e ,2019,484:814-824.[18] D e ya b M A ,K e e r a ST.E f f e c t o f n a n o -T i O 2p a r t i c l e s s i z e o n t h e c o r r o s i o n r e s i s t a n c e o f a l k y d c o a t i n g[J ].M a t e r i a l s C h e m i s t r y &P h ys i c s ,2014,146(3):406-411.[19] A oN ,L i uD X ,W a n g SX ,e t a l .M i c r o s t r u c t u r ea n dt r i -b o l o g i c a lb e h a v i o ro fa T i O 2/h B N c o m p o s i t ec e r a m i c c o a t i n g fo r m e dv i am i c r o -a r co x i d a t i o no fT i -6A l -4Va l -l o y [J ].J o u r n a lo f M a t e r i a l s S c i e n c e &T e c h n o l o g y,2016,32(10):1071-1076.[20] M o m e n z a d e h M ,S a n j a b i S .T h e e f f e c t o fT i O 2n a n o pa r t i -c l e c o d e po s i t i o no n m i c r o s t r u c t u r ea n dc o r r o s i o nr e s i s t -a n c e o fe l e c t r o l e s s N i Pc o a t i n g [J ].M a t e r i a l s &C o r r o -s i o n ,2012,63(7):614-619.P r e pa r a t i o na n d c o r r o s i o n r e s i s t a n c e o fm i c r o -a r c o x i d e c e r a m i c c o a t i n g o nm a g n e s i u ma l l o y su r f a c e Y U H a o x u n ,MA T i n gx i a (S c h o o l o fM e c h a n i c a l E n g i n e e r i n g ,S o u t h w e s tP e t r o l e u m U n i v e r s i t y ,C h e n g d u610500,C h i n a )A b s t r a c t :MA O -G R /T i O 2co a t i n g w a s p r e p a r e d o n t h e s u r f a c e o fm a g n e s i u ma l l o y b y a d d i n g p o t a s s i u mf l u o r i d e t i t a n a t e a n dG R /T i O 2po w d e r i n t o t h e e l e c t r o l y t e o fm i c r o -a r c o x i d a t i o n r e a c t i o nb y m i c r o -a r c o x i d a t i o nm e t h o d .T h e s u r f a c em o r p h o l o g y a n d s t r u c t u r eo fG R /T i O 2po w d e rw e r e s t u d i e db y S E M a n dF T -I R.S E M ,X R Da n d e l e m e n t a l l i n e s c a n n i n g w e r eu s e d t o s t u d y t h e s u r f a c em o r p h o l o g y ,ph a s e s t r u c t u r e a n d e l e m e n t d i s t r i b u t i o no f MA O -G R /T i O 2c o a t i n g ,a n d t h e c o r r o s i o n r e s i s t a n c e o fMA O -G R /T i O 2co a t i n g w a s s t u d i e db y t h r e e -e l e c t r o d e t e c h n o l o g y .T h e r e s u l t s s h o w e d t h a tn a n oT i O 2co u l db e g r a f t e do n t o t h es u r f a c eo fG O b y s o l -g e lm e t h o dt o g e n e r a t eG R /T i O 2p o w d e r .MA O -G R /T i O 2c o a t i n g w a s m a i n l y c o m p o s e do f M g 2T i O 4p h a s e ,M g 3(P O 4)2p h a s e ,M g a n d M g O p h a s e .T a k i n g t h e i n t e r f a c ea s t h eb o u n d a r y ,T i ,Pa n d Oe l e m e n t so nt h ec o a t i n g si d e w e r eh i g h e r t h a n t h o s e o n t h e s u b s t r a t e s i d e ,a n dM g e l e m e n t s o n t h e s u b s t r a t e s i d ew e r e h i gh e r t h a n t h o s e o n t h e c o a t i n g s i d e .T h e c o r r o s i o n p o t e n t i a l o fMA O -G R /T i O 2co a t i n g w a s -0.723Va n d t h e c o r r o s i o n c u r r e n t d e n -s i t y w a s 8.96ˑ10-8A /c m 2.C o m p a r e dw i t hm a g n e s i u ma l l o y s u b s t r a t e a n dMA Oc o a t i n g ,t h e c o r r o s i o n p o t e n -t i a l o fMA O -G R /T i O 2c o a t i n g w a s i n c r e a s e db y 48.3%a n d 36.7%,w h i c h i n d i c a t e d t h a tMA O -G R /T i O 2co a t -i n g c o u l d s i g n i f i c a n t l y i m p r o v e t h e c o r r o s i o n r e s i s t a n c e o fm a g n e s i u ma l l o y su b s t r a t e .K e y w o r d s :m a g n e s i u ma l l o y ;m i c r o -a r c o x i d a t i o n ;c o m p o s i t e c o a t i n g;c o r r o s i o n r e s i s t a n c e 52010余灏勋等:镁合金表面微弧氧化陶瓷涂层的制备及耐蚀性能。
SRB对AZgl镁合金在两种培养基中腐蚀行为的影响方世杰;刘耀辉;乔健;张伟【摘要】Soaking method, SEM and EDS analyses were applied to evaluate the influence and mechanism of sulfate-reducing bacteria (SRB) for the corrosion of AZ91 magnesium alloy in two kinds of culture media. The results show that, SRB can adhere and grow on the surface of AZ91, and then form a biofilm. The biofilm inhibits the corrosion of AZ91 at (30±1)℃. The biofilm formed in the culture medium with (NH4)2Fe(SO4) · 6H2O and C6H8O6 is loose, and plays a weak protective role for the matrix. Furthermore, Fe2+ ions in (NH4)2Fe(SO4) · 6H2O improve the metabolism of SRB significantly, however, they can form the deposition of FeS, which accelerates the corrosion of AZ91.%采用浸泡法、扫描电镜(SEM)和X射线能谱仪(EDS)研究了硫酸盐还原菌(SRB)在两种培养基中,对AZ91镁合金腐蚀行为的影响及其腐蚀机理.结果表明:在培养温度为(30±1)℃的条件下,SRB可以在AZ91表面附着、生长并形成生物膜,生物膜的存在抑制了AZ91的腐蚀.AZ91在含硫酸亚铁铵和维生素C的培养基中所形成的生物膜,其结构疏松,对基体的保护作用较弱.同时硫酸亚铁铵中的Fe2+明显促进了SRB的新陈代谢,但是会在镁会金表面形成FeS 沉淀,显著加速AZ91的腐蚀.【期刊名称】《材料工程》【年(卷),期】2011(000)009【总页数】7页(P56-61,67)【关键词】AZ91镁合金;硫酸盐还原菌;生物膜;腐蚀;培养基【作者】方世杰;刘耀辉;乔健;张伟【作者单位】洛阳理工学院机电工程系,河南洛阳471023;吉林大学材料科学与工程学院汽车材料教育部重点实验室,长春130022;吉林大学材料科学与工程学院汽车材料教育部重点实验室,长春130022;中国科学院长春光学精密机械与物理研究所,长春130033;洛阳理工学院机电工程系,河南洛阳471023【正文语种】中文【中图分类】TB172.5AZ91镁合金是目前工业中应用最为广泛的镁合金材料,占镁合金件总用量的90%左右[1]。
镁的腐蚀镁是所有工业合金中化学活泼性最高的金属,标准电极电位为-2.37V。
在干燥的大气中,镁表面可以形成氧化物膜层,对基体有一定的保护作用。
但是镁的氧化膜层疏松多孔,其耐蚀性较差,因而呈现出较高的化学活性和电化学活性,尤其是在潮湿的环境中以及Cl-存在的条件下极易发生腐蚀。
镁在大气中腐蚀的阴极进程是氧的去极化,其腐蚀性主要取决于大气的湿度及污染程度。
一般地,潮湿的环境对镁的腐蚀,只有当同时存在腐蚀性颗粒的附着时才发生作用[2]。
如果大气清洁,湿度达到100%时,镁合金表面只有一些分散的腐蚀点。
但当大气污蚀、腐蚀性颗粒在镁合金表面构成阴极时,表面则迅速被腐蚀,而且环境硫化物、氯化物成份的存在将加速镁的腐蚀[3]。
镁合金由于电极电位低,当镁及其合金与其它金属接触时,一般作为阳极发生电偶腐蚀。
阴极可以是与镁直接有外部接触的异种金属,也可以是镁合金内部的第二相或杂质相。
对于氢过电位较低的金属如Fe、Ni、Cu等,作为杂质在合金内部与镁构成腐蚀微电池、导致镁合金发生严重的电偶腐蚀。
而那些具有较高氢过电位的金属,如Al、Zn、Cd等,对镁合金的腐蚀作用相对较小。
镁合金基体与内部第二相形成的电偶腐蚀在宏观上表现为全面腐蚀。
文献[4]研究了AZ91D合金在大气条件下与异种金属的接触腐蚀行为,发现中碳钢和SUS304不锈钢与镁接触其电偶腐蚀,而经阳极氧化的铝合金与镁接触则镁合金的腐蚀效应下降[4]。
镁是自钝化金属,当暴露于含Cl-的非氧化性介质中,在自腐蚀电位下发生点蚀[5]。
将Mg-Al合金侵入Na Cl溶液中,经过一定的诱导期,产生点蚀。
点蚀的发生可能是由于沿Mg17Al12网状结构的选择性侵蚀造成的[2]。
Mg-Mn合金和Mg-Zn-Zr合金对应力腐蚀破裂不敏感,而Mg-Al-Zn合金具有应力腐蚀开裂倾向。
镁的应力腐蚀破裂既有穿晶的,也有晶间型的。
在pH值大于10.2的碱性介质中,镁合金非常耐应力腐蚀破裂,但在含Cl-的中性溶液中甚至在蒸馏水中,镁合金对应力腐蚀破裂非常敏感。
1 文献综述镁合金的防腐蚀保护如何增强镁合金的耐蚀性能已成为镁合金研究领域的热点。
解决镁合金腐蚀问题的方法包括[8]:〔1〕开发高纯合金或新合金降低有害杂质到允许极限以下,如AZ91hp。
或参加新元素,如Mg-Li 合金以及含Ca、Zr 的高温合金。
〔2〕快速凝固处理快速凝固处理〔RSP〕可以扩大固溶度的限制,使有害元素以危害更小的相态或在危害更小的位置存在,并且增大以高浓度存在时可以形成玻璃体氧化膜的元素的固溶度,促进更具保护性并有“自愈〞才能的玻璃体膜的形成,因此也能进步材料的耐蚀性能。
RSP 还能改善微观构造使材质构造更趋均匀,从而防止部分微电池的作用[9]。
〔3〕外表改性包括离子注入技术和激光处理技术。
在真空状态下使用高能离子束轰击目的体,几乎可以实现任何离子的注入,I.Nakatsugawa 等用N2+注入AZ91D 使腐蚀速率降低了85%[10]。
激光处理技术包括激光热处理和激光外表合金化,可以在金属外表产生极高的冷却速率,形成亚稳态的固熔体。
但在目前阶段,这种技术还无法用于商业消费。
镁合金涂装的特殊性许多因素给传统涂料在镁合金上的涂装带来了很大的困难:〔1〕镁合金的高化学活性[2]。
一遇到空气或水就会在外表形成对涂层粘结性和均匀性有破环作用的氧化物/氢氧化物薄膜。
〔2〕铸造镁合金件难以防止的外表缺陷和大量的孔洞给涂装造成困难[12]。
〔3〕镁合金在高温下的抗蠕变性能普遍很差〔如Mg-Al-Si 系与Mg-Al-RE(稀土)系合金使用温度上限分别为150℃、175℃〕[2],限制了传统高温烘烤漆在某些镁合金上的应用。
因此,在镁及其合金外表要获得高附着性、强耐蚀性和漂亮外观的涂层,正确的预处理过程是非常必要的。
其外表必须无尘、无污染物,且无硅酸盐和金属间化合物等[11]。
在对工件涂装有机涂层前,必须采用恰当的方法去除工件孔洞中的水分和空气,以免由于脱气而在涂层中形成针孔[11]。
同时,涂料的固化温度要受到涂覆对象的使用温度要求的限制。
非晶态镁合金材料的制备与表征非晶态材料是一种特殊的材料,其具有无定形结构的特征。
在非晶态材料中,原子没有排列成规则的晶体结构,而是呈现出无序的结构。
由于这种结构的特殊性质,非晶态材料具有一系列独特的物理和化学性质,并且在许多应用领域中得到了广泛的应用。
其中,非晶态镁合金作为一种新兴的材料,具有很高的热稳定性、强度和塑性等优点,已经成为研究的热点之一。
一、非晶态镁合金的制备非晶态镁合金的制备方法有很多种,包括快速淬火、溶液冷却、熔体淬火等。
其中,溶液冷却法是制备非晶态镁合金的主要方法之一。
溶液冷却法是一种将熔融的镁合金液体不断淬火冷却至室温的方法。
首先,我们需要制备合金液体。
在实验中,我们可以采用真空感应炉等设备,在惰性气体保护下熔融配合物,然后停止加热并搅拌液体来获得均匀的合金。
然后将合金液体倒入冷却器中,冷却器一般采用铜热沉管或铜轮速冷器等材料制成,使材料在极短时间内冷却至室温。
由于快速淬火,合金原子不会来得及排列成有序的结构,从而形成无定形的非晶态结构。
二、非晶态镁合金的表征1. X射线衍射(XRD)X射线衍射是一种常用的材料结构表征方法,可以用于分析非晶态材料的晶体结构。
对于非晶态镁合金,XRD可以揭示材料的非晶态结构和有序结构的信息,例如晶体晶格结构、长程有序性、晶界和微区结构等。
在实验中,我们可以将非晶态镁合金样品在适当的温度下加热,使非晶态结构逐渐转变成有序结构,然后测量XRD图谱。
通过比较有序和无序结构的差异,我们可以了解材料的结构和性质。
2. 扫描电子显微镜(SEM)扫描电子显微镜是一种能够观察材料微观结构的高分辨率显微镜,可以用于观察非晶态镁合金的表面和断面结构。
在实验中,我们可以将非晶态镁合金样品切成薄片,然后用SEM观察材料的表面和断面结构。
通常,非晶态镁合金的表面和断面会呈现出光滑的、无序的和均匀的结构,这是由于材料的无定形结构所导致的。
3. 差示扫描量热(DSC)差示扫描量热是一种用于分析材料热行为的方法,可以用于分析非晶态镁合金的热稳定性和热扩散性。
最新AZ91D镁合金微弧氧化处理工艺及膜层组织和性能研究一、引言AZ91D镁合金作为一种轻质、高强度的结构材料,在航空航天、汽车制造、电子通讯等领域具有广泛的应用前景。
然而,其较差的耐腐蚀性能限制了其应用范围。
微弧氧化(MAO)作为一种有效的表面处理技术,可在AZ91D镁合金表面形成一层致密的陶瓷膜,显著提高其耐腐蚀性能。
本文针对最新AZ91D镁合金微弧氧化处理工艺,探讨膜层组织和性能之间的关系。
二、实验材料与方法1.实验材料本实验选用AZ91D镁合金作为研究对象,其化学成分如下表所示:| 元素 | Mg | Al | Zn | Mn | Si | Cu | Fe | Ni | Be || | | | | | | | | | || 含量(%) | 89.69 | 9.03 | 0.73 | 0.19 | 0.02 | 0.002 | 0.002 | 0.002 | 0.0005 |2.微弧氧化处理工艺将AZ91D镁合金试样进行预处理,包括打磨、抛光、清洗等步骤。
然后,采用微弧氧化电源对试样进行微弧氧化处理。
实验过程中,通过调整电压、时间等参数,研究不同工艺条件对膜层组织和性能的影响。
具体工艺参数如下:电压:300500V时间:515min电解液:磷酸盐体系温度:室温3.膜层性能测试扫描电子显微镜(SEM):观察膜层表面形貌和截面结构。
X射线衍射仪(XRD):分析膜层物相组成。
电化学工作站:测定膜层的极化曲线,评价其耐腐蚀性能。
显微硬度计:测试膜层的硬度。
三、实验结果与分析1.微弧氧化膜层表面形貌随着电压的升高,膜层表面呈现出由微小孔洞组成的火山口状形貌。
当电压达到500V时,膜层表面孔洞数量减少,尺寸增大,呈现出较大的火山口状结构。
这表明电压对膜层表面形貌有显著影响。
2.膜层截面结构膜层截面呈现出明显的层状结构,主要由内层致密层和外层多孔层组成。
随着处理时间的延长,膜层厚度逐渐增加,内层致密层厚度占比提高。